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Abstract. This paper discusses a new constitutive model called the high-rate brittle microplane (HRBM)
model and also presents the details of a new software package called the Virtual Materials Laboratory
(VML). The VML software package was developed to address the challenges of fitting complex material
models such as the HRBM model to material property test data and to study the behavior of those models
under a wide variety of stress- and strain-paths. VML employs Continuous Evolutionary Algorithms (CEA) in
conjunction with gradient search methods to create automatic fitting algorithms to determine constitutive
model parameters. The VML code is used to fit the new HRBM model to a well-characterized conventional
strength concrete called WES5000. Finally, the ability of the new HRBM model to provide high-fidelity
simulations of material property experiments is demonstrated by comparing HRBM simulations to
laboratory material property data.
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1. Introduction

The Geotechnical and Structures Laboratory of the U.S. Army Engineer Research and Development

Center (ERDC) have conducted a significant amount of projectile penetration research. These efforts

included numerous projectile penetration experiments using the ERDC 83 mm ballistic research

facility (Frew et al. 1993), extensive material property experiments that characterize target mechanical

behavior and provide data for fitting constitutive models (Akers et al. 1995), and numerous first-

principle calculations of various penetration events (Adley et al. 2010). Our research is focused around

gathering data and gaining insight into the processes of penetration mechanics. To reach these goals,

a significant part of our research is to develop more accurate and robust material models. 

In this paper, we describe an effort to produce a microplane model (Bazant et al. 1996a, 1996b,

2000, Caner and Bazant 2000, Ozbolt et al. 2005, 2008) with exceptional resolution for highly impulsive

boundary value problems of interest. More specifically, we focused our efforts on projectile perforation of

conventional strength concrete slabs. Our goal is to develop a high-resolution Microplane model

that can be fit to various quasi-static material property data and then used in a variety of projectile

perforation calculations. In order to accomplish that goal, we started with the M4 microplane model
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(Bazant et al. 2000, Caner and Bazant 2000) as a framework to build upon. The M4 model has

typically provided very reasonable results for the target damage caused by projectile penetration,

embedded detonation and blast-related problems (Danielson et al. 2010, Littlefield et al. 2010).

However, the authors observed that the model has difficulty predicting accurate exit velocities for

projectile perforation problems, especially when the target thickness approaches the perforation limit

thickness, i.e., the exit velocity is very small. We attempted to address this issue by increasing the

resolution of the M4 microplane model through the introduction of additional bounding curves. We

called this form of the model the High-Rate Brittle Microplane model (HRBM). 

We will show that the HRBM model has significantly increased the resolution for fitting our

material property data. The HRBM model also provides an increased level of flexibility that will be

required to fit emerging high-strength concrete materials that contain glass (Roth et al. 2010) and

steel fibers (Williams et al. 2010). However, this also greatly increased the complexity of the model

and further increased the difficulties of fitting the model. Due to the increased level of complexity

for HRBM, it may be prohibitively difficult to fit the model, which can render the model practically

unusable without some sort of automated fitting procedure. This hurdle was overcome by developing a

material driver code and an automatic fitting code to help search for acceptable material constants

(Adley et al. 2010). In this paper, we discuss both the HRBM model and the numerical algorithms

used in the VML code to fit the model. We also present the quasi-static material fit to a given

conventional strength concrete known as WES-5000. In a companion paper (Frank et al. 2010), we

more thoroughly exercise the HRBM model and its material fit to WES-5000 by conducting

numerous projectile perforation calculations.

2. HRBM-Microplane model

2.1 Model description

We used the M4 microplane model (Bazant et al. 2000, Caner and Bazant 2000) as a framework

for the HRBM model. Thereby, the basic model remained unchanged and we shall not describe it

herein. However, we introduced an additional set of bounding curves into the M4 model framework.

