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Abstract. A method for the analysis of wave scattering in 3-D elastic full space is developed by means
of the coupled boundary-volume integral equation, which takes into account the effects of both the bound-
ary of inclusions and the uctuation of the wave field. The wavenumber domain formulation is used to
construct the Krylov subspace by means of FFT. In order to achieve the wavenumber domain formulation,
the boundary-volume integral equation is transformed into the volume integral equation. The formulation
is also focused on this transform and its numerical implementation. Several numerical results clarify the
accuracy and effectiveness of the present method for scattering analysis.

Keywords: coupled boundary-volume integral equation; fast Fourier transform; elastic wave scattering;
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1. Introduction

Since the 1980s, the integral equation method has been important for the analysis of wave

scattering. The integral equation obtained by means of Green's function is a direct representation of

the solution of the wave field satisfying the radiation condition, which leads to straightforward

numerical methods based on linear algebra. A number of studies in the field of scattering analysis

have used the integral equation. For example, Colton and Kress (1983,1998) presented methods for

acoustic and electromagnetic wave propagation based on the theory of operators and reported a

survey of a number of articles on the forward and inverse scattering analysis, Guzina et al (2003)

considered the problem of mapping underground cavities from surface seismic measurements based

on a regularized boundary integral equation, and Manolis et al. (2004) dealt with elastic wave

scattering due to cracks in inhomogeneous geological continua by introducing the boundary integral

equation. Moreover, a number of studies have been based on the volume integral equation, which is

based on the Lippmann-Schwinger equation (Ikebe 1960). Yang et al. (2008) proposed a conjugate

gradient fast Fourier transform (CG-FFT) approach to solve elastic scattering problems, and De

Zaeytijd et al. (2008) proposed a fast Fourier transform and high-frequency multilevel fast multipole

algorithm (MLFMA-FFT) for analyzing electromagnetic waves.

The present author also presented a volume integral equation method based on the wavenumber
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domain formulation (Touhei 2009, Touhei et al. 2009 and Touhei 2011). This method used the

Fourier transform to construct the Krylov subspace (Barrett et al. 1994) according to the

mathematical form of the volume integral equation in the wavenumber domain. As a result, it was

not necessary to calculate a coefficient matrix for the integral equation. Furthermore, the

development of a fast method was possible by developing a fast algorithm, even for the case of an

elastic half space. However, for simplicity, the volume integral equation method generally excludes

the boundary terms that cause scattered waves. Nevertheless, for the analysis of scattered elastic

waves, it is desirable to be able to take into account the effects of both boundaries and uctuations of

the wave field.

Under the above-described circumstances, the goal of the present study is to establish an integral

equation method that incorporates the effects of the boundaries as well as the uctuation of the wave

field. The staring point of the formulation is the representation of the 3-D elastic wave field by

means of the coupled boundary-volume integral equation.

The method for the integral equation is an extension of the method presented in a previous paper

(Touhei 2009). In order to apply the Fourier transform to the coupled boundary-volume integral

equation, the equation is transformed into a volume integral equation, which is an important task

during the formulation. Numerical calculations are carried out in order to verify the above

formulations as well as to examine the convergence properties of the solution. The discussion of the

present paper begins with the presentation of the coupled boundary-volume integral equation.

2 Formulation of the coupled boundary and volume integral equation method

2.1 Definition of the problem and basic notation

Fig. 1 shows the concept of the scattering problem defined in this article. An incident wave in a

3-D elastic full space is propagating toward inhomogeneous region. The inhomogeneous region is

made up of fluctuating areas and inclusions that can be characterized by cavity or rigid boundary

conditions. The problem is to determine the scattered wave field by means of the coupled boundary-

volume integral equation method that is developed in the present study based on the wavenumber

domain formulation.

This section denes the problem and basic notation used to prepare the formulation of the present

method.

According to Fig. 1, let 3-D elastic full space be divided into the following

R
3 = (1)

where Ωi is the region of the inclusions, Γ is the boundary of the inclusions, and Ωe is the region

outside the inclusions. Note that the fluctuating areas are included in Ωe. A Cartesian coordinate

system is used for the wave field. The spatial point in the wave field is expressed as

x = (xj) =(x1, x2, x3) ∈ R
3 (2)

where the subscript index indicates the component of the vector. The fluctuating areas are expressed

by the deviation of the Lamé constants from the background constants as follows

Ωe Ωi Γ∪ ∪
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(3)

where λ0 and µ0 are the background Lamé constants of the wave field, and  and  are their

fluctuations. The support of the functions describing the fluctuation of the wave field,  and ,

must be in Ωe, i.e.

