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Abstract 
 

In this paper, we propose a new method of reconstructing the hand models for individuals, which include the link structure models, the 

homologous skin surface models and the homologous tetrahedral mesh models in a reference posture. As for the link structure model, the 

local coordinate system related to each link consists of the joint rotation center and the axes of joint rotation, which can be estimated 

based on the trajectories of optimal markers on the relative skin surface region of the subject obtained from the motion capture system. 

The skin surface model is defined as a three-dimensional triangular mesh, obtained by deforming a template mesh so as to fit the land-

mark vertices to the relative marker positions obtained motion capture system. In this process, anatomical dimensions for the subject, 

manually measured by a caliper, are also used as the deformation constraints. 
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1. Introduction 

These days, product design based on a CAD system, so-

called digital style design, has spread widely enabling rapid 

product design. Product development with advanced ergo-

nomic design aimed at high safety and easiness to grasp and 

operate, has been required, while ergonomic evaluations have 

been conducted using conventional methods, which require 

human subjects and physical mockups. It takes a long time 

and high cost to produce physical mockups for a number of 

design ideas and to secure various kinds of subjects, which 

can be a bottleneck in product design. The possibility of con-

ducting human-centered product design quickly with less 

cost, by performing ergonomic evaluation virtually and quan-

titatively, has been expected for some time in order to ad-

dress the problem mentioned above.  

So far, we have developed a system to aid human-centered 

design by conducting virtual ergonomic evaluations on many 

kinds of three-dimensional products. We have created a digi-

tal model of the human hand, with its dimensions and shape 

of representative Japanese adult. The primary result of our 

studies is that we have proposed a method to semi-

automatically generate grasp postures against product models, 

in order to perform virtual ergonomic evaluations in a quanti-

tative way using evaluation indices such as ease and stability 

of grasp [7-9].  

When virtual ergonomic evaluation is performed using the 

above method, we consider that evaluation results with high 

reliability can be obtained by understanding how humans 

grasp and control a target product model, and modeling its 

principle behavior. To conduct this method, we measure and 

reconstruct motions of human subjects in grasping and oper-

ating a target product model, and then calculate and visualize 

contact areas between the product models and the hand mod-

els which reconstruct dimensions, shapes and functions of the 

human hands. Statistical construction of data obtained from 

various kinds of human subjects enables us to assume all the 

possible grasp and operation models of mankind for products.  

So, the challenge is to reconstruct the hand models which 

reflect individual human hand geometrically and kinemati-

cally with high accuracy. The following four functional re-

quirements are necessary, in order to reconstruct appropriate 

hand models for the various virtual ergonomic evaluations. 

1) A three-dimensional triangular mesh model of the 

skin surface of a hand in a reference posture (hereaf-

ter referred to as “the skin surface model”) should be 

generated, that has same anatomical dimensions as 

the target human subject. 

2) The skin surface model should be homologous to the 

template hand skin surface model (hereafter referred 

to as “template model”). 

3) Position of a rotation center (for all joints) and rota-

tion axes (only for 1DOF joints) of each finger joint 

in a link model should be calculated, in order to ac-
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curately reflect the finger movement of an individual 

human. 

4) A homologous tetrahedral mesh model which repre-

sents the shape of an individual hand should be gen-

erated. 

5) The hand models that satisfy all the above require-

ments should be accurately modeled based on many 

human subjects in a realistic processing time. 

Where, a homologous model for a skin surface or a tetra-

hedral mesh model is that, the topology of skin mesh (joint 

structure of vertices and faces) and index of each vertex 

tagged as an anatomical landmark point on the skin mesh 

must correspond and be equal to corresponding of the tem-

plate model. Creating these models as a homologous model 

enables the analysis of size differentiation of anatomical cor-

responding points, and performing of skin surface model 

modifications in a unified way based on a rotational angle of 

each joint in a link model. In addition, tetrahedral mesh mod-

els of hand models have been used for automatically generat-

ing grasp postures of reconstructing hand postures for motion 

capture data, so we also need to generate the homologous 

tetrahedral mesh models for individuals.  

The objective of our research is to reconstruct the individu-

al hand models geometrically and kinematically with high 

accuracy, which satisfy all the requirements described above. 