Thereby the HRBM model includes both the original M4 bounding curves as well as additional

bounding curves designed to increase the model’s fidelity. This combination of bounding curves

provided greater resolution and flexibility in fitting our material property data. For example, the

original M4 bounding curves and their inherent scaling, i.e., using the “free” parameters such as E

and k’s, retain the clever simplicity of fitting the HRBM model to various conventional data, i.e.,

unconfined strengths near 5 ksi. When using the original M4 bounding curves with the HRBM

model, only the free parameters need to be changed to produce slight variations in the material

responses. However, we noticed that the resolution of M4 fits to our specific material property data

was not adequate in many cases. For example, we observed that it was difficult to produce a high-

resolution fit using only the M4 bounding curves, especially when different concrete materials show

significant differences in hydrostatic response as well as unconfined compressive strength. We

believe the reason for this behavior is that the original M4 bounding curves do not have sufficient

resolution to capture some of the relevant material behavior we have observed. In order to address

this issue and obtain a higher resolution material fit, the additional HRBM bounding curves were

designed to better capture the hydrostatic material response as well as the material triaxial behavior
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at low confining pressures, i.e., brittle response. Nonetheless, it should be cautioned that the additional

HRBM bounding curves have no inherent scaling, which can greatly increase the difficulty in fitting

the model.

The microplane bounding curves provide the limiting stress states for each individual microplane.

The integration of these microplanes over a sphere provides the rich interaction between the

individual planes in order to produce the “global” macroscopic response of the material (Fig. 1).

The microplane model was designed to provide various bounding curves that locally limit a specific

stress state or material response on a given plane, described as follows. The volumetric boundary

representing compressive pore collapse and subsequent locking of the material, the frictional yield

boundary curve representing sliding frictional strength, i.e., the “ductile” shearing response of the

material and the deviatoric shear boundaries representing spreading in compression and splitting in

extension. These boundaries dominate the low-pressure triaxial behavior and represent the cohesive

strength of the material. The tensile normal boundary represents pure tensile cracking and crack

closing. The material response for stress states beneath each bounding curve is linear elastic;

however, the stress state must not exceed the bounding curves and is thereby forced to locally

follow each curve on a given plane, which becomes highly non-linear. 

Due to inherent spherical geometry of the model (Fig. 1) and the individual stress versus strain

responses on each plane, it is likely that different bounding curves become engaged on different

microplanes during a given “global” stress path. For example, during an unconfined compression

test, the microplanes lateral to the central axis (or loading axis) may be dominated by the

compressive deviatoric boundary, whereas the lateral microplanes may be dominated by the tensile

normal boundary due to the Poisson effect. Fig. 2 shows the variations in the responses on each

microplane during an unconfined compression test. Due to the symmetry of the 28-plane sphere,

many of the resulting stress versus strain responses on a given microplane are the same. Notice that

the integration of these different responses produces the global material response (Bazant and Oh

1986). These complex interactions can then produce a very rich material response that may

inherently capture a wide variety of different material behaviors, such as the Poisson effect described

above. 

It should be noted that our intended application for the HRBM model are projectile perforation

events. These events typically produce high-pressures over a small region under the nose of the

Fig. 1 Microplanes distributed over a unit sphere composed of 21 individual planes (Bazant and Oh 1986)
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projectile as it penetrates the target; however, the majority of the target response is dominated by

the low-pressure “brittle” behavior of concrete (Frank and Adley 2007). Furthermore, this “brittle”

or “softening” behavior of the material is dominated by the tensile normal and deviatoric boundaries.

Hence, it is imperative to accurately capture this behavior in order to properly model projectile

perforation events. Fig. 3 shows the “softening” behavior of the low-pressure triaxial-compression

(TXC) material property data as well as the resulting “shear bands” that arise in a perforation

calculation due to this material “softening” response. Notice that accurate modeling of the material

softening behavior may be required in order to adequately predict the material damage, i.e., impact

and exit craters, as well as the projectile exit velocity during such a perforation event.

2.2 Volumetric boundaries

The volumetric boundary provides the limiting volumetric stress (σv) for all microplanes as a function of

volumetric strain (εv). The HRBM model retains the original M4 compressive volumetric boundary, i.e.,

Fig. 2 Variations in the responses of each microplane during an unconfined compression test. Shown are the
microplane stress versus strain for each plane from a 28-plane sphere

Fig. 3 The material “softening” response observed in concrete. (a) Post-peak softening from stress versus
strain TXC lab data at low pressures (<20 MPA), (b) Localized “shear bands” or “softening zones”
that develop during a projectile perforation event due to the material softening response (Frank and
Adley 2007)
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negative volume strain. The M4 boundary is 

(1)

where E is the elastic modulus, and k1, k3 and k4 are free material parameters. The exponential form

of the original M4 volumetric compressive boundary provides a reasonable fit to a wide variety of

the data presented in the literature, however, it does not have the required fidelity to provide a high-

resolution fit to our material property data. Therefore, we considered a cubic polynomial, which

seems to better approximate the volumetric crushing response of the material, i.e., void closure. In

addition to Eq. (1), the HRBM model introduces a new volumetric compressive boundary, as follows

(2)

where Cv1, Cv2, Cv3 and Cv4 are material constants. Fig. 4 shows the compressive volumetric boundaries as

fit to WES-5000 concrete.