(4)

The time factor of the wave field in this article is assumed to be exp(−iωt) where ω is the circular

frequency, and t is the time. Then, the equilibrium equation of the wave field is expressed as

(5)

where σ ij is the stress tensor defined at the point x, ∂j is the partial differential operator, ρ is the

mass density, and ui is the displacement field. The subscript indexes i and j in Eq. (5) are the

components of the Cartesian coordinate system to which the summation convention is applied. The

constitutive equation showing the relationship between the stress and strain tensors is as follows

(6)

where δ ij is the Kronecker delta, and ε ij is the strain tensor given by

(7)

The boundary conditions at the boundary of the inclusions are 

(8)

λ x( ) λ0 λ̃ x( )+=

µ x( ) µ0 µ̃ x( )+=

λ̃ µ̃
λ̃ µ̃

 supp λ̃ x( ) Ωe,⊂ supp µ̃ x( ) Ωe⊂

∂jσi j x( ) ρω
2
ui x( )+ 0=

σij λδijεkk 2µεij+=

εij 1 2⁄( ) ∂iuj ∂jui+( )=

σij x( )nj x( ) 0,= x Γ1∈

Fig. 1 Concept of the analyzed model



186 Terumi Touhei

for the free traction condition and 

(9)

for the rigid boundary condition, where 

(10)

and ni is the component of the normal vector at the boundary for which the direction is inward to

the inclusions. 

2.2 Coupled boundary-volume integral equation in the space domain

Substituting Eqs. (7) and (6) into Eq. (5) yields the following governing equation for the present

problem

(11)

where Lij(∂) and Nij(∂, x) are the differential operators constructed by the background Lamé constants

and their fluctuations, respectively. The explicit forms of the operators Lij and Nij are given by

(12)

(13)

The boundary-volume integral equation can now be presented. Assume that the righthand side of

Eq. (11) is the inhomogeneous term for the equation. Based on the representation theorem (Aki and

Richards 2002) and literature of the boundary method (for example, Brebbia and Walker 1980), the

solution of Eq. (11) is expressed by the following integral equation

( = R
3) (14)

where ui
(I) is the incident wave, Gij is the Green’s function, Tij is the Green’s function describing the

traction, and cij(x) is the function defined by

(15)

ui x( ) 0,= x Γ2∈

Γ Γ1 Γ2∪    Γ1 Γ2∩, φ= =

Li j ∂( ) δi jρω
2

+( )uj x( ) Ni j ∂ x,( )uj x( )=

Li j ∂( ) λ0 µ0+( )∂i∂j µ0δij∂k∂k+=

Nij ∂ x,( ) λ̃ x( ) µ̃ x( )+( )∂i∂j δijµ̃ x( )∂k∂k––=

∂iλ̃ x( )∂j δi j∂kµ̃ x( )∂k– ∂jµ̃ x( )∂i––

cij x( )uj x( ) u
i
I( ) x( )  Gij x y,( )Njk ∂ y,( )uk y( )dy

R
3∫–=

Gij x y,( )σjk y( )nk y( ) Tij x y,( )uj y( )–( )dΓ
 
Γ
∫+

x Ωe Γ Ωi∪ ∪∈

cij x( )

δij

1 2⁄( )δij

0

   

x Ωe∈

x Γ∈

x Ωi∈⎩
⎪
⎨
⎪
⎧

=
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for the case in which the boundaries are smooth. The Green's function Gij is defined as follows

R
3 (16)

where δ ij is the Kronecker delta, and δ(·) is the Dirac delta function. The explicit form of the

Green’s function is expressed as

(17)

where r = |x − y| and kT and kL are the wavenumber for the S and P waves, respectively, defined by

(18)

The Green’s function for the traction is derived from Gij, such that

(19)

where Mijk(∂) is the operator

(20)

and ∂y indicates that this partial differential operator is for the coordinate y. 

2.3 Transform of the boundary integral to the volume integral

In order to achieve the wavenumber domain formulation for the integral equation, Eq. (14) must

be transformed into the volume integral equation. For this purpose, we introduce the function δΓ,

which has the following properties

(21)

For the construction of δΓ , take a point x(Γ) in Γ, and let U be the neighborhood of x(Γ), as shown

in Fig. 2. Assume that a function φ(x) having the properties

(22)

Lij ∂( ) δi jρω
2

+( )Gjk x y,( ) δikδ x y–( )–   x y, ∈,=

Gij x y,( )
δi j

4πµ0r
--------------- ikTr( )exp

1

4πµ0kT
2

------------------∂i∂j

ikTr( )exp ikLr( )exp–

r
-----------------------------------------------------+=

kT
ω

µ0 ρ⁄
-----------------   kL,

ω

λ0 2µ0+( ) ρ⁄
-------------------------------------= =

Ti j x y,( ) Mjkl ∂y( )Gil x y,( )( )nk y( )=

Mijk ∂( ) λ0
δij∂k µ0δjk∂i µ0δik∂j+ +=

 δΓ y( )u y( )dy
R
3∫ u y( )dΓy

 
Γ
∫=

∇φ x( ) 2
0≠ , x U∈( )