 

2. Related works 

As for the method used to reconstruct the homologous skin 

surface model of the full body for an individual subject; most 

commomly-used method is the one that fits vertices and land 

mark points on the skin surface of a template model to the 

ones obtained by scanning the whole body of an individual 

by 3D range scanner (hereafter referred to as “landmark fit-

ting method”). Creating a skin surface model for an individu-

al hand is challenging since it is difficult to locate and fix the 

hand without scanner screening. In addition, motions of the 

skin surface model cannot be obtained from range scanners. 

Thus, accurate estimation of the link structure model for the 

fingers related to the reconstructed posture of skin surface 

model is challenging. So no appropriate methods for generat-

ing skin surface model for an individual hand has yet been 

developed.  

Albecht et al. [1] and Kurihara et al. [16] have proposed a 

method to generate an individual hand model and reconstruct 

arbitrary posture. The former group uses the landmark fitting 

method to reconstruct the skin surface model. Landmark 

point set is specified by the user from photos of the hand. 

Link structure model is represented as the set of meshes of 

reconstructed bones. Individual hand model is generated 

based on deformation of the skin surface model from the 

template model. This method takes rather less processing 

time. However, there is no guarantee that the obtained hand 

models have high accuracy of reconstructing the hand di-

mensions such as width and thickness of fingers except for 

finger length. The latter group generated a skin surface model 

and link structure model for an individual hand, using exam-

ples of individual skin surface models in several postures 

taken by CT. However, taking scan data of many different 

kinds of the hand postures from a large number of human 

subjects using CT and MRI takes a long time and high cost, 

which is not a realistic method in present circumstance.  

Huang et al. [13] proposed a method to generate a skin sur-

face model for an individual hand in arbitrary posture. This 

method uses examples of the skin surface models in various 

postures of an individual subject and landmark positions of 

the target posture. A link structure model is not necessary for 

this method. However, as mentioned above case of Kurihara 

et al. [16], it is not a realistic method that requires the exam-

ples of the hand surface of a large number of different pos-

tures of human subjects.  

Miyata et al. [18] proposed a method to reconstruct a hand 

model of human subject by measuring data of the hand size 

of individual taken by mockups and image scanner. In this 

method, link structure model is assumed by regression analy-

sis based on the hand dimensions and MR images. As for a 

skin surface mesh of a reference posture, it is constructed 

applying partial scaling to a template model. This would 

increase estimated errors of rotation center position and rota-

tion axes for each joint. Also, it is challenging to reconstruct 

an accurate skin surface mesh of a reference posture applying 

only the scaling based on dimensions of the hand.  

There are other research groups working on developing 

hand models. Their main goal is to generate a skin surface 

model of realistic, human-like motions and postures of hu-

mans. They use single or several hand models representing 

 

Figure 1. Link structure model and surface model of Dhai-

baHand. 
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Figure 1. Link structure model and surface model of DhaibaHand.

There are other research groups working on developing hand models. Their main goal is to generate
a skin surfacemodel of realistic, human-likemotions and postures of humans. They use single or several
hand models representing the hand dimensions of human. Any methods to reconstruct a hand model
that reconstruct the hand dimensions of an individual have never been proposed yet.

3. R econst ruct ion of an individual hand model

3.1. Hand model

Thestructureof a hand model proposed by Kouchi [14], “DhaibaHand”, isused in our research. AsFig. 1
shows, DhaibaHand consists of the following models and a function: 1) a link structure model with 31
degrees of freedom, 2) a skin surfacemodel in a reference posture represented by a triangular mesh, and
3) deformation function for the skin surface model based on rotation of each joint of the link structure
model [7].
Each link of link structure model has one joint at the edge of a parent link side. Forearm joint has 6

degrees of freedom. Wrist joint, Thumb CM joint, and MP joint of Index to Pinky fingers have 3 degrees
of freedom, and the rest of joints has 1 degree of freedom.
Each link has a local coordinate system having its origin as a relative joint position, in order to

express it’s link rotation to a parent link. As to an 1DOF joint, the local coordinate system is set to
make rotation axis to be x. As to five links related to Wrist joint, each link rotates independently, even
though they have a same local coordinate system in the reference posture.
In thisstudy, weusea tetrahedral mesh model representingthehand shapein addition toDhaibaHand.