In order to produce a better volumetric unloading response, the elastic volumetric behavior, i.e.,

for stress states underneath the bounding curve, was dictated to follow the unloading bulk modulus,

i.e., locking modulus, as determined by high-pressure material property data. Although this may

sacrifice accuracy near the toe of the volumetric response at low confining pressures, it is more

likely to increase the accuracy under high levels of confinement. It should be noted that the HRBM

model does not include a tensile volumetric boundary, since it has been observed that the tensile

stress on a given Microplane is typically limited by the tensile normal boundary.

2.3 Frictional yield boundaries

The frictional yield boundary provides the local limiting shear stress (σt) on a given plane as a

function of normal stress (σn) and volumetric strain (εv). The HRBM model retains the original M4

frictional yield boundary. The M4 boundary is

σv Ek1k3–= exp εv k1k4⁄( )

σv Cv1 Cv2εv Cv3εv
2

Cv4εv
3

+ + +=

Fig. 4 The compressive volumetric bounding curves for the original M4 model (blue) and the HRBM model
(red) as fitted to WES-5000 concrete
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(3)

where E is the elastic modulus, k1 and k2 are free material parameters and c10, c11 and c12 are fixed

material constants. Notice that the Macaulay brackets, defined as = max (x,0), are used here and

in subsequent equations. The form of the original M4 frictional boundary provides a reasonable fit

to a wide variety of the data presented in the literature; however, it does not have sufficient fidelity

to provide a high-resolution fit to our material property data. Therefore, we considered a power law,

which seems to better approximate the low-pressure frictional response of the material. In addition

to Eq. (3), the HRBM model introduces a new frictional shear boundary, as follows

 (4)

where Cs1, Cs2, Cs3, Cs4, Cs5 and Cs6 are material constants. Fig. 5 shows the frictional yield boundaries as

fit to WES-5000 concrete.

2.4 Deviatoric shear boundaries

The deviatoric shear boundaries provide the local limiting deviatoric stress (σd) on a given plane as a

function of deviatoric strain (εd) and volumetric strain (εv). The HRBM model retains the original M4

deviatoric boundaries. The M4 compression deviatoric boundary, i.e., negative deviatoric strain, is

(5)

and the M4 extension deviatoric boundary, i.e., positive deviatoric strain, is

(6)

σt

Ek1k2c10 σn– σ n

o
+( )

Ek1k2 c10 σn– σn

o
+( )+

-------------------------------------------------= σ n

o Ek1c11

1 c12 εv( )+
-----------------------=

x〈 〉

σt min Cs4 Cs1 σn– σ n

o
+( ) Cs2 σn– σ n

o
+( )

C
s3

+,( )= σ n

o Cs5

1 Cs6 εv( )+
------------------------=

σ d

– Ek1c8

1 εd– k1c8c9–( ) k1c7⁄( )2
+

----------------------------------------------------------=

σ d
+ Ek1c5

1 εd k1c5c6–( ) k1c7c18⁄( )2
+

-------------------------------------------------------------=

Fig. 5 The frictional shear bounding curves for the original M4 model (blue) and the HRBM model (red) as
fitted to WES-5000 concrete
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where E is the elastic modulus, k1 is a free material parameter, and c5, c6, c7, c8, c9 and c18 are fixed

material constants. Notice that the form of the original M4 deviatoric boundaries (Eqs. 5-6) do not

have a volume strain (εv) dependence. We noticed that, in order to more accurately model the

pressure dependence of the cohesive strength, the deviatoric boundaries were improved if they

become a function of compressive volume strain. For example, although there is typically a

significant amount of cohesive strength during an unconfined compression test, this cohesive

strength should gradually decrease as pressure increases and the brittle-to-ductile transition is

reached, i.e., perhaps it can be assumed that there is no cohesive strength beyond the brittle-to-

ductile transition. Hence, we introduced compressive volume strain dependence into the deviatoric

bounding curves. In addition to Eqs. (5) and (6), the HRBM model introduces the following compression

deviatoric boundary

(7)

and the following extension deviatoric boundary:

(8)

where Cd1, Cd2, Cd3, Cd4, Cd5 and Cd6 are material constants. Fig. 6 shows the deviatoric boundaries

as fit to WES-5000 concrete. 