Fig. 2 Construction of δΓ
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characterizes Γ and Ω i in U such that

(23)

where

(24)

Then, δΓ can be defined in U by 

(25)

as follows

(26)

where δ (·) is the 1-D Dirac delta function. Based on δ (ψ (x)), we have

(27)

In order to obtain δΓ in R3, let Γ be covered by , such that

(28)

and ψj(x) let be the function satisfying Eq. (27) for each Uj. Then, δΓ in R3 is expressed as

 

(29)

Γ U∩ x U∈ φ x( ) 0={ }=

Ωi U∩ x U∈ φ x( ) 0>{ }=

∇φ x( ) 2 ∂1φ x( ) 2 ∂2φ x( ) 2 ∂3φ x( ) 2
+ +=

ψ x( ) φ x( )
∇φ x( )
------------------  ,= x U∈( )

 δΓ x( ) δ ψ x( )( )  ,= x U∈( )

δΓ x( )u x( )dx
U
∫ u x( )dΓx

Γ U∩
∫=

U{ }j 1=

n

Γ Uj

j 1=

n

∪⊂

Uj Ui∩ φ   i j≠,=

δΓ x( ) χUj
x( )δ ψj x( )( )

j 1=

n

∑=

Fig. 3 Sample of the construction of δΓ
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where χU is the definition function defined by

(30)

As a simple example for Eq. (26), consider the boundary Γ as a plane shown in Fig. 3. Let the

equation of the plane be 

(31)

where nj, (j = 1,2,3) is the normal vector of the plane. Then, δΓ for the plane becomes

(32)

Next, by means of δΓ , Eq. (14) is transformed into a volume integral equation as follows:

(33)

where vi(y) is defined by

(34)

Eq. (14) is constructed for  and  to avoid the singular integral related to the

Green’s function for the traction. In addition, we assumed that the boundary value of the

displacement and traction at Γ is obtained from the limit of displacement and the stress field in Ωe,

namely

(35)

where the left-hand side of the above equation denotes the boundary values.

It is true that the transform of the boundary-volume integral equation into the volume integral

equation may be also possible not by δΓ but by means of the Gauss divergence theorem. The use of

the Gauss divergence theorem, however, requires the complicated formulation. For example, we

have to obtain the derivative of functions such as Mjkl(∂y) Gil(x,y) shown in Eq. (19). In this sense,

the use of δΓ simplifies the formulation. In addition, the similarity of the use of δΓ and the Radon

transform should be also mentioned here.

According to the definition of the Radon transform (for example, Markoe 2006), the right side of

Eq. (21) is the Radon transform in R3 itself, in the case that Γ is a plane in R3. Due to the

introduction of δΓ , however, it becomes possible that Γ has a curvature. Therefore, Eq. (21) can be

χU x( )
1

0
    

x U∈

x U∉⎩
⎨
⎧

=

ψ x( ) nj xj xj
Γ( )

–( ) 0    x
Γ( ), xj

Γ( )( ) Γ∈= = =

δΓ x( ) χΓ x( )δ nj xj xj
Γ( )–( )( )=

ui x( ) u
i
I( ) x( )  Gi j x y,( )Njk ∂y y,( )υk y( )dy

R
3∫–=

  
R
3∫ δΓ y( ) Gij x y,( ) Mjkl ∂y( )υk y( )( )nl[ y( )+

Mjkl ∂y( )Gil x y,( )( )nk y( )υj y( ) ]dy    x Ωe Ωi∪∈( ),–

υi y( )
ui y( )

0

  when  

  when 

y Ωe Γ∪∈

y Ωi       ∈⎩
⎨
⎧

=

x Ωe Ωi∪∈ x Γ∉

υj x( )
Γ

uj x( )
x Ωe Γ→∈

lim=

Mjkl ∂( )υk x( )
Γ

Mjkl ∂( )uk x( )
x Ωe Γ→∈

lim=
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assumed to be an extension of the Radon transform.

2.4 Fourier transform and its application to the integral equation

The expressions for the Fourier transform and its inverse transform used in the present study are

as follows

(36)

where ξ is the point in the wavenumber space, the components of which are expressed as 

R
3 (37)

ϕ(ξ, x) are the kernel of the transforms defined as

(38)

and ϕ* is the complex conjugate of ϕ. Note that F and F −1 are the operators for the Fourier

transform and its inverse transform, respectively, and the symbol  attached to a function is used to

express the Fourier transform of the function. 

