
Computers and Concrete, Vol. 9, No. 2 (2012) 81-97 81

 Technical Note

Determination of double-K fracture parameters of
concrete using split-tension cube test

Shailendra Kumar1,2* and S.R. Pandey2

1Department of Civil Engineering, Institute of Technology, Guru Ghasidas Vishwavidyalaya 

(A Central University), Bilaspur - 495009, Chhattisgarh, India
2Department of Civil Engineering, National Institute of Technology, Jamshedpur-831014, Jharkhand, India

(Received August 6, 2010, Revised January 26, 2011, Accepted April 6, 2011)

Abstract. This paper presents development of double-K fracture model for the split-tension cube specimen for
determining the unstable fracture toughness and initial cracking toughness of concrete. There are some
advantages of using of split-tension cube test like compactness and lightness over the existing specimen
geometries in practice such as three-point bend test, wedge splitting test and compact tension specimen.
The cohesive toughness of the material is determined using weight function having four terms for the
split-tension cube specimen. Some empirical relations are also suggested for determining geometrical
factors in order to calculate stress intensity factor and crack mouth opening displacement for the same
specimen. The results of double-K fracture parameters of split-tension cube specimen are compared with
those obtained for compact tension specimen. Finally, the influence of the width of the load-distribution of
split-tension cube specimen on the double-K fracture parameters for laboratory size specimens is
investigated. The input data required for determining double-K fracture parameters for both the specimen
geometries are obtained using well known version of the Fictitious Crack Model. 

Keywords: split-tension cube test; compact tension test; concrete fracture; double-K fracture parame-
ters; weight function; cohesive stress; size-effect.

1. Introduction

Fracture behavior of quassibrittle material like concrete is different than that of brittle and elastic-

plastic materials. While the nonlinear behavior in elastic-plastic material is mainly due to existence

of plasticity near a crack-tip, the nonlinear fracture behavior in concrete is exhibited mainly due to

existence of large and variable size of fracture process zone (FPZ) ahead of a crack under external

loading. The development of FPZ is associated with three different stages of crack propagation in

concrete: crack initiation, stable crack propagation and unstable fracture (Xu and Reinhardt 1999a).

This is why the direct application of linear elastic fracture mechanics (LEFM) fails to predict a

constant value of fracture toughness of the material for different geometrical properties and sizes of

test specimens. The evolution of FPZ can be suitably accounted for in the nonlinear fracture models

based on numerical approach such as cohesive crack model (CCM) or fictitious crack model (FCM)

(Hillerborg et al. 1976, Petersson 1981, Carpinteri 1989, Planas and Elices 1991) and crack band

model (CBM) (Bažant and Oh 1983) and the modified form of LEFM concept such as two parameter

fracture model (TPFM) (Jenq and Shah 1985), size effect model (SEM) (Bažant  et al. 1986), effective
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crack model (ECM) (Nallathambi and Karihaloo 1986), KR-curve method based on cohesive force

distribution (Xu and Reinhardt 1998, 1999a), double-K fracture model (DKFM) (Xu and Reinhardt

1999(a)-(b)) and double-G fracture model (DGFM) (Xu and Zhang 2008). The FCM and CBM are

based on finite element or boundary element methods which take into account of fracture process

zone by means of constitutive relations showing strain softening and strain localization during the

crack propagation. The other fracture models using modified form of LEFM approach account for

the effect of nonlinearity in the material behavior due to existence of process zone and have a

practical advantage that the fracture properties of concrete can be determined with relatively less

computational effort as compared to those based on numerical approach. The fracture models based

on modified LEFM concept such as DKFM, DGFM and the KR-curve method associated with

cohesive force distribution can capture all the three important stages of crack propagation in

concrete whereas the fracture models under the same category such as TPFM, SEM and ECM

predict the fracture loads at critical condition only. While DKFM is based on stress intensity factor

(SIF) approach, DGFM is based on the concept of energy release rate and therefore ductility

property is also associated with it. However, the characteristic parameters of DKFM, i.e. initial

cracking toughness  and unstable fracture toughness  can be evaluated with relatively less

effort particularly when the weight function method recently proposed by the authors (Kumar and