2.5 Tensile normal stress boundaries

The tensile normal boundary provides the local limiting positive normal stress (σn) on a given

plane as a function of normal strain (εn) and volumetric strain (εv). The HRBM model retains the

original M4 normal stress boundary. The M4 boundary is

σ d

 – Cd1

1 εd– Cd2 1 Cd4εv–( )–( )– Cd3⁄( )2
+

------------------------------------------------------------------------------–=

σd

+ Cd6Cd1

1 εd– Cd6Cd2 1 Cd5εv–( )–( )– Cd6Cd3( )⁄( )2
+

---------------------------------------------------------------------------------------------------–=

Fig. 6 The deviatoric bounding curves for the original M4 model (blue) and the HRBM model (red) as fitted
to WES-5000 concrete. Also shown is the volume strain dependence (increasing e

v
) for the compressive

boundary
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(9)

where E is the elastic modulus, k1 is a free material parameter, and c1, c2, c3 and c4 are fixed

material constants. We have not introduced a new tensile normal boundary curve since the original

function seems to behave well for our data. However, in order to increase its flexibility, we removed

the scaling (Bazant et al. 2000)

 (10)

where Cn1, Cn2, Cn3 and Cn4 are material constants. Fig. 7 shows the tensile normal boundaries as fit

to WES-5000 concrete. 

2.6 Summary

The original M4 bounding curves were retained in the HRBM model. This allows for simple

scaling of the curves in order to quickly fit conventional concrete material property data (Bazant et

al. 2000). Notice that the free parameters E and k1 provide a vertical and radial scaling of the

bounding curves, respectively. However, also notice that all of the curves must then scale together,

which greatly limits the flexibility of the response. Free parameters k2, k3 and k4 allow for fine

tuning the shape of the frictional yield boundary (k2) and the compressive volumetric boundary (k3
and k4). The fixed parameters (c’s) are not adjustable and force the shape of the bounding curves to

remain similar. Hence, the original M4 bounding curves can be used to quickly obtain a fit to

similar types of conventional strength concrete material but are not useful for fitting vastly different

material behaviors observed in high strength concretes.

The HRBM bounding curves were designed to more accurately fit the vast differences in material

properties of our data, specifically large differences in low-pressure triaxial behavior and hydrostatic

behavior. Furthermore, these additional bounding curves have no inherent scaling, which allows for

σn Ek1c1 exp
εn k1c1c2–( )

k1c3 c4εv–( )+
-------------------------------–⎝ ⎠

⎛ ⎞=

σn Cn1= exp
εn Cn2–( )

Cn3 Cn4εv–( )+
---------------------------------–⎝ ⎠

⎛ ⎞

Fig. 7 The tensile normal stress bounding curves for the original M4 model (blue) and the HRBM model
(red) as fitted to WES-5000 concrete
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much greater flexibility when fitting the material property data. The shapes and scales of these

bounding curves can all be changed independently from each other. This provides exceptional

resolution when fitting our material property data but comes at the cost of a significant increase in

complexity. In fact, we observed that some form of automatic fitting code may be required to

produce adequate material fits.

3. Material property data

3.1 Quasi-static lab data

We fit the HRBM model to the mechanical properties of a conventional strength concrete mix

developed at ERDC known as WES-5000 (Cargile 1999). We used various quasi-static laboratory

material characterization data to derive the material constants for our fit. The quasi-static data

included unconfined compression (UC), triaxial compression (TXC), unconfined tension (UT) and

uniaxial strain compression (UX). The quasi-static mechanical property tests described herein were

conducted with cylindrical specimens having a nominal diameter of 2 inches and a nominal height

of 4 inches. The tests were conducted at axial strain rates of approximately 10−4 to 10−5 secs−1, i.e.,

from 5 to 30 minutes to peak load. All data were presented as true stresses and engineering strains.