The expression of the Dirac delta function for x, y ∈ R
3 in terms of ϕ(ξ, x) is

(39)

The expression of the Green’s function defined by Eq. (16) is also possible in terms of ϕ(ξ, x). The

Fourier transform of Eq. (16) becomes

(40)

where Lij(iξ) is obtained from Eq. (12) by substituting iξ j into ∂j. The solution of Eq. (40) becomes 

(41)

where  is defined by

(42)

Therefore, by means of , the Green’s function in terms of ϕ (ξ, x) is given as

 

(43)

Note that the explicit form of is

Fui( ) ξ( )  ui x( )ϕ∗ ξ x,( ) xd
R
3∫=

F
1–
ûi( ) x( )  ûi ξ( )ϕ ξ x,( ) ξd

R
3∫=

ξ ξj( ) ξ1 ξ2 ξ3, ,( ) ∈= =

ϕ ξ x,( ) 1

2π
3

------------ i x1ξ1 x2ξ2 x3ξ3+ +( )( )exp=

ˆ

δ x y–( )  ϕ ξ x,( )ϕ∗ ξ y,( ) ξd
R
3∫=

Li j iξ( ) δijρω
2

+( )Ĝ ξ y,( ) δikϕ∗ ξ y,( )–=

Ĝij ξ y,( ) ĥij ξ( )ϕ∗ ξ y,( )=

ĥij

Li j iξ( ) δijρω
2

+( )ĥij ξ( ) δik–=

ĥij

Gij x y,( ) ϕ ξ x,( )ĥij ξ( )ϕ∗ ξ y,( ) ξd
R
3
∫=

ĥij
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(44)

where ε is an infinitesimally small positive number, ν is the Poisson ratio, and

(45)

As expected, the result of evaluating the integral of Eq. (43) agrees with Eq. (17). 

Function (ξ) is important with respect to the Fourier transform for the integral equation. For

example, let us define the following equation

(46)

The process of the Fourier transform for  becomes

(47)

Namely, the Fourier transform of (ξ) can be decomposed into the product of  and , that is

according to the fact that Eq. (46) is the convolution integral.

Similar results can also be found in the stress field due to the Green’s function

(48)

The stress field in terms of ϕ (ξ, x) is given by 

(49)

where  is given as

(50)

Therefore, the Fourier transform of the following function

(51)

becomes

(52)

Next, based on Eqs. (47) and (52), the application of the Fourier transforms to Eq. (14) becomes

ĥij ξ( ) 1

µ0

-----
δi j

ξ2
kT

2

– iε–
---------------------------=

1

2µ0 1 ν–( )
--------------------------

ξiξj

ξ
2

kT

2

– iε–( ) ξ
2

kL

2

– iε–( )
----------------------------------------------------------------–

ξ
2

ξ1

2
ξ2

2
ξ3

2
+ +=

ĥij

ui x( ) Gij x y,( )fi y( ) yd
R
3
∫=

ui

ûi ξ( ) ϕ∗ ξ x,( ) Gij x y,( )fj y( ) yd
R
3

∫ xd
R
3
∫=

 ĥij ξ( ) ϕ∗ ξ y,( )
R
3
∫ fj y( ) yd ĥij ξ( ) f̂j ξ( )= =

ûi ĥij f̂j

Sijk x y,( ) Mjkl ∂y( )Gi jl x y,( )=

Sijk x y,( ) ϕ ξ x,( )σ̂ijk ξ( )ϕ∗ ξ y,( ) ξd
R
3∫=

σ̂ijk

σ̂ijk ξ( ) Mjkl iξ–( )ĥij ξ( )=

ui x( )  Si jk x y,( )fjk y( ) yd
R
3

∫=

ûi ξ( ) σ̂ijk ξ( ) f̂jk ξ( )=
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possible. The application of the Fourier transform to Eq. (33) yields 

− Aij , ξ ∈ R
3 (53)

where A ij is the operator defined by

Aij = F NkjF
−1

+ F δΓMkjlnlF
−1

− F δΓnkF
−1 (54)

Eq. (53) is the boundary-volume integral equation in the wavenumber domain. The operator given

in Eq. (54) involves the Fourier transform and its inverse transform rather that the integral operators

in the space domain. The remainder of the present paper investigates the discretization of the

equation and the verification of the possibility of solving the equation based on the Krylov subspace

method and FFT. 