3.2. Overview of the proposed method

Fig. 2 shows the overview of our proposed method. First, a link structuremodel and landmark points of
a subject are created using calibration motions of thewrist and each fingers of the subject obtained from
motion capture system. Next, a skin surface model in a reference posture of the subject is generated
by an optimization algorithm based on 1) a template model of the human hand in the reference posture
created by designers in advance, 2) landmark points relative to the1), 3) landmark points in the reference
posture of the subject. 4) a set of anatomical dimensions of human hand. At last, a tetrahedral mesh
model in a referencepostureof thesubject isgenerated by thedeformation of the tetrahedral mesh model
for the template model, using soft body simulation. The features of our method is described as follows:

3
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(c) 

Figure 2. Overview of our hand model reconstruction method: (a) reconstruction of the link structure model, (b) reconstruc-

tion of the skin surface model, (c) reconstruction of the tetrahedral mesh model. 
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the hand dimensions of human. Any methods to reconstruct a 

hand model that reconstruct the hand dimensions of an indi-

vidual have never been proposed yet. 

 

3. Reconstruction of an individual hand model 

3.1 Hand model 

The structure of a hand model proposed by Kouchi [14], 

“DhaibaHand”, is used in our research. 

As Figure 1 shows, DhaibaHand consists of the following 

models and a function: 1) a link structure model with 31 de-

grees of freedom, 2) a skin surface model in a reference pos-

ture represented by a triangular mesh, and 3) deformation 

function for the skin surface model based on rotation of each 

joint of the link structure model [7]. 

Each link of link structure model has one joint at the edge 

of a parent link side. Forearm joint has 6 degrees of freedom. 

Wrist joint, Thumb CM joint, and MP joint of Index to Pinky 

fingers have 3 degrees of freedom, and the rest of joints have 

1 degree of freedom.  

Each link has a local coordinate system having its origin as 

a relative joint position, in order to express it's link rotation to 

a parent link. As to an 1DOF joint, the local coordinate sys-

tem is set to make rotation axis to be x. As to five links relat-

ed to Wrist joint, each link rotates independently, even 

though they have a same local coordinate system in the refer-

ence posture.  

In this study, we use a tetrahedral mesh model representing 

the hand shape in addition to DhaibaHand. 

3.2 Overview of the proposed method 

Figure 2 shows the overview of our proposed method. First, 

a link structure model and landmark points of a subject are 

created using calibration motions of the wrist and each fin-

gers of the subject obtained from motion capture system. 

Next, a skin surface model in a reference posture of the sub-

ject is generated by an optimization algorithm based on 1) a 

template model of the human hand in the reference posture 

created by designers in advance, 2) landmark points relative 

to the 1), 3) land mark points in the reference posture of the 

subject. 4) a set of anatomical dimensions of human hand. At 

last, a tetrahedral mesh model in a reference posture of the 

subject is generated by the deformation of the tetrahedral 

mesh model for the template model, using soft body simula-

tion. The features of our method is described as follows: 

1) It is possible to generate the skin surface model with 

anatomical di dimensions of a subject, using land-

mark fitting to the marker positions obtained by mo-

tion capture and optimization method for the surface 

reconstruction with constraints of manually-

measured anatomical dimensions.  

2) It is possible to generate the skin surface model, 

which is homologous among all the subjects, using 

the template model as an initial value of optimization 

method for the surface reconstruction.   

3) It is possible to accurately estimate an individual link 

structure model, by proposing calibration motions of 

3 markers per a link and calculate the position of 

joint rotation center and rotation axes related to the 

link.  

4) It is possible to generate the tetrahedral mesh model, 

which is homologous among all the subjects, by the 

deformation of the tetrahedral mesh model for the 

template model, using soft body simulation.  

5) It is possible to perform the above method within an 

hour from experiment for measurement to post pro-

cessing. It allows to reconstruct hand models for a 

large number of human subjects. 

Details of the proposed method are described in the follow-

ing section. 

3.3 Measurement of marker sequence using motion capture 

system 

In order to accurately estimate rotation center of each joint 

from sequence of marker positions obtained by motion cap-

ture (hereafter referred to as “marker sequence”), it is neces-

sary to measure calibration motions enough to estimate rota-

tion center position and axes of each joint after attaching 

minimum three markers on a skin surface around a link of the 

joint and it's parent link. As to motion measurement, it is 

difficult to measure all markers simultaneously since a large 

number of markers must be located in a very narrow area. 