Barai 2008a, 2009a, 2010) is used. The parameter  is directly calculated by the initial cracking

load and initial notch length using LEFM formula whereas the other parameter  can be obtained

by peak load and corresponding effective crack length using the same LEFM formula. Xu and

Reinhardt (1999(b)-(c)) developed analytical method for three-point bending test (TPBT) and

compact tension (CT) specimen or wedge splitting test (WST) to determine the values of double-K

fracture parameters. Later, a simplified approach (Xu and Reinhardt 2000) was proposed using two

empirical formulae to obtain the double-K fracture parameters for TPBT configuration. Kumar and

Barai (2008a) presented a comparative study on determination of double-K fracture parameters

using existing analytical method, simplified approach and the weight function approach for TPBT

and CT test specimen geometries.

Stable fracture testing of quasibrittle material like concrete using indirect method can be carried

out with the specimen of various geometrical shapes such as three-point bending test (TPBT), four-

point bending test (FPBT), compact tension (CT) test and wedge splitting test (WST). The three-

point bending geometry (RILEM Technical Committee 50-FMC 1985) is a common specimen used

to determine the fracture parameters applying the different fracture models because of an advantage

that the testing can be performed with the standard testing machines and it is easier to perform the

stable bending test on pre-cracked beams. However, for large size structures, the self-weight of the

beam possibly negates the use of the specimen for fracture testing due to not only handling

problems of testing specimens but also requiring special care in fracture analysis. In addition, it is

not practically possible to use as a drilled specimen from the construction sites or existing

structures. Alternatively, CT test (ASTM standard E-399 2006) and WST (Tschegg 1986, Wittmann

et al. 1988, Brühwiler and Wittmann 1990) have been used by many researchers in the past to

determine the fracture parameters of concrete. The CT specimen also suffers from some drawbacks

such as there are no flexibilities in specimen shapes such that drilling of specimen from existing

structures is difficult, there may be inconvenient with testing arrangement in directly applying the

load on the specimen and the testing can be carried out only crack opening displacement (COD)

controlled test setup. The wedge-splitting test is a special form of the so-called compact tension test,

in which a small specimen with a groove and notch is split in two halves while monitoring the load

KIC

ini
KIC

un

KIC

ini

KIC

un



Determination of double-K fracture parameters of concrete using split-tension cube test 83

and crack mouth opening displacement (CMOD). There are several advantages of using WST

specimen for stable fracture testing of concrete over TPBT and CT specimen like: specimen

compactness, providing relatively larger ligament area to concrete volume ratio, not being affected

by self-weight of the specimen, being cubical or cylindrical in shapes and suitable for fracture

testing from existing structures using drilled concrete cores and suitable for displacement of the

wedges or in closed-loop COD controlled testing. Tensile properties of concrete are most frequently

determined using cylindrical and cubical split-tension specimens nowadays called Brazilian split test

(Carneiro and Barcellos 1949, Nilsson 1961) because of many advantages such as simplicity of

preparation and performance of the test, same testing specimens and equipment as the compression

strength test and relatively narrow depression of test results (Kadleček et al. 2002). In split-tension

test, a cylindrical/cubical specimen is placed between the platens of test machine and the

compressive load is applied along its horizontal axis until failure which is the split of the specimen

in two halves across the plane of the loading due to development of lateral tensile stress distribution.

Multiple cracking and crushing of the material at the point of loading is prevented by distributing

the load using variable width of two bearing strips. The developed maximum tensile stress across

the plane of the loading approaches the theoretical limit for a concentrated load when the load

bearing-strips are very narrow (Rocco et al. 1999). In addition to perform uniaxial tensile strength,

split-tension tests have successfully been used for determining fracture parameters of concrete in the

past (Karihaloo 1986, Bažant  et al.  1991, Tang et al. 1996, Yang et al. 1997, Rocco et al. 1999,

Ince and Arici 2004, Ince 2010) because of several advantages over the testing of other specimens

like TPBT, CT and WST specimens. These advantages are: compactness and lightness of specimen,

easy in casting of specimen that can be also used in strength tests, specimen can be easily prepared

by drilling of concrete cores from existing structures, simplicity in performing the test and therefore

avoiding the need of special loading and testing arrangement, insignificant influence of self weight

of the specimen in testing and analysis. Apart from the common advantages with using split-tension

cylinder or cube specimen, the cube specimen can be modeled relatively easily than that of cylinder

specimen because of straight boundaries are available in cube specimen and hence simple finite

element program can be easily employed in this case. 