The strains were calculated as

(11)

where εa is the axial strain, εr is the radial strain, εv is the volumetric strain, ∆h is the change in

specimen height, h0 is the initial height, ∆d is the change in specimen diameter and d0 is the initial

diameter. The stresses were calculated as

 (12)

where P is the mean normal stress (or hydrostatic pressure), σa is the axial stress, σr is the radial

stress and q is the principal stress difference.

4. Model fitting

This section contains a description of a software package called the Virtual Material Laboratory

(VML) that was developed to determine the material model parameters for a constitutive model by

providing an optimum fit to the material property data. The VML code contains a material driver

code that drives the material model through various stress and strain paths used in the laboratory to

characterize the material, an optimization module to determine the optimum parameter values, and a

Graphical User Interface (GUI) to provide pre- and post-processing of the fits. The optimization

module calls the driver code to compute predictions of a series of laboratory experiments for a

given set of model parameters, it compares the predicted material response to the laboratory data,

and based on the results of that comparison, it adjusts the model parameters to improve the fidelity

of the model fit. The methodology used in the optimization module is discussed in the following

sections.

εa h∆ h0⁄= εr d d0⁄∆= εv εa 2εr+=

q σa σr–= P σa 2σr+( ) 3⁄=
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4.1 Problem formulation

The problem of determining parameters for a constitutive model can be cast in the form of a

constrained optimization problem. Specifically, the fitting algorithms are used to minimize the

weighted sum of squared residuals merit function given by

 (13)

where σi represents the stress values measured in material property experiments,  represents the

stress values predicted by the material model that are a function of the strain (ε) and the vector of

material model parameter values ( ), and wi is a weighting factor, which are subject to a set of

constraints, i.e., .

The only independent variables in Eq. (13) are the set of unknown material model parameters .

Therefore, the model-fitting problem consists of selecting a set of material model parameters that

minimizes the error, in a least squares sense, between the predicted stress values and the stress

values measured experimentally.

The merit function represented by Eq. (13) can become extremely complex and highly non-linear

due to the complexity/non-linearity of both the constitutive models and the material behaviors

observed in laboratory experiments. Although direct search methods often converge quickly for

well-behaved merit functions, the complexity of the merit function makes it very difficult for

conventional gradient-based direct search methods to converge to an optimum solution that

minimizes the aforementioned merit function. Genetic algorithms have also been used successfully

in a wide range of engineering optimization problems (Parichatprecha and Nimityongskul 2009), but

those methods generally involve the additional complexity of mapping between binary digit strings

and discrete parameter values. For those reasons, the VML code employs continuous evolutionary

algorithms or CEA (Furukawa et al. 2002) in conjunction with the gradient-based Levenberg-

Marquardt Algorithm or LMA (Marquardt 1963). The CEA methods provide the ability to find

optimum solutions for extremely complex merit functions, while the LMA approach reduces the

computation time by quickly moving the candidate solutions toward the regions of the parameter

space that are most likely to contain the optimum solution.

4.2 Continuous evolutionary algorithms

In CEA, a trial solution is a vector representation of the parameter set ( ). The algorithm

employed in this work selects a number (m) of initial trial solutions where the parameter values in

each of the m vectors are selected at random using a uniform distribution of values that terminate at

the minimum and maximum allowable parameter values specified by the analyst. Each of the trial

solutions, known as parents in CEA terminology, represents a point in the search space. Once the

values of the initial set of parents are initialized, the following operations are completed in a loop:

(1) Evaluation of parental fitness, (2) Direct search and (3) Recombination (mating) of parents to

create a new generation. The previous three operations are computed in the order given within a

loop and the loop is not terminated until a convergence criterion is satisfied, i.e., the merit function

reaches an acceptably small value. In the following paragraphs, each of the three aforementioned

tasks are described in greater detail.