Therefore, we measure the calibration motion of each finger 

and wrist by itself, integrate them at a reference frame in the 

motion using coordinate transformation, and then estimate 

and calculate the local coordinate system of each link in a 

reference posture.  

1) As Figure 3(b) shows, 4 markers on a back of the 

hand skin surface and 3 markers on arm are attached.  

2) As Figure 3(b) shows, plates attached 3 markers are 

placed on skin surface around each link of a finger to 

be measured.  

3) The hand of a subject is then located on the seating 

(Figure 3(a)) to start a motion measurement from a 

reference posture. The hand is removed from the 

seating and two kinds of calibration motion are 

measured following instructions displayed in a moni-

tor in front of the subject (Figure 3(d)): Measure-

ment 1) First, rotate proximal phalanx as if the locus 

of fingertips follow a circumference and it's inner 

line, while not moving fingers and wrist, and then, 

Measurement 2) move intermediate and distal phal-

anxes simultaneously until making “drag rake” pos-

ture from opened condition, while not moving wrist 

and proximal phalanx. After measurement, remove 

markers attached on fingers. Among obtained motion 

sequence of marker set, one key frame that the hand 

is placed in the seating is defined as the reference 

frame     for the measured finger.  
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4) Perform Step 2-3 to all the fingers. 

5) Perform the measurement in Step 3 to the wrist. Ro-

tate the hand having wrist joint as a calibration 

movement, as if tips of fingers follow the locus used 

at measurement 1 in Step 3. 

6) As Figure 3(e) shows, one point of marker on the 

surface skin around each joint and nail of finger, two 

points at nearby median point of metacarpals of the 

first finger, one point at lateral surface around MP 

joint of each second and fifth finger are attached. At 

this time, measurement is done having the static pos-

ture hand placed at the seating as the reference pos-

ture. Also, one frame measured here is defined as the 

global reference frame    
   . The marker set meas-

ured in this frame is defined as a landmark set 

        of a subject in the reference posture. 

3.4 Construction of link structure model 

In order to reconstruct a link structure model of an individ-

ual hand model, it is necessary to estimate positions of joint 

rotation center for 3DOF joints and rotation axes of 1DOF 

joints. Figure 4 shows finger structure for estimating joint 

rotation center and axes for each link. Marker sequence of 

calibration motions for each finger and wrist obtained in 

Section 3.3 is used on this estimation method.  

We define     (       ) as a marker related to a link 

that has a joint    as the rotation center, and     
    as a posi-

tion vector for      in world coordinate system at frame    

of the marker sequence. We represent the trajectory of mark-

er      as a set of the position vector     
      in world coor-

dinate system at the reference frame fr0 for the relative finger 

(or wrist) of joint j. This vector is defined as     
      

(    
      )

 
    
  

. Where, the 4 x 4 matrix    
       represents 

affine transformation and obtained as a least squares solution 

 

 

 

(a) (b) 

 
(d) (e)  (c) 

Figure 3. Measurement of marker motions by using the motion capture system: (a) the seat for the hand, (b) marker attach-

ment for estimating the wrist joint and (c) for the joints of fingers, (d) a picture of the experiment, (e) marker attachment for 

calculating the skin surface. 

 

Figure 4. Estimation of joint coordinate system. 
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of the following equation: 

 

∑ ‖       
     (    

      )
 
      
  

‖
 

       

                ( ) 

 

In this study, as a solving method of the above equation, 

the closed-form solution proposed by Horn et al. [12] (here-

after referred to as “landmark transform algorithm”) is used. 

As markers related to the parent joint of MP joint for each 

finger, 4 markers         are used.  

Here, assuming that each     
      exists on a spherical sur-

face     , we estimate a position vector    for common cen-

ter of the      as the rotation center of a joint j. In addition to 

this estimation, as for 1DOF joints, assuming each     
      

exists on a place     , we estimate a common normal vector 

   of the      as the rotation axis of the joint j. 

In this study, as an estimation method for rotation center 

and axis from marker trajectories, we use the one proposed 

by Gamage et al. [10]. 