The results of fracture toughness of plain concrete obtained from compression splitting tests (Karihaloo

1986) showed that fracture toughness does not vary with the shape and size of the specimens provided

that width of the compression platen and the depth of the pre-crack are within well defined limits

ensuring failure of specimens by axial splitting. Bažant et al. (1991) carried out experimental and

theoretical studies on split-tension cylinder tests which confirmed the existence of size effect. The

analysis of test results further showed that up to a certain critical diameter, the curve of nominal

strength versus diameter approximately agrees well with the law proposed by Bažant’s  for the size

effect caused by energy release due to fracture growth. Beyond that diameter the curve of nominal

strength versus diameter approaches a horizontal asymptote, which signifies disappearance of size

effect. The slope of this curve may remain either negative or reverse to positive on approach to the

asymptotic strength. Experimental test results carried out by Yang et al. (1997) confirmed that the

peak-load method can be successfully applied to splitting tension cylinder tests to determine the

fracture parameters of two parameter fracture model. Tang et al. (1996) proposed a new version of

size effect law for determining the fracture parameters of size effect model using specimen of only

one shape and one size but with different notch lengths. In the study, it was concluded that holed

split-tension cylinder is suitable specimen shape for determining the fracture properties. Rocco et al.

(1999) applied cohesive crack model to derive the size-effect curves for the splitting tensile strength
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of concrete on cylindrical and prismatic square section specimens. Two important variables such as

the load-bearing strip and the geometry of the specimen were studied. The reported results

confirmed that splitting strength decreases with the specimen size, tending towards an asymptotic

solution for large size specimens. It was concluded that the dependence of the splitting tensile

strength on the specimen size and on the width of the bearing strip should be taken into account

when using the Brazilian test. On the basis of experimental and statistical investigations for size

effect of bearing strength of concrete cubes, Ince and Arici (2002) concluded that the observed test

results were in good agreement with Bažant’s size effect law. Ince (2010) calculated the fracture

parameters of concrete using two-parameter fracture model and size effect model and carried out a

comparative study among the splitting-cube specimen, splitting-cylindrical specimen and three-point

bending test with regard to the obtained results. In order to determine the fracture parameters of

cube specimen, the linear elastic fracture mechanics formulas namely the stress intensity factor, the

crack mouth opening displacement and the crack opening displacement profile were determined for

different load-distributed widths using the finite element method. In the recent past, many research

and studies using experimental test results and numerical analyses on TPBT, CT and WST specimens

(Kumar 2010) have been carried out to show the behavior of fracture parameters of double-K fracture

model. As far as authors’ knowledge is concerned, no such study has been carried out in the existing

literature considering split-tension cube specimen. Therefore, development of double-K fracture model

using split-tension cube test will open up a new direction for this model for characterizing the material

fracture parameters.

The main objective of the paper is to develop computational procedure of double-K fracture model using

weight function method for the split-tension cube specimen of concrete. Some empirical relations

are also derived for determining geometrical factors in order to calculate stress intensity factor and

crack mouth opening displacement for split-tension cube specimen. The results of double-K fracture

parameters of split-tension cube specimen are compared with those obtained for compact tension

specimen. Towards the end, the influence of the width of the load-distribution of split-tension cube

specimen on the double-K fracture parameters for laboratory size specimens is studied. The input

data required for determining for both the specimen geometries are obtained using well known

version of the FCM. 

2. Dimensions of test specimens

Determination of the double-K fracture parameters for STC specimen is proposed in the present

work and the results are compared with those obtained using CT specimen. For this study, the

standard test geometries, dimensions and loading conditions for STC and CT specimens are

considered as shown in Fig. 1.

