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Abstract 
 

This paper describes a variant of the extended Gaussian image based registration algorithm for point clouds with surface color infor-

mation. The method correlates the distributions of surface normals for rotational alignment and grid occupancy for translational align-

ment with hue filters applied during the construction of surface normal histograms and occupancy grids. In this method, the size of the 

point cloud is reduced with a hue-based down sampling that is independent of the point sample density or local geometry. Experimental 

results show that use of the hue filters increases the registration speed and improves the registration accuracy. Coarse rigid transforma-

tions determined in this step enable fine alignment with dense, unfiltered point clouds or using Iterative Common Point (ICP) alignment 

techniques. 
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1. Introduction 

A number of 3D point cloud data registration techniques 

currently exist for generating accurate global maps by merg-

ing multiple point cloud maps from different vantage posi-

tions into a single global coordinate system [1]. In most cases 

3D range points acquired from laser scanning devices contain 

detailed spatial information of the scanned environment 

saved with respect to the local coordinate reference frame 

defined by the scanned location and orientation. Creating an 

accurate global map from the individual point clouds scanned 

with local reference frames is an essential task for a number 

of different applications including construction / architectural 

surveying, area mapping, and autonomous robotic explora-

tion. 

If the scanner is precisely localized (location and pose are 

known), the registration is trivial. However, localizing a 

moving robot may be challenging or imprecise at best with-

out the aid of locating beacons (e.g., GPS) and the localiza-

tion errors translate to mapping errors. Registration algo-

rithms analyze the scan data gathered from two locations for 

overlapping goemetry and use the geometric features to reg-

ister a new unregistered point cloud (termed as the data cloud) 

into the reference frame of registered point clouds (model 

cloud). A well-known algorithm for 3D point cloud data reg-

istration is the Iterative Closest Point (ICP) [2] algorithm, 

which has been applied to stitch two neighbor 3D point cloud 

maps into one map based on their overlap coverage area. 

Several variants of ICP are reported in the literature to in-

crease the speed and precision [3]. Corresponding points 

ampling, matching, weighting and rejecting are some me-

thods used to accelerate the ICP algorithm. In the ICP algo-

rithm, associating corresponding points in two point cloud 

data sets is the most critical step. 

Nearest neighbor search in 2D or 3D space is commonly 

used for associating the corresponding points. Parallel ICP 

algorithms have been developed [4] to accelerate computa-

tion speed. Point to plane registration method accelerates the 

ICP iteration and convergence [5]. A good initial (or rough) 

alignment with small translation and rotation errors is re-

quired for ICP [2]. Therefore, manual alignment often pre-

cedes the use of ICP. 

Other techniques for registration include the point signa-

ture method [6] that used signature points to describe curva-

tures of point cloud data and matches corresponding signa-

ture points during the registration process. Spin image based 

methods compute 2D spin image to represent surface charac-

terization and solve the registration problem by finding the 

best correspondence between two different scan spin images 

[7]. Methods such as the principle component analysis [8] 

and algebraic surface model [9] are based on matching the 

point cloud surface geometrical features. 

Of these methods, the Extended Gaussian Image (EGI) 

based techniques [10] are capable of automatically perform-

ing rough alignment. EGI techniques determine the optimal 

rigid transformations that correlate the surface normal vector 
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distributions in the data and model point clouds. The rotation 

required to register two point clouds is solved using a cross-

correlation function of the two EGI images. Computing the 

cross-correlation in the frequency domain using Discrete 

Fourier Transform on Rotation Group on SO(3) (SOFT) is 

efficient and economical. Makadia et al. [10] illustrated the 

rotational alignment by EGI and suggested translational reg-

istration with cross-correlation of discrete occupancy grids. 

Rough alignment methods coupled with ICP can lead to a 

fully automatic registration of point clouds into a fixed refer-

ence frame. 

Recently, scanners have been integrating the color infor-

mation at the ranged point producing 3D color point clouds 

[11]. A color camera is combined with a 3D LIDAR ranging 

system can generate visually realistic and geometrically accu-

rate representation of the scene. Several algorithms take ad-

vantage of the available color property to accelerate the map 

registration process and increase accuracy. Hue value from 

Hue-Saturation-Lightness (HSL) color model has been com-

puted and utilized in all iterations during the ICP registration 

process [12]. Color data on depth image can be used to esti-

mate initial alignment of a scans pair with the Scale Invariant 

Feature Transform (SIFT) has been proposed as a variant of 

the ICP fine registration [13]. The Depth-interpolated Image 

Feature (DIFT) algorithm associates the corresponding points 

between two images and registers the color point clouds 

based on the extracted correspondences [14]. Probabilistic 

scan registration methods trace laser beam to exploit maxi-

mum range readings to increase likelihood of alignment. 