As described above, vectors for rotation center and axis of 

each joint, which are in the world coordinate system at the 

reference frame fr0 for the relative finger or wrist, are esti-

mated. Next, as for each finger, the world coordinate system 

at the relative reference frame fr0 is transformed to the one at 

the global reference frame    
   . This transformation is done 

by a homogeneous transformation matrix     
       

   

, which 

is calculated by applying the landmark transform algorithm 

to the 4 markers         attached on palm, as well. As the 

result, vectors for rotation center and axis of each joint, 

which are in the world coordinate system at the global refer-

ence frame    
   for the relative finger or wrist, are estimated. 

Where, as for each 1DOF joint, we use obtained rotation axis 

vector as x axis of the relative local coordinate system. the y 

and z axes for each 1DOF joint and the x, y and z axes for 

each 3DOF joint of the relative local coordinate system are 

appropriately defined so that the rotation angle can be con-

trolled intuitively by roll, pitch and yaw angles.  

As described above, the link structure model for the indi-

vidual is reconstructed. At the same time, from the measure-

ment in Section 3.3, the landmark points         is obtained. 

3.5 Reconstruction of a skin surface mesh in reference 

posture 

In order to obtain a triangular mesh of the skin surface 

model in reference posture of a subject, skin mesh of tem-

plate model      
    

 is optimized, as to fit landmark points  

      on skin mesh of the template model to landmark 

points         of the subject obtained in the previous section. 

In this paper, we use a landmark fitting method based on the 

correspondence optimization algorithm proposed by Sumner 

et al. [21]. In our optimization method, the hand dimensions 

are additionally used as the constraints (Figure 5). This 

method deforms global shape of a mesh by the optimization, 

in order to make the position of specified landmark vertex 

        identical to the target point of           as 

well as to make the distance between specified two vertices 
*       + identical to a specified target value d. In case 

when the posture of landmark points       significantly 

differs from the one of        , it might take a long pro-

cessing time to solve optimization problem mentioned in the 

following section. Therefore, as a preprocess of the optimiza-

tion, a homogeneous transformation is applied for each point 

of       and each vertex of      
    

, in order to fit the posi-

tion of 4 points attached at the back hand of        to each 

relative point of        . The homogeneous transformation 

matrix applied above is calculated by the landmark transform 

algorithm same as the previous section. This method takes 

high calculation cost and not a realistic processing time to 

apply a template model with millions of surfaces. Thus, the 

number of faces of mesh      
    

 is reduced by edge reduc-

tion method using quadric error metrics [11] to generate a 

simplified mesh      
    that has less than thousands of faces. 

This method allows to obtain an deformed skin mesh 

       
    by landmark fitting method, solving the following 

optimization problem: 

 

(a)        (b) 

Figure 5. Overview of our landmark fitting algorithm: (a) template mesh, (b) deformed mesh. 
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Where,   
       

  
   
   is defined as the position vector for 

each vertex on the      
   ,    and    is the energy func-

tions defined in the correspondence optimization algorithm 

[21],   and    is user-specified coefficients, 

        (  )
   and          (  )

   are defined as the position and 

the normal vectors for a vertex on the      
   , which is the 

nearest to the landmark point         in the reference 

posture,    is the position vector for the land mark point 

           related to the        is the minimum distance 

between the hand skin surface and the center of the optical 

marker, and   
 ,   

  and    are defined as user-specified two 

vertices on the      
    and the anatomical dimension between 

relative two points on the subject, manually measured by the 

user with a caliper.  

Finally we obtain the skin surface model        
    

 for the 

subject in the reference posture, applying the deformation 

result for the low-resolution skin mesh to the original high-

resolution skin mesh      
    

 (Figure 6). The position vector 

 ̃ for a vertex   ̃ on the        
    

 which has the same index 

as the v, is calculated as the following equation: 

 

 ̃    ̃
 (   

 )
  
                                                               ( ) 

 

Where, f  is a face on the      
    which is the nearest to 

the vertex v on the      
    

,  ̃ is a face on the        
    which 

has the same index as the f, and   
  is a homogeneous 

transformation matrix from the world coordinate system to a 

local coordinate system which has the normal and one edge 

of the f as its axes. 