The symbols in Fig. 1(a): ao, D, h and t are half of the initial notch-length, characteristic

dimension as specimen size (D = h/2), height or total depth and half of the width of distributed load

respectively for STC geometry. The dimensions and configuration of standard CT specimen

according to the ASTM standard E-399 (2006) are shown in Fig. 1(b) for which ao is the initial

notch-length, D is the characteristic dimension as specimen size, D1 = 1.25D, H = 0.6D, H1 = 0.275D

and B = 0.5D. The B is the specimen thickness for both the specimen geometries. 
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3. Determination of double-K fracture parameters for STC specimen

3.1 Assumptions

Linear asymptotic superposition assumption is considered to introduce LEFM for calculating the

double-K fracture parameters. The hypotheses of the assumption are given below:

1. the nonlinear characteristic of the load-crack mouth opening displacement (P-CMOD) curve is

caused by fictitious crack extension in front of a stress-free crack; and

2. an effective crack consists of an equivalent-elastic stress-free crack and equivalent-elastic

fictitious crack extension.

A detailed explanation of the hypotheses may be seen elsewhere (Xu and Reinhardt 1999b).

3.2 Effective crack extension 

For the applied load (Fig. 1) on the STC specimen, the CMODc is measured across the crack faces at

the centre of specimen. The P-CMOD for this test geometry should be known a priori for determining the

value of effective crack extension during the crack propagation. Using linear asymptotic superposition

assumption, the equivalent-elastic crack length ac corresponding to maximum load Pu is solved

using the following formulae (Ince 2010). 

The compliance C is expressed as

(1)

(2)

In which , β is the relative load-distributed width and taken as β = 2t/h = t/D, V(α, β) is

dimensionless function, coefficients Bi (i = 0 to 3) are the function of β and given in Table 1. Eq.

(2) is valid for 0.1 ≤ α ≤ 0.6 within 0.1% accuracy for 0 ≤ β ≤ 0.2. Since the values of coefficients

Bi (Table 1) are given (Ince 2010) at discrete interval, these coefficients can be derived in the form

of simple polynomial empirical equations using least square technique as given below.

CMOD
πDσN

E
--------------αV α β,( )=

V α β,( ) B0 β( ) B1 β( )α B2 β( )α2
B3 β( )α3

+ + +=

α a D⁄=

Fig. 1 Dimensions and loading schemes for STC and CT test specimens
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(3)

The determination coefficient R2 is between 0.9999 and 1.00 for each regression analysis of Eq.

(3) which can be conveniently used in computer program for any value of β in the range of

0 ≤ β ≤ 0.2 and hence the proposed Eq. (3) is used in the present study.

Also, the nominal stress for STC test specimen in Eq. (1) can be written using the following

formula (Timoshenko and Goodier 1970).

(4)

At critical condition that is at maximum load Pu the half of crack length a becomes equal to ac

and σN to σNu in which σNu is the maximum nominal stress. Karihaloo and Nallathambi (1991)

concluded that almost the same value of E might be obtained form P-CMOD curve, load-deflection

curve and compressive cylinder test. Hence, in case initial compliance is not known the value of E

determined using compressive cylinder tests may be used to obtain the critical crack length of the

specimen.

3.3 Calculation of double-K fracture parameters

A linearly varying cohesive stress distribution is assumed in the fictitious crack zone, which gives

rise to cohesion toughness as a part of total toughness of the cracked body. Superposition method is

used in order to calculate the SIF at the tip of effective crack length KI. According to this method,

total stress intensity factor KI is taken as the summation of stress intensity factor caused due to

external load  and stress intensity factor contributed by cohesive stress  as shown in Fig. 2.

The value of  is expressed in the following expression

(5)
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Table 1 The values of coefficients Ai and Bi for split-tension cube specimen (Ince 2010)

β = t/D

Coefficient 0.0 0.067 0.1 0.133 0.167 0.2

A0 0.986 0.981 0.974 0.964 0.951 0.935

A1 0.071 0.039 0.007 -0.037 -0.079 -0.118

A2 0.979 1.097 1.218 1.371 1.514 1.638

A3 0.252 0.041 -0.188 -0.479 -0.778 -1.068

B0 1.254 1.245 1.235 1.221 1.202 1.180

B1 0.116 0.101 0.085 0.062 0.040 0.014

B2 1.125 1.173 1.225 1.298 1.363 1.436

B3 1.156 1.053 0.932 0.771 0.598 0.407
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After determining the critical effective crack extension at unstable condition of loading, both the

characteristic fracture parameters  and  are determined using LEFM formulae (Ince 2010)

and the SIF is expressed as

(6)

(7)

where k(α, β) is a geometric factor and coefficients Ai (i = 0 to 3) are the function of β and

summarized in Table 1. Eq. (7) has better than 0.3 percent accuracy for 0.1 ≤ α ≤ 0.6 for 0 ≤ β ≤ 0.2. 