Color attribute has been applied as kernel extension in Nor-

mal Distributions Transform (NDT) process so that robust-

ness is increased [15]. 

This paper presents a variant on the EGI for automatic 

coarse alignment. The registration process is fully automatic 

because it requires no manual pre-alignment or user identifi-

cation of corresponding points. As more and more scans are 

registered, the size of the model point cloud increase and 

down sampling of the point clouds becomes necessary. Geo-

metry-based or sample density based down sampling tech-

niques may indiscriminately cull points from overlapping 

areas. Since the hue information must match in the overlap-

ping areas of the data (unregistered) and model (already reg-

istered) point clouds, hue filters designed with hue-

distribution patterns of the data point cloud ensure that the 

points in the overlap areas in the model point clouds are pre-

ferentially retained. The traditional EGI algorithm for regis-

tration and hue filters used for selective clustering of points 

for EGI registration is described in the next section. A two 

scan matching scenario and an eight scan matching scenario 

are considered as illustrative examples. Performance mea-

surements on the example scans are described in the third 

section. The paper concludes with remarks on the effective-

ness of using hue filtering. 

 

2. Hue assisted automatic registration algorithm 

The automatic registration algorithm includes two parts: 

rotational alignment and translational alignment. Registration 

with the EGI follows the technique developed by Makadia et 

al. [10]. Rotational alignment is executed before translational 

alignment. A summary of rotational alignment based on EGI 

is presented for the sake of the completeness. The rotational 

alignment is solved by correlating point surface normal his-

tograms from different point clouds in frequency domain. 

 
(a) 

 

 
(b) 

Figure 2. Surface point normal histogram representations: 

(a) surface normal histogram on the (θ, φ) plane, (b) sur-

face normal histogram on EGI. 

 

Figure 1. Surface normal orientation angle and vector. 
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Occupancy grids are built afterwards based on common 

bounding box and the 3D occupancy grids are expanded into 

1D domain. Translation can then be computed based on the 

convolution results in frequency domain. 

2.1 Point cloud alignment with extended Gaussian images 

2.1.1 Surface point normal histogram construction 

Point cloud surface normal has been computed as the first 

step. There are several different algorithms such as Big De-

launay ball methods and Voronoi based methods [16] that 

can be applied to estimate the surface normal at each point in 

a point cloud. In this case point surface normal vector on 

single point has been computed by solving the nearest points 

fitted plane normal. Normal vector n can be represented by 

its orientation angle {θ, φ} in Figure 1 where are nx, ny and nx, 

ny and nz are the directional cosines about the three orthogon-

al reference axes – X, Y and Z, respectively. 

Surface normal orientation histogram can then be con-

structed after the normal computation at every point. A 

schematic representation of the orientation histogram H (ω) 

on (θ, φ) plane is shown in Figure 2(a), where ω  SO(3).The 

Extended Gaussian Image (EGI) is formed as a unit sphere 

showing the surface normal vector orientation histogram 

projected on EGI as shown in Figure 2(b). 

2.1.2 Rotational alignment with spherical Fourier trans-

form 

The rotation matrix R between data point cloud orientation 

histogram Hd (ω) and model point cloud orientation histo-

gram Hm (ω) can be solved by computing the the rotation R 

required for maximum cross-correlation between Hd (ω) and 

Hm (ω). The correlation can be computed as shown in Eq. (1). 

 

𝐺 𝑅 =  𝐻𝑚𝜔
 𝜔 𝐻𝑑 𝑅𝜔 𝑑𝜔                     (1) 

 
The computational complexity of Eq. (1) scales with the 

square of number of samples in the orientation histogram and 

the size of the bins used for frequency counts. In order to 

improve the efficiency, a fast discrete Fourier Transform in 

SO(3) space was introduced [10] to solve the convolution of 

Hd (ω) and Hm (ω). 

Following Ref. [10], using a set of spherical harmonic ho-

mogeneous polynomials, 
l

n
Y , of 2l + 1 dimensions are used 

to generate an orthonormal basis for H(ω) with 
l

n
ĥ  as the 

coefficients of Spherical Fourier Transform (SFT). For a 

traditional ZYZ rotation sequence with Euler angles α, β and 

γ as the parameterization of the SO(3) rotation group, the 

coefficients of the SO(3) Fourier Transformation (SOFT) for 

a rotation, R  SO(3), can be determined as given by Eqs. 