3.6 Modification on the rotation center for 1DOF joints 

The rotation center of each 1DOF joint obtained at section 

3.4 might be slightly separated from actual junction area 

between two hand bones, as it is estimated from marker tra-

jectory approximately existed on an arc. Obtained joint rota-

tion center will be referred to calculate a weight of each link 

for each vertex of mesh, when realizing skin mesh defor-

mation according to joint rotation. It is ideal to locate the 

position of each joint rotation center at around center of 

cross-sectional shape of hand skin surface, in order to calcu-

late appropriate weight set to realize realistic deformation. 

Therefore, we search a point on the rotation axis line that is 

the closest from two vertices on        
    

 representing the 

edge points of finger width around this junction, and set this 

point to be the modified position of each joint rotation center. 

3.7 Reconstruction of a tetrahedral mesh model in refer-

ence posture 

As the final step of our method, a tetrahedral mesh model 

        for the subject in the reference posture is generated 

as follows: 

1) A tetrahedral mesh model       for the template 

model in the reference posture is generated from the 

skin surface mesh      
    

of the template model. We 

use “PhysXViewer” [19] included in NVIDIA 

PhysX SDK as tetrahedral mesh generator from a 

surface mesh because of its ease of operation. We 

define      
      as the surface mesh for the      , 

which has the vertices and the faces on the surface of 

the      . 

2) The surface mesh        
      for the         is gener-

ated by applying the deformation transfer algorithm, 

as shown in the equation (3) in Section 3.5, to the 

mesh      
      instead of the        

    
. 

Table 1. Dimensions used as constraints of landmark fit-

ting algorithm. 

Wrist breadth 

Wrist thickness 

Hand breadth, diagonal 

Hand thickness at metacarpal 3 head 

1st – 5th finger breadth, proximal 

1st – 5th finger thickness, proximal 

2nd – 5th finger breadth, distal 

2nd – 5th finger thickness, distal 

 

 

Figure 6. Deformation transfer to high resolution mesh. 
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3) The       is located as a soft body in physics simu-

lation environment. Each vertex on the  

      which is at the same position of each vertex 

on the      
      is constrained to the position of rela-

tive vertex on the        
     , and run the simulation. 

After waiting stabilized state of the soft body, the 

        is obtained as the result of the deformation 

of the       in this simulation. 

 

4. Reconstruction results of individual hand model 

Figure 7 shows the results of reconstructing a hand model 

for the subject indicated at Figure 3(e). Here, Figure 7(a) 

shows the link structure model obtained in Section 3.4, Fig-

ure 7(b) shows simplified template model       
    and land-

mark points      , Figure 7(c) is simplified skin mesh 

       
    after landmark fitting and landmark points         

obtained in Section 3.5 and Figure 7(d) shows deformed 

high-resolutional skin mesh        
    

 and a link structure 

model modified in Section 3.6, Figures 7(e) and 7(f) show 

the tetrahedral mesh      and         respectively. While 

measurement by the motion capture system, about 40 - 80s 

calibration motion measurement at 100fps was performed for 

each fingers and wrist. As to the simplification of skin mesh 

mentioned in Section 3.5, a simplified mesh with 992 faces 

from the original mesh with 59904 faces was created. As to 

the optimization for landmark fitting,   ,    and    were 

set to 1.0 mm, 0.001 mm and 4.0 mm respectively. The itera-

tion count for the optimization was set to 500. As to con-

straints of anatomical dimensions, 22 dimensions related to 

fingers and wrist were used as shown in Table 1. Mean and 

standard deviation of the error in dimensions of obtained 

high-resolutional skin mesh for relative user-specified di-

mensions was 0.04mm and 0.13mm respectively. Bullet [5], 

a software library for physics simulation, was used in Section 

3.7 for simulating the physically-based behavior of the soft 

body with vertex constraints. We chose this library because it 

has a function of treating soft body with stable deformation  

 

Figure 7. Reconstruction results of the hand model for a subject: (a) the link structure model, (b) the simplified template 

model, (c) the simplified deformed model, (d) the high-resolutional individual hand model, (e) the tetrahedral mesh for the 

template model, (f) the tetrahedral mesh for the individual. 

(a)	 (b)	 (c)	 (d)	

(e)	 (f)	

8



 Y. Endo et al. / Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 1~12  

 

  

 
 (a) (b) 

 
 (c) (d) 

 
 (e) 

Figure 8. Validation results of the link structure model: (a) thumb, (b) index finger, (c) middle finger, (d) ring finger, (e) 

pinky finger. 
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and collision detection and also it has been developed as the 

open-source code. Processing time on the computer except 

measurement time was approximately 15 minutes (MacBook 

Air, 1.8GHz Intel Core i7, 4GB RAM). 