As observed from Table 1, the values of coefficients Ai are given at discrete interval which can be

empirically derived in the form of simple polynomial empirical equations using least square technique as

given below.

(8)

The determination coefficient R2 is 1.00 for each regression analysis of Eq. (6) for 0 ≤ β ≤ 0.2.

Proposed Eq. (8) is used in the developed computer code for present study. If the crack initiation

load  is known from experiment, the initiation toughness  is calculated using Eq. (6) in

which P is equal to  and a is equal to ao. Alternatively, it can be determined applying the following

relation.

(9)

Eq. (9) is known as inverse method for determining the initiation toughness.
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Fig. 2 Calculation of SIF using superposition method
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4. Determination of SIF due to cohesive stress KI
c

4.1 Cohesive stress distribution

The cohesive stress acting in the fracture process zone on STC test specimen is idealized as series

of pair normal forces subjected symmetrically to central cracked specimen of finite width as shown

in Fig. 3. The linearly varying distribution of cohesive stress is also shown in Fig. 4. 

The SIF due to cohesive stress distribution as shown in Fig. 4 becomes to cohesive toughness

 of the material at the critical loading condition with negative value because of closing stress in

fictitious fracture zone. However, the absolute value of  is taken as a contribution of the total

fracture toughness (Xu and Reinhardt 1999b) at the critical condition. At this loading condition, the

crack-tip opening displacement (CTOD) is termed as critical crack-tip opening displacement

(CTODc). In Fig. 4 σs(CTODc) is cohesive stress at the tip of initial notch when CTOD is equal to

CTODc and then σ(x) can be expressed as

  (10)

The value of σs(CTODc) is calculated using softening functions of concrete. In the present work,

the nonlinear softening function (Reinhardt et al. 1986) is used for the computation which can be

expressed as

 (11)

The value of total fracture energy of concrete GF is expressed as

 (12)

In which, σ(w) is the cohesive stress at crack opening displacement w at the crack-tip and c1 and

c2 are the material constants. Also, w = wc for ft = 0, i.e., wc is the maximum crack opening displacement at

the crack-tip at which the cohesive stress becomes to be zero. The value of wc is computed using
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Fig. 3 Central cracked specimen of finite width subjected
to pair of normal forces

Fig. 4 Distribution of cohesive stress in the fictitious
crack zone at critical load
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Eq. (12) for a given set of values c1, c2 and GF. For normal concrete the value of c1 and c2 is taken

as 3 and 7 respectively. 

4.2 Determination of CTODc

The value of crack mouth opening displacement at critical loading condition is termed as critical

crack mouth opening displacement CMODc and the crack opening displacement within the crack

length COD(x) is computed for the known value of CMODc using the following expression (Ince

2010). 

 (13)

The value of x is taken as ao and a as ac for evaluation of CTODc using Eq. (13).

4.3 Calculation of SIF KI

C
 using weight function approach

Weight function approach initially proposed by Bueckner (1970) and Rice (1972) provides a

powerful technique to calculate SIFs for a cracked body subjected to arbitrary stress fields. According to

this method, the mode-I SIF for distribution of stress σ(x) along the crack line x in the uncracked

body is given by following expression.