(2)-(4). 
l

mn
P

 
are the Associated Legendre Polynomials. 

 

𝐹 𝑅 =    𝑓 𝑚𝑝
𝑙 𝑈𝑚𝑝

𝑙

𝑙

𝑝=−𝑙

𝑙

𝑚=−𝑙𝐿𝑁

 

 

𝑓 𝑚𝑝
𝑙 =  𝑓 𝑅 𝑈𝑚𝑝

𝑙  𝑅           𝑑𝑅
𝑅

                         (3) 

 
𝑈𝑚𝑝

𝑙  𝑅 𝛼, 𝛽, 𝛾  = 𝑒−𝑖𝑚𝛾 𝑃𝑚𝑛
𝑙 (cos 𝛽 )𝑒−𝑖𝑛𝛼          (4) 

 
Figure 3. Model and data point clouds scanned from two 

separate vantage points of a conference room shown in 

their initial local coordinate systems. 

           

 (a) 
 

 

(b) 

Figure 4. Surface normal orientation histograms on the {θ, 

φ} plane: (a) data point cloud histogram, (b) model point 

cloud histogram. 

(2) 
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Considering the SOFT coefficients of the model and data 

orientation histograms are defined as 
l

d
ĥ and , 

ˆ l

m
h respective-

ly. The correlation of two spherical function can be obtained 

directly from the point-wise multiplication of the individual 

SOFT coefficients. The optimal rotational transformation (R) 

in Eq. (1) is determined by maximizing 
l

dm
Ĝ . 

 

𝐺 𝑑𝑚
𝑙 =  𝑑𝑛

𝑙  𝑚𝑛
𝑙                                    (5) 

 

Inverse SOFT generates G(R) with 2L + 1 samples for 

each of the three Euler angles. The total complexity for com-

puting G(R) is of O(L
3
log

2
L). 

2.1.3 Translational alignment with occupancy grid correla-

tion 

The translation matrix is computed by solving the correla-

tion of occupancy grid between data and model point clouds 

after rotational alignment [17]. Bounding box of the occu-

pancy grid used is the common bounding box encompassing 

both the model and data point clouds. The occupancy func-

tion is built by testing the existence of a scanned point in a 

uniformly sub-divided grid space. 
 

𝑂𝑔 𝑥, 𝑦, 𝑧 =  
1, if points exist
0, otherwise

   

 

The 3D occupancy grid of data and model point clouds are 

shown as Figure 7. They can be stretched into 1D plane and 

shown as occupancy function Og(τ) in Figure 8. The correla-

tion between data and model occupancy grids can be solved 

by 
 

𝐺 𝑻 =  𝑂𝑔𝑚 𝜏 
𝜏𝑅3

𝑂𝑔𝑑(𝜏 + 𝑻) 

 

The optimal transformation vector, T, for correlation can 

be solved by maximizing the convolution of Ogm (τ) and Ogd 

(τ) as: 
 

𝑻 = max  𝑅𝑒𝑎𝑙  
𝐼𝑛𝑣𝐹𝐹𝑇

 𝐹𝐹𝑇 𝑂𝑔𝑑 𝜏  . 𝐹𝐹𝑇 𝑂𝑔𝑚 𝜏   
     (8) 

 

2.2 Illustration of EGI-based Registration 

Two point clouds scanned from different vantage points in 

a conference room are shown, with coincident in their local 

coordinate system, in Figure 3. Data point cloud is shown in 

blue and model is shown in black. The point normal orienta-

tion histograms on (θ, φ) plane have been computed and 

shown in Figure 4. Orientation histograms projected on EGI 

are shown in Figure 5. After spherical correlation, data point 

cloud have been rotated and aligned with model point cloud, 

shown in Figure 6. 

The correlation between Ogm (τ) and Ogd (τ) is shown as 

Figure 9. Data point cloud is then translated by T into model 

point cloud reference system. The result is shown in Figure 

10. 

 

(a) 

 

(b) 

Figure 5. Orientation histogram projected on EGI: (a) data 

cloud, (b) model cloud. 

 
Figure 6. Point clouds after rotational alignment with EGI. 

 
Figure 7. Point clouds rendered on 3D occupancy grids. 