 

5. Discussion 

5.1 Validation results for reconstruction method of link 

structure model 

Figure 8 shows the results of the position of each joint rota-

tion center obtained in Section 3.4. Red dots indicate the 

trajectory of each marker transformed to the local coordinate 

system of the parent joint at the reference frame. Blue lines 

show circle with mean distance between rotation center and 

each point as the radius. Error distribution of the distance of 

each point from the mean is shown as a histogram at right 

side. Where, Figure 8 shows only the result for one marker 

located the farthest from the position of rotation center.  

Figure 9 shows mean and standard deviation of the dis-

tance between the rotation center and each point on the tra-

jectory, for each marker. We can find that the trajectory for 

each marker related to 3DOF joint is on a sphere surface, and 

the one related to 1DOF joint is on a circle, with highly low 

error, so we can consider that our method enables the estima-

tion of joint rotation centers with high accuracy.  

We also measured calibration motions for MP, PIP and 

DIP joints of the index finger for a subject five times, then 

estimated joint rotation centers and axes, as described in Sec-

tion 3.4. As the result, mean and standard deviation of the 

link length between MP and PIP joints are 45.54mm, 

0.52mm respectively, the ones between PIP and DIP joints 

are 24.60mm and 0.92mm respectively. We can consider that 

our method has high reproducibility. 

5.2 Validation results for reconstruction method of hand 

surface mesh 

Validation of our reconstruction methods of hand surface 

mesh using a landmark fitting method, described in Section 

3.5, was conducted as follows (Figure 10): 

 

Figure 10. Validation results for proposed landmark fitting algorithm: (a) the skin surface mesh for the individual obtained 

from our method and (b) the one from CT scan, (c) the plaster hand model for the individual, (d) the template mesh model, 

(e) the error distribution map. 

 

Figure 9. Radius distribution of estimated spheres for link structure model. 

(a)	 (b)	 (c)	 (d)	 (e)	
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1) We take a plaster model of subject's right hand (Fig-

ure 10(c)). Then, we generate the mesh model  

(Figure 10(b)) by CT scan. 

2) We specify landmark points         on the mesh 

obtained in Step 1. 

3) A template model (Figure 10(d)) is deformed in or-

der to fit landmark points      (Figure 10(d)) to 

       , using the landmark fitting method. 

4) We measure error of deformed hand surface mesh 

(Figure 10(a)) obtained in Step 3, to the hand surface 

mesh (Figure 10(b)) obtained in Step 1 (Figure 

10(e)). 

The mean, maximum and minimum error for each vertex 

on hand surface mesh was 1.63mm, 15.13mm, 0.0004mm 

respectively, and the standard deviation was 1.42mm. Even 

though the gap was slightly increased at interproximal area of 

mesh at a position of wrist, still it was within an acceptable 

range. 

5.3 Further research 

In this paper, a model reconstruction for one human subject 

was verified. The proposed method should be theoretically 

valid for a large number of human subjects. Therefore, it is 

necessary to apply our model reconstruction method to sev-

eral human subjects and to validate it. Also, in measurement 

of calibration motions, the individual joints of each subject is 

supposed to have enough range of motion to enable the rota-

tion center to be estimated. We need to develop a method 

that is also effective for subjects who, due to diseases or dis-

orders, have only a small range of motion of joint rotation. 

For instance, a method that estimates missing marker data 

from the marker movement database obtained from a large 

number of subjects would solve the above issue and reduce 

measurement time. 

 

6. Conclusions 

We proposed the method which reconstructs a link struc-

ture model of a subject hand as well as homologous skin 

surface hand mesh to a template model, by using obtained 

marker sequence on fingers for a reference posture and cali-

bration motions obtained from a motion capture system. As 

to the obtained hand model, we have confirmed the high 

accuracy of reconstruction for the hand dimensions, rotation 

center positions and axes of joints, also the skin surface mod-

el of the subject. All experiments with human subjects con-

ducted in this study have been approved after an ethics inves-

tigation by the committee of ergonomic experiments at AIST. 
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