 (14)

In which, the term m(x, a) is known as weight function, a is the crack length and dx is the

infinitesimal length along the crack surface. The authors (Kumar and Barai 2008a, 2009a, 2010)

introduced weight function method for determining the double-K fracture parameters of TPBT and

CT specimens based on universal form of weight function (Glinka and Shen 1991). This method

provides a closed form solution for determining  for a trapezoidal cohesive stress distribution in

the FPZ and thus avoiding the need of specialized numerical technique because of singularity

problem at integral boundary. The four term universal form of weight function (Glinka and Shen

1991) is written as

 (15) 

For central through cracked specimen of finite width subjected to pairs of normal forces symmetrically

(Fig. 3), the weight function as given by Tada et al. (2000) is expressed as

 (16)

Eq. (16) can equivalently be expressed in terms of universal weight function m(x, a) of Eq. (15)
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with the following weight function parameters M1, M2 and M3 (Wu et al. 2003). 

 (17)

 (18)

 (19)

Eqs. (17)-(19) are valid for 0 < a/D < 0.9. Once the weight function parameters are determined,

Eq. (15) is used to calculate the SIF at critical condition due to trapezoidal cohesive stress

distribution as shown in Fig. 4. The value of σ(x) in Eq. (14) is replaced by Eq. (10), hence the

closed form expression of  can be obtained according to the following form.

 (20)

where,  and , also a = ac at P = Pu. After determining the

value of  using Eq. (20), initiation toughness can be evaluated using Eq. (9).

5. Fictitious crack model and material properties for double-K fracture model

The cohesive crack model (Hillerborg et al. 1976, Petersson 1981, Carpinteri 1989, Planas and

Elices 1991, Kumar and Barai 2008b-2009b) is developed for STC and CT specimens to determine

the input data such as Pu and CMODc for STC or CODc for CT specimens being the primary

requirements to determine the double-K fracture parameters. Three material properties such as

modulus of elasticity E, uniaxial tensile strength ft, and fracture energy GF are required to model

FCM. In this method, the governing equation of COD along the potential fracture line is written.

The influence coefficients of the COD equation are determined using linear elastic finite element

method. Four noded isoparametric plane elements are used in finite element calculation. The COD

vector is partitioned according to the enhanced algorithm introduced by Planas and Elices (1991).

Finally, the system of nonlinear simultaneous equation is developed and solved using Newton-

Raphson method. For standard STC and CT specimens with B = 100 mm having size range
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D = 200-500 mm, the finite element analysis is carried out for which the one-quarter of STC and

half of CT specimens are discretized due to symmetry as shown in Fig. 5 considering 80 numbers

of equal isoparametric plane elements along the characteristic dimension D. In the discretization,

both the specimens are divided into three bands perpendicular to characteristic dimension D such as

D/4, D/4 and D/2 in case of STC specimen and 0.075D, 0.225D and 0.3D in case of CT specimen

as shown in Fig. 5. This arrangement will facilitate to obtain finer mesh size near the potential

fracture line. For STC specimen, the number of divisions is taken as 20, 5 and 5 in the bands D/4,

D/4 and D respectively whereas it is 6, 18 and 6 in the bands 0.075D, 0.225D and 0.3D

respectively for CT specimen. Ten nodes from top along the potential fracture line are restrained

against horizontal movement and all the nodes at the bottom perpendicular to fracture line are

restrained against vertical movement in case of STC specimen. Three nodes from top and the

topmost node along the potential fracture line are restrained in horizontal and vertical directions

respectively in case of CT specimen. The concrete mix with material properties: ν = 0.18, ft = 3.21

Fig. 5 Finite element discretization of test geometries

Fig. 6 Pu-CODc curve for CT specimen at ao/D ratio of
0.3

Fig. 7 Pu-CMODc curve for split-tension cube test
at ao/D ratio of 0.3
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MPa, E = 30 GPa, and GF = 103 N/m along with nonlinear stress-displacement softening relation with

c1 = 3 and c2 = 7 are used as the input parameters of FCM. 

The results of peak load Pu from simulation of FCM versus CODc for CT specimen at a constant

ao/D ratio of 0.3 are plotted in Fig. 6. Similar results of peak load Pu is plotted with the

corresponding CMODc at different load distributed widths (β = 0.0, 0.05, 0.1 and 0.15) for STC

specimens of varying sizes (200-500 mm) at a constant ao/D ratio of 0.3 as shown in Fig. 7. The

legends of Fig. 7 are denoted by the type of specimen geometry and the load distributed widths. 