Φ a( ) wi σi σ̂i ε a,( )–[ ]
2

i 1=

n

∑=

σ̂i

a

amin a amax≤ ≤
a

a
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4.3 Evaluation of parental fitness

The first step in this task is to evaluate the merit function (Φi) for each of the m trial solutions

(parents). The maximum value of the merit function obtained for any of the parents is stored and

represented here by the variable Φmax. Once the value of Φmax is determined, the fitness value of

each parent is computed by evaluating the following equation

 (14)

where Fi is the fitness value of the ith parent. Note that the fitness value varies from 0.0 for the

least fit parent to a maximum value for the most fit parent, and that the fitness values are always

greater than 0.0. During this phase of the CEA methodology, the identity (index) of the most fit

parent is stored, and the identity (index) of the least fit parent is stored. The most fit parent is the

best solution obtained at this point in the CEA method, and is therefore the current solution to the

problem, i.e., the set of material property parameters that provides the closest prediction of the

material property test data.

4.4 Direct search method

This task uses the search point that corresponds to the fittest parent as the starting point for a

gradient-based search method such as the LMA. The solution computed by the direct search method

is then evaluated as described in the previous step. If the fitness value is greater than the least fit

parent, this new solution replaces the least fit parent. The fitness values are then recomputed, and

the least and most fit parents are identified.

4.5 Recombination

 This task involves recombining the existing parents to determine the next set (generation) of trial

solutions. The CEA methodology presented here employs the elitist algorithm, i.e., the most fit

parent (the current solution) moves to the next generation without being modified. The other (m-1)

required trial solutions are obtained by a recombination process. The mating process starts by

setting up a mating pool where a parent’s level of participation in the mating pool depends on its

merit function value (fitness). The level of a parents’ participation in the mating pool is determined

by evaluating the following equation

  (15)

where Pi is the level of representation of the parent in the mating pool. Specifically, if the size of

the mating pool is 1000 and the Pi value of the ith parent is 0.10, the identity of the ith parent will

be stored in 100 slots of the mating pool array. Note that the Pi value of the least fit parent is zero,

i.e., the least fit solution is discarded.

After the mating pool is computed and stored, the mating process proceeds as follows. Two

parents are selected at random by choosing two random numbers between 1 and 1000 (the size of

mating pool) from a uniform distribution of values. The identity of the parents is stored in the slots

corresponding to the two random numbers, and those parents are used in a recombination (mating)

algorithm that is represented by the following equations

Fi Φmax Φi–=

Pi

Fi

Fi∑
-----------=
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 (16)

where β is a scalar value that is defined by a normal distribution with a mean of 0 and a specified

standard deviation,  and  are the new trial solutions (children), and the parents (  and ) are

selected at random from the mating pool as described above. 

Since the probability of a solution (individual) being selected to participate in the mating process

depends on the value of its merit function (level of fitness), this search algorithm moves toward a

solution that minimizes the merit function and provides a best fit to the material property data used

in the merit function. It is interesting to note that the CEA methods are a mathematical

representation of the survival of the fittest theory. It is also clearly seen by the vocabulary used in

the description of CEA algorithms that they are inspired by biological evolution processes.

As mentioned previously, the mating algorithm used in the VML code makes use of the elitist

algorithm. This is useful in practice because it guarantees that the final solution will never be worse

than the initial trial solution. The mating process used in the VML code also makes use of a type of

mutation algorithm. In cases where the convergence has slowed or the current set of parents lack

diversity, the mating pool is seeded with trial solutions (parents) that are selected at random. The

process for determining the values of these trial solutions is identical to the process used to

determine the values used for the initial set of parents. The mutation algorithm is useful for insuring

that the search does not get stuck in a solution that is just a local minimum.

4.6 Levenberg-Marquardt Algorithm (LMA)

The direct search method chosen for inclusion in the VML code is the LMA. The LMA algorithm

is an iterative method that is derived by replacing the equation for  in Eq. (13) by the linear

approximation

(17)

where  represents an increment in the value of . The value of Ji is defined as

(18) 

Substituting Eq. (17) into Eq. (13) creates a linearized version of Eq. (13). Noting that the

linearized version of Eq. (13) will be a minimum when the gradient of Φ with respect to  is equal

to zero leads to the following set of linear equations

 (19)

where λ is a damping factor, I is the identity matrix and  represents an increment in the value of .

Solving the set of linear equations defined in Eq. (19) yields an increment of the parameter values

that are used to compute an improved guess for an optimum solution. Specifically, the improved

parameter values are computed as

(20)

ai

*

1 β–( )ai βaj+=

aj

*

βai 1 β–( )aj+=
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*
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ai aj
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where  is the new solution computed by the LMA method, and the value of  is set equal to

the most fit parent found in the current generation of the CEA method. As stated previously, if the

new solution ( ) proves to be more fit than the least fit parent in the current generation, it

replaces the least fit parent.