(7) 

(6) 
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2.3 Hue-based point clustering 

The registration speed and accuracy can be improved by 

taking advantage of the color attributes of the color point 

cloud. Color attributes on each point represent the visual 

characteristics of the scene. The color map of the scene is 

 
(a) 

 

 
(b) 

Figure 8. Binary 1-D representation of the occupancy grids: (a) data occupancy grid in 1D, (b) model occupancy grid in 1D. 

 
Figure 9. Correlation after optimal translation of the occu-

pancy grids. 

 

Figure 10. Data point cloud registered into model refer-

ence system. 

 

Figure 11. Color point clouds scanned from two vantage 

positions. 

 
(a) 

 

 
(b) 

Figure 12. Distribution of hue values for the model and 

data point clouds: (a) hue distribution of data point cloud, 

(b) hue distribution of model point cloud. 
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typically independent of the underlying geometry, as an envi-

ronment may be painted uncorrelated to the surface geometry. 

But for the exceptional cases in which the scene is entirely 

monochromatic, the sensed color information may provide 

additional cues during the association process. In most cases, 

lighting condition and camera orientation determines the 

{Red, Green, Blue}values in RGB color representation mod-

el. Hue value from Hue-Saturation-Lightness (HSL) is seen 

to be independent of the lighting and camera location [12]. 

Figure 11 shows the point clouds shown in Figure 3 with the 

additional color information. The hue distribution of data and 

model point clouds shown in Figure 11 are depicted in Figure 

12. The hue distribution in HSL is generally computed from 

0° to 360°. In this analysis the hue values are rescaled to a 0 

to 1 scale by dividing the computed hue values by 360. How-

ever, the computed hue value will be zero (H = 0) when the 

color is red or when the red component (R) equals that of 

blue (B) and green components (G), i.e., R = B = G. There-

fore, hue value is also zero for both black pixels and white 

pixels. Since a value of H = 0 is non-discriminating between 

reds, blacks and whites, further classification of this cluster of 

points may be necessary. For this illustration, we included the 

points with hue clustered around the zero value and the scene 

is known to have ceiling and wall areas that were painted 

white. 

With the assumption that the hue values remain invariant 

with the scanner location and pose, the points scanned in 

overlapped areas must have the same hue distributions in the 

model and data point clouds. 

An examination of the hue distributions provides insight 

into potential filter choices that will yield large number of 

filtered points in the overlap regions. One can consider a low 

pass filter with a hue value of less than 0.2 and another is a 

band pass filter with hue values between 0.5 and 0.85. 

Other filters based on the inherent camera noise and sensi-

tivity may also be used to select the hue filter. In Figure 12, 

most points hue value are between 0 to 0.5, filtering out high 

hue value point reduces the points for registration and conse-

quently reduces the computational time. Both color property 

and 3D coordinates are kept after filtering for computation 

rigid rotation and translation. The hue values are used for 

registration accuracy computations. The filtered point clouds 

after applying a low pass hue filter (hf <= 0.5) are shown in 

Figure 13. The number of points in the data point cloud was 

 

(a) 
 

 

(b) 

Figure 13. Hue-filtered color point clouds: (a) data color 

point cloud, (b) model color point cloud. 

 

Figure 14. Orientation histogram of filtered point clouds. 

 
Figure 15. EGI of filtered point clouds. 

 

Figure 16. Registration of the filtered point clouds. 
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reduced from 597270 to 353386 and the number of points in 

the model point cloud was reduced from 631400 to 330832. 

The rendering of the model and data point clouds in Figure 

13 shows that most of the scanned are was represented. The 

orientation histogram after hue filtering is shown in Figure 14 

and after projection into an EGI is shown in Figure 15. Figure 

16 shows the registered model and data point clouds. 

2.4 Registration algorithm with hue-based filtering 

The hue assisted automated color point cloud registration 

algorithm can be summarized as follows: 

 

1. Load data point cloud Pd and model point cloud Pm; 

2. Compute hue at every point in Pd and Pm; 

3. Compute hue distributions for Pd and Pm; Design a hue 

filter that increases point sampling in the overlap areas of 

the point cloud. 