2.5 Discretization method for the integral equation

Let us define the set of the finite number of grid points in R3

Dx = {(n1∆x1, n2∆x2, n3∆x3) | n1 ∈ N1, n2 ∈ N2, n3 ∈ N3} ⊂ R
3

Dξ = {(n1∆ξ1, n2∆ξ2, n3∆ξ3) | n1 ∈ N1, n2 ∈ N2, n3 ∈ N3} ⊂ R
3 (55)

to discretize Eq. (53), where ∆x j, (j = 1,2,3) is the interval of the grid points in the space domain,

∆ξ j, (j = 1,2,3) is the interval of the grid points in the wavenumber domain, and N1, N2, and N3 are

the sets of integers defined by

N1 = {n | −N1/2 ≤ n < N1/2}

N2 = {n | −N2/2 ≤ n < N2/2}

N3 = {n | −N3/2 ≤ n < N3/2} (56)

Note that (N1, N2, N3) defines the number of grid points in R3. 

The discrete Fourier transform is defined on the set of the grid points Dx and Dξ, such that 

(57)

where FD and  are the operators for the discrete Fourier and its inverse transforms, ∆x and ∆ξ

are defined by 

(58)

υ̂i ξ( ) f̂j ξ( )= υ̂j ξ( )

ĥik ξ( )

ĥik ξ( )

σ̂ikj ξ( )

F D fi( ) ξ
p( )( ) ∆x

2π
3

------------  fi x
q( )( ) ix

q( )
– ξ

 p( )⋅( )exp
q N

1
N

2
× N

3
×∈

∑=

F
 D

1–  f̂i( ) x
q( )( ) ∆ξ

2π
3

------------  f̂i ξ
 p( )( ) ix

q( )
ξ

 p( )⋅( )exp
p N

1
N

2
× N

3
×∈

∑=

F  D
1–

∆x ∆x1∆x2∆x3   ∆ξ, ∆ξ1∆ξ2∆ξ3= =
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and x(q) and ξ(p) are the grid point in the space and wavenumber domain that can be expressed by

(59)

(60)

In Eq. (60), note that

(61)

There is a relationship between ∆xj and ∆ξ j such that

(62)

It is necessary to clarify the treatment of the derivative of the functions, as well as the Dirac delta

function, in the application of the discrete Fourier transform. The calculation of the derivative of a

function by means of the discrete Fourier transform is not very difficult. For example, ∂i f (x) in

terms of the discrete Fourier transform is expressed by

(63)

On the other hand, the treatment for the Dirac delta function in the discrete Fourier transform is not

self-evident. In order to resolve this problem, recall the delta function represented by the Fourier

series, which is as follows

(64)

where L is a positive constant that describes the period of the Dirac delta function. Next, we reduce

the infinite series of Eq. (64) to a finite sum. The function expressed by this finite series should be

used as the delta function in the discrete Fourier transform. We express this function as follows

(65)

Next, we set

(66)

Then, Eq. (65) becomes

                              (67)

x
p( )

x1

p
1

( ) x2

p
2

( ) x3

p
3

( ), ,( )=

ξ q( ) ξ1

q
1

( ) ξ2

q
2

( ) ξ3

q
3

( ), ,( )=

xj
pj( ) ∆xjpj  ξj

qj( ), ∆ξjqj   j 1 2 3, ,=( ),= =

∆xj∆ξj
2π
Nj

------   j 1 2 3, ,=( ),=

∂i  f x( ) FD
1  – iξiFD  f( )( ) x( )  x Dx∈ ξ Dξ∈,,=

δ xj yj–( ) 1

L
---

2πi

L
--------p xj yj–( )exp

p ∞–=

∞

∑   xj yj, R∈,=

δ̃ xj yj–( ) 1

L
---

2πi

L
--------p xj yj–( )exp

p N– j 2⁄=

Nj 2 1–⁄

∑   xj yj, R∈,=

L Nj∆xj  xj, n∆xj  yj, m∆xj= = =

δ̃ xj yj–( ) 1

Nj∆xj
-------------

2πi

Nj∆xj

-------------p n m–( )∆xjexp
p N– j 2⁄=

Nj 2 1–⁄

∑=

Snm

∆αj

---------=
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According to Eq. (65),  has several important properties. Let the discrete Fourier transform of

(xj − yj) be expressed by . Then,  becomes

  (68)

which agrees with the following result

  (69)

This agreement can be clarified by setting ξ j = k∆ξ j and yj = m∆xj. Furthermore,  has the following

property

(70)

which corresponds to

(71)

Eqs. (68) and (70) are found to be desirable properties as the delta function in the process of the

discrete Fourier transform. Therefore, we use  for the delta function to construct δΓ shown in Eq.

(29) in the numerical calculations. 