Since it is difficult to show the specimen size on Fig. 7, Table 2 is presented for further clarification of

the results shown in Fig. 7. Table 2 illustrates the values of Pu and CMODc for STC specimen with

reference to those values of CT specimen at corresponding specimen size.

6. Results and discussion

6.1 Fracture parameters of split-tension cube specimen and comparison 

A comprehensive computer program in MATLAB is developed for the complete mathematical

calculation according to the methods described in the previous sections. The values of Pu-CMODc

for STC and Pu-CODc for CT specimens obtained from FCM were used to determine double-K

fracture parameters. The weight function method with four terms is applied to calculate double-K

fracture parameters in which the value of critical crack extension ac is obtained using Eq. (1) for

STC specimen. In this case, first of all the four parameters M1, M2 and M3 of four terms weight

function are computed using Eqs. (17)-(19) and then closed form expression (Eq. (20)) is used to

obtain the value of  and finally the  is determined using inverse procedure (Eq. (9)). The

nonlinear softening function as mentioned in the previous section is used in weight function method

to obtain the double-K fracture parameters. For CT specimen, double-K fracture parameters were

determined in a similar manner using five terms weight function method as mentioned elsewhere

(Kumar and Barai 2008a, 2009a). Thus the values of ,  and  as obtained for STC for

different distributed-load widths (0 ≤ β ≤ 0.15) and CT specimens for specimen size 200 ≤ D ≤  500

mm at ao/D ratio of 0.3 are plotted through Figs. 8, 9 and 10 respectively. 
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Table 2 Relative values of Pu and CMODc for STC specimens for different specimen sizes

D
(mm)

ao/D
Value of β for STC Value of β for STC

0.0 0.05 0.1 0.15 0.0 0.05 0.1 0.15

500 0.3 15.867 15.9787 16.309 16.867 0.447 0.4487 0.464 0.471

400 0.3 15.7017 15.81974 16.163 16.744 0.4547 0.456 0.461 0.483

300 0.3 15.4607 15.5867 15.954 16.584 0.437 0.439 0.447 0.471

200 0.3 15.0817 15.227 15.660 16.405 0.4127 0.426 0.440 0.490

Note: (i) Pu,STC and Pu,CT are the peak loads obtained for STC and CT specimens respectively.
 (ii) CMODc,STC and CODc,CT are the crack opening displacements at  peak loads obtained for STC and

CT specimens respectively.

Pu STC,

Pu CT,

------------
CMOD

c STC,

COD
c CT,

-----------------------------
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From Fig. 8 it is seen that the unstable fracture toughness obtained from STC specimen is

compatible with that of CT specimen. The value of  for STC is the lowest for distributed-load

width β = 0 and is the highest for β = 0.15 which is in close agreement with that obtained from CT

specimen for all sizes of specimens. The values of  are 36.70 and 39.91 MPa-mm1/2 for STC for

β = 0.15 and 37.72 and 41.40 MPa-mm1/2 for CT specimens for specimen size 200 and 500 mm

respectively. That means the unstable fracture toughness of concrete can be determined using STC

specimen with all advantages as mentioned in the previous sections.

The value of cohesive toughness for STC and CT specimens shown in Fig. 9 also shows that

these values either obtained using STC specimen or CT specimen are in consistent with each other.

For STC, the cohesive toughness values are slightly in higher side for β = 0.15. That means STC

specimen can predict almost the same results of cohesive toughness like other cracked specimen and

hence it can be used with a great advantage similar to other commonly available fracture testing

specimens. 

From the results of initiation toughness for STC and CT specimens as shown in Fig. 10 it can be

observed the this value for STC specimen has significant difference as compared with that obtained

for CT specimen. The initial cracking toughness values for STC specimen are in lower side as

compared with those of CT specimen for all values of distributed-load width (0 ≤ β ≤ 0.15)

KIC
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Fig. 8 Comparison of unstable fracture toughness
between STC and CT tests