4. Filter outlier and voxel de-sampling on both Pd and Pm; 

5. Compute point surface normal nd{1…Nd} on data point 

cloud Pd and nm{1…Nm} on model point cloud Pm; 

6. Construct orientation histogram Hd and Hm based on ex-

tracted point normal; 

7. Solve rigid rotation matrix R by solving the correlation 

between Hd and Hm with SOFT(3); 

8. Rotate Pd with R, get Pd’; 

9. Building occupancy grid with common bounding box in 

Pd’ and Pm; 

10. Solving rigid translation T by solving the convolution of 

Pd’ and Pm, 

11. Save transformed Pd’ for fine registrations. 

2.5 Error measurement 

The registration error is measured by average distance be-

tween 2 nearest points from data to model point clouds, as 

defined in Eq. (9). 

 

 =
1

𝑁
 

 𝑥𝑖𝑑 − 𝑥𝑖𝑚  2 +  𝑦𝑖𝑑 − 𝑦𝑖𝑚  2

+(𝑧𝑖𝑑 − 𝑧𝑖𝑚 )2 + (𝐻𝑖𝑑 − 𝐻𝑖𝑚 )2               (9) 

 
Figure 17. Color point clouds generated at 8 different vantage positions in building hallway. 

 

 
 

 
 

 
 

 
 

 

 

Pos #1 Pos #2 

Pos #3 Pos #4 

Pos #5 Pos #6 

Pos #7 Pos #8 
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The error is computed between point pid{xid, yid, zid} in the 

data point cloud and its nearest neighbor point pim{xim, yim, 

zim}in the model point cloud. Two points are paired when 

distance between pid and pim dist (pid pim) < rl. rl is a small con-

stant value to chosen to ensure two nearest points are 

matched only within certain distance. N is the total number of 

paired points. 

The computational time required for the registration of the 

two example color point clouds with hue-based filtering was 

22.599 seconds and error is 0.001482. Using the same com-

putational hardware, the registration with EGI based rotation-

al and occupancy grid based translational registration but 

without the hue filtering took 31.572 seconds and produced 

an error of 0.001501. The Hue filtered EGI method was fast-

er and produced more precise alignment. 

 

3. Results for multi-scan registration 

The second example considered for performance measure-

ment was the registration of eight color point clouds generat-

ed at different vantage positions. Both EGI based and EGI 

with hue-filtering methods were considered. The eight sepa-

rate color point clouds are shown in Figure 17. They each 

have a partial coverage of the whole area and considerable 

overlap between consecutively numbered point clouds. Hue 

distributions for the point clouds are calculated and shown in 

Figure 18. Based on the hue-distributions seen in Figure 18, a 

hue constraint placed with a low pass filter (hf <= 0.5). 

The vantage positions are numbered as shown in Figure 19. 

The reference coordinate system of position-3 was arbitrarily 

selected as the global reference coordinate system. The other 

point clouds were registered into reference coordinate system 

established at position-3. The computation time and regist-

ration error for registering each of the other point clouds in 

sequence to point cloud at position-3 are tabulated in Table 1. 

Experimental results show that the hue assisted registration 

algorithm provides a reliable improvement in both computa-

tion time and registration accuracy. 

 
Figure 18. Hue distribution histogram for 8 color point clouds. 

 
Figure 19. Eight scans aligned to form a complete map a 

building hallway with approximately five million points. 

 
Figure 20. Color point clouds after registration. 
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A global color point clouds map is constructed after regis-

tering the seven color point clouds into the reference coordi-

nate system set up by position-3. A 3D view of the complete 

space after registration into a single coordinate system is 

shown in Figure 20. This coarse registration results can then 

be supplied for fine registration such as ICP to produce high-

er quality registration. Both computational time and error are 

reduced and the filtering helps to decrease the number of 

points into rigid transformation computation, which is a great 

advantage in registration process. Hue filtering also helps to 

increate registration accuracy because clustering similar point 

together is essentially keeping common points and filtering 

out uncommon points between color point clouds. 

 

4. Conclusions 

A hue assisted automatic coarse registration algorithm that 

solves correlation for spherical rotation and 3D translation is 

described in this paper. The hue distributions in the color 

point clouds have been analyzed and hue filters were used to 

down sample the number of points used for registration. A set 

of color point clouds of a long hallway in a building and a 

conference room were registered with traditional EGI and 

after applying hue-based filters. The use of the hue filters is 

shown to accelerate the registration speed and reduce regis-

tration error. Although the improvements in the registration 

speed for the example data sets is seen to be about 20%, bet-

ter hue filter designs can potentially lead to further down 

sampling of points and acceleration of various steps in the 

registration. Since no manual intervention or pre-alignment is 

necessary, this methodology can used as a coarse alignment 

step before using ICP methods for fine registration. 
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