The Krylov subspace method (Barrett et al. 1994) can be applied to Eq. (53) after the equation is

discretized. In the process of discretizing the equation, note that the function υi to be obtained from

Eq. (53) was discontinuous at the boundary Γ , as shown in Eq. (34). The convergence of the

Fourier series at the discontinuous point is to its average. Namely, the solution of the discretized

equation for Eq. (53) at the Γ is 

  (72)

which is different from Eq. (35). In order to resolve this problem, the discretized equation for Eq.

(53) should be expressed by 

(73)

where ADij is the discretized operator, such that 

δ̃

δ̃  ̃δ
ˆ ξj( )  ̃δ

ˆ ξj( )

 ̃δ
ˆ ξj( )

∆xj

2π
----------

δnm

∆xj

--------
2πi

Nj

--------kn–exp
 n N– j 2⁄=

Nj 2 1–⁄

∑=

1

2π
----------

2πi

Nj

--------km–⎝ ⎠
⎛ ⎞exp=

δ̂ ξj( ) 1

2π
---------- δ xj yj–( ) i– xjξj( )exp xjd

∞–

 ∞+

∫=

1

2π
---------- i– ξjyj( )exp=

δ̃

fm
δnm

∆xj

--------fn
 n N– j 2⁄=

Nj 2 1–⁄

∑ ∆xj=

f yj( ) δ xj yj–( )f xj( ) xjd
∞–

  ∞

∫=

δ̃

υj x( )
Γ

1 2⁄( ) υj x( )
x Ωe Γ→∈

lim υj x( )
x Ωi Γ→∈

lim+( )=

1 2⁄( ) υj x( )
x Ωe Γ→∈

lim=

υ̂i ξ( ) f̂i ξ( ) ADijυ̂j ξ( )–   ξ Dξ R
3⊂∈,=



A boundary-volume integral equation method for the analysis of wave scattering 195

 (74)

Note that Γ is constructed by  defined in Eq. (67). As can be seen in Eq. (74), the effects of the

boundary terms must be taken into account by 2 Γ due to Eq. (72). The effectiveness of the

representation of the operator shown in Eq. (74) is verified in the numerical examples presented

below.

 

3. Numerical examples

3.1 Scattering analysis due to a rigid inclusion

As the first numerical example, let us examine the scattering analysis due to a rigid inclusion

embedded in a homogeneous elastic wave field. The analysis involves solving Eq. (73) for the

operator

(75)

For the homogeneous wave field, the P and S wave velocities are set to 2 km/s and 1 km/s,

respectively, the mass density is 2 g/cm3, and the frequency is 1 Hz. Therefore, the wavelengths of

the P and S waves become 2 km and 1 km, respectively. The incident wave in the wave field is the

P wave propagating in the x3 direction. The P wave potential for the incident wave is given as

(76)

where A is the amplitude of the potential, which is taken as A = 1.0 × 105 cm2 for the numerical

calculation. The incident wave field based on the P wave potential is given as 

(77)

In order to discretize the wave field for the present integral equation method, the number of grid

points are set by N1 = N2 = N3 = 256, and the interval of the grids in the space domain is ∆x1 =

∆x2 = ∆x3 = 0.25 km, which is 1/4 of the S wave length. Namely, grid points for the the present

integral equation method are distributed uniformly in the range of −32 km ≤ x j < 32 km, (j = 1,2,3)

in the space domain.

The inclusion is a rectangular rigid solid. The area for the inclusion is 

(78)

where λT is the wavelength of the S wave. For comparison, boundary element analysis is also

carried out. The boundary element mesh for the inclusion is shown in Fig. 4, in that the number of

ADij ĥik ξ( )FD  Nkj ∂ x,( )FD
1  –=

ĥik ξ( )FD  2δ̃Γ x( )( )Mkjl ∂( )nl x( )FD
1  –+

σ̂ikj ξ( )FD  2δ̃Γ x( )( )nk x( )FD
1  –   x Dx∈  ξ Dξ∈,,–

δ̃ δ̃

δ̃

ADij ĥik ξ( )FD  2δ̃Γ x( )( )Mkjl ∂( )nl x( )FD
1  –=

Φ x( ) A ikLx3( )exp=

ui
I( )

x( ) ∂iA ikLx3( )exp=

1– x1 λT⁄  1+≤ ≤    1– x2 λT⁄  1    0.5– x3 λT⁄ 0.5≤ ≤,+≤ ≤,
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boundary elements is 2240 and that of the grid points is 1134.