Fig. 9 Comparison of cohesive toughness between STC
and CT tests

Fig. 10 Comparison of initial cracking toughness between STC and CT tests
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considered in the study. On an average, these values for STC for all values of β (0 ≤ β ≤ 0.15) are

less than those for CT specimen by approximately 23% and 16% for D = 200 mm and D = 500 mm

respectively. It can be further seen from the figure that the values of  for STC specimen are not

significantly influenced by specimen size whereas those values are influenced by specimen size in

case of CT specimen. However, further experimental and numerical study needs to be carried out to

conclude such generalized behavior. From this study it is clear the double-K fracture parameters can

be determined from STC tests with a greater ease as compared with those obtained using other

commonly available test specimens such as three-point bend test, compact tension specimen, wedge-

spitting test and four-point bending specimen geometries. The results of these fracture parameters

using STC specimens are consistent and comparable with those calculated using other tests geometries. A

comprehensive experimental and numerical study on the double-K fracture parameters using split-tension

cube test should be carried out in the future to investigate the behavior of these parameters

considering wide range of material properties and geometrical parameters. 

6.2 Effect of distributed-load width on the fracture parameters obtained using STC specimen

An additional parameter that is the distributed-load width does affect the results of fracture

parameters obtained using split-tension cube test unlike TPBT, CT and WST specimens. This effect

can be observed from Figs. 8-10 in which the fracture parameters as obtained using STC specimen

are shown for varying values of β ranging 0-0.15 for the specimen size ranging 200-500 mm at ao/

D ratio of 0.3. The values of  for β = 0 are 33.18 and 38.82 MPa-mm1/2 for D = 200 and 500

mm respectively where as for β = 0.15 those values are 36.71 and 39.91 MPa-mm1/2 for D = 200

and 500 mm respectively. Similarly, the values of  for β = 0 are 23.87 and 29.36 MPa-mm1/2 for

D = 200 and 500 mm respectively where as those values for β = 0.15 are 26.93 and 30.65 MPa-

mm1/2 for D = 200 and 500 mm respectively. Hence, the values of  for β = 0 are 9.32 and 9.46

MPa-mm1/2 for D = 200 and 500 mm respectively where as those values for β = 0.15 are 9.78 and

9.26 MPa-mm1/2 for D = 200 and 500 mm respectively. It can be observed from the results of

fracture parameters that there is an increase in the values of  and  for increasing values of

distributed-load widths where as the effect of distributed-load width is almost insignificant on the

value of . If compared between the β = 0 and 0.15, there is an increase in the  of 9.62 and

2.73% for D = 200 and 500 mm respectively where as this increase for the  is 11.36 and 4.20%

for specimen size 200 and 500 mm respectively.

7. Conclusions

In the present work formulation for determination of double-K fracture parameters using weight

function method for split-tension cube test was presented and the results of the initial cracking

toughness, cohesive toughness and unstable fracture toughness were compared with those obtained

using standard compact tension specimen. The advantage of lightness and compactness and

simplicity in carrying out the fracture test using split-tension cube specimen can be exploited over

the other standard cracked test specimens. Further, the developed weight function method can avoid

the application of skilled numerical technique caused because of singularity problem at integral

boundary occurring when determining the fracture parameters and thus they can be determined even

using calculator. From the present study it can be concluded that the double-K fracture parameters
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as obtained using split-tension cube test are in good agreement and consistent with those as

calculated using standard compact tension specimen. However, the results of fracture parameters are

influenced by the distributed-load width during loading the specimen in the split-tension cube test

and it was observed that the values of unstable fracture toughness and cohesive toughness increase

with increase in the distributed-load width where as the initial cracking toughness is not

significantly affected by the distributed-load width. Finally it can be concluded that more numerical

and experimental studies should be carried out in the future for recommending the split-tension cube

specimen for its use in the standard fracture tests.
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Abbreviations

CBM crack band model

CMOD crack mouth opening displacement

CMODc critical value of crack mouth opening displacement

COD crack opening displacement

CODc critical value of crack opening displacement

CT compact tension

CTOD crack-tip opening displacement

CTODc critical value of crack-tip opening displacement

DGFM double-G fracture model

DKFM double-K fracture model

ECM effective crack model

FCM fictitious crack model

FPBT four-point bending test

FPZ fracture process zone

LEFM linear elastic fracture mechanics

SEM size effect model

SIF stress intensity factor

STC split-tension cube

TPBT three-point bending test

TPFM two parameter fracture model

WST wedge splitting test.