4.7 Integration of LMA and CEA methods

It has been observed in a number of simulations that, in the early stages of the solution process,

the LMA method often makes a significant contribution to the search for a solution. This is

accomplished by seeding the population with trial solutions that are often significantly more

accurate than the randomly generated trial solutions used to initialize the CEA search. Even if the

initial guess is too far from the optimum for the LMA to find the solution, it still moves the CEA

search towards a more promising region of space. This experience indicates that the LMA method

is very useful for rapidly moving the CEA search towards the region of the parameter space that is

likely to contain the optimum solution. This avoids wasting computational resources conducting

CEA searches that are located in regions of the parameter space that are very unlikely to contain the

optimum solution. 

It has also been observed that, when the current solution is nearing the optimum solution, it is

generally the CEA method that obtains an improved solution. This indicates that the CEA method is

very useful for thoroughly searching a region of the parameter space that is near the optimum

solution even when the merit function is very highly non-linear.

The previous two observations brought about the algorithm that is used to integrate the CEA and

LMA search methods into one cohesive algorithm. The two methods are integrated in a way that

attempts to use each method in the most effective manner thereby minimizing computational

resources and maximizing the convergence rate. The method used to integrate the CEA and LMA

methods is described below. 

If the starting point (fittest parent) was obtained in the current generation, the LMA method is

used with λ = 0.0, which provides a search direction that is consistent with the Gauss-Newton

Algorithm. If the starting point was obtained in a previous generation, the value of λ is incremented

to allow the LMA method to essentially search in a different direction. If the starting point remains

constant for several generations, the value of continues λ to increase, which moves the search

direction toward the gradient descent direction. If the starting point remains the same for a number

of generations (currently set to 25), the LMA method is no longer used until a new starting point is

found. This strategy avoids wasting computational resources on LMA searches that are unlikely to

improve the solution.

4.8 Strategies for using the VML code

The VML code can be used in a variety of ways with varying levels of user intervention. As a

general rule, a reduction in user intervention results in an increase in the computer time required to

fit the model. The strategy that requires the least amount of the analyst’s time involves simply

instructing the VML code to simultaneously fit all of the required parameters to all of the available

laboratory data and using wide limits on the minimum and maximum allowable values for each of

the parameters. This strategy is tantamount to searching a very large parameter space and can

require significant computational resources for complex models such as the HRBM model. Using

anew aold

anew
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the aforementioned strategy as a starting point, more effective strategies can be developed by

finding methods of reducing the size of the parameter space that must be searched.

An effective method of reducing the size of the search space is to reduce the limits on the

minimum and maximum allowable values for some of the parameters. For instance, tighter limits on

the allowable values of a parameter can be determined by manually running the driver code in

VML while varying a single parameter to get a feel for the effect of a given parameter on the stress/

strain path of interest. Another method of establishing tighter limits on the allowable values is to

allow the optimization module to obtain initial values of a reduced parameter set by fitting a

reduced set of the laboratory data. For example, obtain initial values of the parameters that control

the volumetric boundaries by fitting just the laboratory data for a hydrostatic compression

experiment, and then use limits that allow those values to vary by plus or minus ~ten percent during

the full-up optimization run. These fitting strategies usually require a more thorough understanding

of the model and can require a significant amount of the analyst’s time, but they do offer more

control over the fitting process.

The VML code also allows the user to exert more control over the fitting process by specifying a

weighting factor for each test as well as a weighting factor for each individual data point in a given

test. Therefore, if the material model under consideration is not able to fit all of the laboratory

experiments with one set of parameters or the entire stress-strain curve of a given experiment, the

user can encourage the code to select a set of parameters that fit the most critical laboratory

experiments and/or the most important region, i.e., loading versus unloading, of the stress-strain

curves.

5. Model response in driver code

In this section the fidelity of a HRBM model fit to WES5000 concrete is examined by comparing

the driver code simulations to the laboratory data used to fit the model parameters in the VML

code.

Fig. 8 shows comparisons between driver simulations and the response observed in a UX experiment.

Fig. 8(a) shows the comparison for the pressure-volume response observed in the UX experiment.