The Bi-CGSTAB method is used to solve Eq. (73) by the iterative procedure. The convergence of

the solution of Eq. (73) with respect to the number of iterations is shown in Fig. 5. The relative

error εr during the iteration is defined as

(79)

where  is the norm of the function given as, for example

(80)

According to the convergence properties of the solution shown in Fig. 5, no decrease in the relative

error is observed at the beginning of the iterative process. The relative error begins to decrease at

around ten iterations. The decrease in the relative error, however, is not monotonous, and the rate of

the decrease is found to slow as the number of iterations increases.

εr
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2
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Fig. 4 Discretization of the surface Γ

Fig. 5 Convergence properties of the solution
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Fig. 6 compares the results obtained using the proposed method and the boundary element method.

The real parts of the scattered waves along the x1 axis are compared at the locations of x3/λT = 1, 3

and 5. In Fig. 6, the x1 axis is expressed in dimensionless form as x1/λT. The present solution is

obtained by the iterative process when the relative error becomes less than εr = 0.001 for the first

Fig. 6 Comparison of displacement along the x1 axis

Fig. 7 Comparison of displacement amplitudes in the x1− x3 plane
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time. According to Fig. 6, the results show good agreement, which ensures the validity of con-

structing  and the operator shown in Eq. (75) in the discrete Fourier transform. According to Fig.

6, the wavelength of the waves in the area of |x1/λT| ≥ 5 is found to be approximately equal to λT. This

indicates that the S wave is caused by the interaction between the inclusion and the plain incident P

wave.

Fig. 7 shows the amplitudes of the scattered waves in the x1− x3 plane. For comparison, the results

obtained from the boundary element method are also presented. Fig. 7 indicates that the directionality

and the patterns of the scattered waves obtained using these methods are similar. The amplitude of the

scattered waves in the area near the inclusion obtained by the proposed method, however, is found to

be higher compared to the results obtained by the boundary element method. This corresponds to the

results shown in Fig. 6(a). Therefore, the proposed method provides a higher displacement amplitude

in the area near the rigid inclusion.

3.2 Scattering analysis of a cavity inclusion

The following example is a scattering analysis of a cavity inclusion embedded in a homogeneous

elastic wave field. For this case, we solve Eq. (73) for the operator

(81)

The property of the material, the interval of grid points, the frequency of the analysis, and the

incident wave field are the same as in the previous example. 

The convergence of the solution for Eq. (73) by means of the Bi-CGSTAB method is shown in

Fig. 8. In this case, the relative error is found to decrease rapidly compared to the case of the rigid

inclusion shown in Fig. 5. Fig. 9 shows the comparison of the displacement of the real part of the

scattered waves along the x1 axis. As in the previous numerical example, the present solution is also

obtained through an iterative process when the relative error of solutions becomes less than

εr = 0.001 for the first time. The solutions obtained by the proposed method and by the boundary

element method are compared. As shown in Fig. 9, good agreement of the solutions can be observed,

δΓ
˜

ADij σ̂ikj ξ( )FD  2δ̃Γ x( )( )nk x( )FD
1  ––=

Fig. 8 Convergence properties of the solution
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except in the case of x3/λT = 1. In the case of x3/λT = 1, the scattered waves are in the area near the

inclusion. The displacement amplitude obtained using the boundary element method is much higher

than that obtained using the proposed method around x1/λT~0. Except for this discrepancy, the

displacement amplitudes for both methods are similar in this case. Fig. 9(b) and (c) indicate that the

short wavelength of the scattered waves approximately equal to λT can be observed as x1/λT

Fig. 9 Comparison of displacement along the x1 axis

Fig. 10 Comparison of displacement amplitudes in the x1− x3 planes
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becomes larger, as shown in Fig. 6. This indicates that S wave propagation is caused by the

interaction between the cavity inclusion and the plane incident P wave. 

Fig. 10 shows the amplitudes of the scattered waves in the x1− x3 plane. For comparison, the

results of the boundary element method are also presented. According to Fig. 10, the directionalities

of the scattered waves are similar. In the area near the inclusion, however, the area of the high

displacement amplitude is wider for the proposed method than for the boundary element method. A

significant discrepancy with respect to the amplitudes of these methods, however, does not appear in

Fig. 10. 

3.3 Scattering analysis due to the interaction between a small cavity and fluctuations

The final numerical example is an analysis of scattered waves due to the interaction between a

small cavity and fluctuations. The problem involves the solution of Eq. (73) with the operator 

(82)

The locations of the fluctuation and the cavity are shown in Fig. 11. The region for the fluctuation

and the cavity is represented by a cube with sides of length equal to the wavelength of the S wave.

In addition, the fluctuation is expressed by 

(83)

where Q is the region for the fluctuation, and Aλ and Aµ are the amplitude of the fluctuation that is set

ADij ĥik ξ( )FD  Nkj ∂ x,( )FD
1  –=

σ̂ikj ξ( )FD  2δ̃Γ x( )( )nk x( )FD
1  ––

λ̃ x( ) AλχQ x( )=

µ̃ x( ) AµχQ x( )=

Fig. 11 Fluctuation and cavity in the wave field
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to Aλ = Aµ = 1[GPa] for the numerical calculation. The derivatives of  and , which are necessary to

constitute Njk(∂, x) shown in Eq. (82), are approximated by Aλ/∆xj and Aµ/∆xj, (j = 1,2,3), respectively.

These values are imposed on the interface boundary of the fluctuation. The number of grid points and

the interval of grid points are 256 × 256 × 256 and ∆xj = 0.25 km, respectively. In addition, the

background structure of the wave field and the incident wave are the same as in the previous example. 

The convergence properties of the solution obtained by the iterative Bi-CGSTAB method are

shown in Fig. 12. For comparison, the convergence properties of the solution obtained by means of

the following operator

(84)

are also shown. In Fig. 12, the solution based on Eq. (84) is denoted by “viem”, because the

method is the volume integral equation method presented in the article by Touhei et al. (2009).

For the analysis using the volume integral equation, the cavity is expressed by the fluctuation of the

Lamé constants by setting 

(85)

and δΓ is excluded from the operator.

Fig. 12 shows that the relative error obtained using the proposed method decreases rapidly as the

number of iterations increases. On the other hand, the relative error obtained from “viem” does not

decrease even as the number of iterations increases. Therefore, the analysis of scattered waves by

means of the operator shown Eq. (84) has a limitation. In order to improve the convergence

properties of the volume integral equation method (Touhei et al. 2009), the introduction of δΓ into the

operator is found to be important.

Fig. 13 shows the amplitudes of the scattered waves in the x1− x3 plane. The amplitudes of the

scattered waves from a cavity are found to be stronger than those from a fluctuating area, in which

λ̃ µ̃

ADij ĥik ξ( )FD  NkjFD
1  –=

λ̃ x( ) λ– 0=

µ̃ x( ) µ– 0   x Ωi∈,=

Fig. 12 Convergence properties of the solution
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the strong scattered waves are observed at the corner of the cubes. For this numerical example, the

amplitudes of the fluctuations are not sufficient to cause strong scattered waves, compared to those

from the cavity. Due to the directionality of the scattered waves, the interference of the scattered

waves can also be observed on the forward side of the cavity and the fluctuation. 

Fig. 14 shows the amplitudes of the scattered waves in the x1− x2 plane on the forward side. The

results are presented at the locations of x3/λT = 1 and 2. According to Fig. 14(a), scattered waves

can be observed just above the area of the fluctuation and the cavity. As shown in Fig. 13, the

amplitude of the scattered waves from the cavity is higher than that from the fluctuating area. The

directionality of the scattered waves from the cavity is found to be due to the waves generated at

the corner. Figa. 14(a) and (b) indicate that the amplitude of the scattered waves decreases and the

high-amplitude area spreads toward the far field. These results are reasonable and well explain the

scattering phenomena. 

At the end of this section, the CPU time required for scattering analysis is discussed. The processor

Fig. 13 Comparison of displacement amplitudes in the x1− x3 plane

Fig. 14 Scattered waves in the x1− x2 plane
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used for the computation was an AMD Opteron 2387 processor. The ACML library was used for the

fast Fourier transform. The number of iterations for a relative error of less than 1.0 × 103 was 16, and

the CPU time was 38 minutes for this case. As mentioned earlier, the grid was a 256 × 256 × 256

point grid. The CPU time consumption was primarily due to the fast Fourier transform for the 3D grid

point model. 

4. Conclusions

A coupled boundary-volume integral equation method was developed in order to analyze the

scattering of elastic waves. The proposed method used the formulation in the wavenumber domain, in

which the FFT is used to construct the Krylov subspace. The proposed method is an extension of the

volume integral equation method, to which the effects of the boundary integral equation were

introduced. The formulation of the proposed method focused primarily on transforming the boundary-

volume integral equation into the volume integral equation in the wavenumber domain. The use of

function δΓ was important in transforming the boundary-volume integral equation into the volume

integral equation during the discrete Fourier transform. Therefore, a method for constructing  and

its numerical treatment were also clarified in the formulation. Numerical calculations were carried out

to verify the formulation for the boundary-volume integral equation. According to the numerical

results, the transform of the boundary-volume integral equation to the volume integral equation was

successful. The present numerical results were found to be in good agreement with the results of the

standard boundary element method. Furthermore, the convergence property of the solution due to

the volume integral equation method (Touhei et al. 2009) is improved by the introduction of the

effects of the boundary integral by means of δΓ . 
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