Fig. 8(b) shows a comparison of the axial stress versus axial strain behavior predicted in the UX

Fig. 8 Comparisons between VML driver simulations and data for a UX experiment; (a) pressure-volume
behavior and (b) axial stress versus axial strain behavior
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simulation with the response observed in the UX experiment. In both cases, the simulation and the

experimental data are in close agreement. It is our experience that it is rare for a material model to

be able to match both of those data sets for the UX test. Since the pressure-volume and the axial

stress versus axial strain simulations are both in good agreement with the data, this also guarantees

a reasonable prediction of the stress path (stress difference versus pressure) for the UX test. 

Fig. 9 shows comparisons between the driver simulation and the experimental data for a UC

experiment. Fig. 9(a) shows a close-up of the comparison to illustrate the high-fidelity of the

simulation and Fig. 9(b) shows the response at larger strains. Note that the stress approaches zero as

the strains become large.

Fig. 10 shows comparisons between simulations and experiments for two TXC experiments. Fig.

10(a) shows the comparison for a low-pressure TXC experiment conducted at a confining pressure

of 2.9 ksi, and Fig. 10(b) shows the comparison for a high-pressure TXC experiment conducted at a

confining pressure of 58 ksi. It is important to note that the HRBM model is able to accurately

model the behavior observed in both low- and high-pressure TXC experiments. This capability is

critical to obtaining high-fidelity predictions of boundary value problems of interest, such as

projectile penetration (Frank and Adley 2007). It is also important to note that, due to the inclusion

Fig. 9 Comparisons between VML driver simulations and data for a UC experiment; (a) close-up of
comparison and (b) behavior at larger strains

Fig. 10 Comparisons between VML driver simulations and data for TXC experiments; (a) confining pressure
of 2.9 ksi and (b) confining pressure of 58 ksi
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of a term that is a function of the volumetric strain in Eq. (7) and Eq. (8), the HRBM model is able

to simulate the abrupt softening observed in the UC test shown in Fig. 9 as well as the more

gradual softening observed in Fig. 10(a).

Fig. 11 shows comparisons between simulations and experiments for two low-pressure TXC

experiments. Fig. 12 shows comparisons between simulations and experiments for two medium-

pressure TXC experiments. The agreement shown in Figs. 11 and 12 is more than satisfactory, but it

is not as close as the agreement obtained in the previous figures. This can be explained in part by

plotting the peak stresses from all of the TXC experiments in stress difference versus pressure space

as shown in Fig. 13. Specifically, there is a dip in the TXC failure data that defines the failure

surface shown in Fig. 13, i.e., due to the resulting irregular shape of the failure surface, the current

model cannot perfectly match the peaks of all of the TXC experiments. 

Fig. 14 shows a comparison between the driver simulation and the experimental data for a DP

experiment. It should be noted that, only the peak stress was obtained in the experiment, i.e., the

post-peak softening data was not available. Therefore, we introduced a typical post-peak softening

response from alternative data (Cargile 1999) in order to produce a material fit using the VML

code. Unfortunately, a lack of post-peak softening data for tensile experiments is typical of most

experimental data. 

Fig. 11 Comparisons between VML driver simulations and data for TXC experiments; (a) confining pressure
of 1 ksi and (b) confining pressure of 2 ksi

Fig. 12 Comparisons between VML driver simulations and data for TXC experiments; (a) confining pressure
of 14.5 ksi and (b) confining pressure of 29 ksi
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6. Conclusions

The HRBM model is capable of producing high-fidelity simulations of material property experiments,

and capturing many important aspects of concrete behavior such as the brittle-to-ductile transition

observed in TXC experiments conducted at different confining pressures. This capability of the

HRBM model to accurately model both low- and high-pressure TXC behavior is critical to

obtaining high-fidelity simulations of boundary problems of interest, such as projectile perforation

events. Since the HRBM model shares the same framework as the M4 model it is also able to

model other complex behaviors such as the vertex effect and coupling between deviatoric and

volumetric behaviors (Bazant et al. 2000). The HRBM fit to WES5000 concrete presented in this

paper, and its comparison to various material property data, shows significant promise for increasing

the fidelity of projectile perforation events. This potential is explored in a companion paper that

presents projectile penetration simulations conducted with the HRBM model as well as comparisons

to penetration experiments.
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