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 Technical Note

Determination of representative volume element in
concrete under tensile deformation
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Abstract. The 2D representative volume element (RVE) for softening quasi-brittle materials like concrete is
determined. Two alternative methods are presented to determine a size of RVE in concrete subjected to
uniaxial tension by taking into account strain localization. Concrete is described as a heterogeneous three-
phase material composed of aggregate, cement matrix and bond. The plane strain FE calculations of strain
localization at meso-scale are carried out with an isotropic damage model with non-local softening. 
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1. Introduction

To realistically capture the mechanism of localized zones in quasi-brittle materials, material micro-

structure has to be taken into account (Nielsen et al. 1995, Bažant and Planas 1998, Sengul et al.

2002, Lilliu and van Mier 2003, Kozicki and Tejchman 2008, He 2010, Skar y ski and Tejchman

2010). Such numerical description of strain localization is always connected with a huge number of

finite or discrete elements and a related large computational effort. To practically solve this problem

(by decreasing the number of elements in large concrete elements), some homogenization-based

multi-scale models are used, where each macroscopic point at the coarse (large) scale is connected

with a microscopic cell at the fine (small) scale. Thus, the most important issue in multi-scale analyses is

determination of an appropriate size for a micro-structural model, so-called representative volume

element RVE. The size of RVE should be chosen such that homogenized properties become

independent of micro-structural variations and a micro-structural domain is small enough such that

separation of scales is guaranteed. Many researchers attempted to define the size of RVE in

heterogeneous materials with a softening response in a post-peak regime (Hill 1963, Bažant and

Pijauder-Cabot 1989, Drugan and Willis 1996, Evesque 2000, van Mier 2000, Bažant and Novak

2003, Kanit et al. 2003, Kouznetsova et al. 2004, Gitman et al. 2007, Skar y ski and Tejchman

2009). The last outcomes in this topic show, however, that RVE cannot be defined in softening

quasi-brittle materials due to strain localization since the material loses then its statistical homogeneity

(Gitman et al. 2007, Skar y ski and Tejchman 2009, 2010). Thus, each multi-scale approach always

suffers from non-objectivity of results with respect to a cell size (Gitman et al. 2008). RVE solely

exists for linear and hardening regimes.
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The intention of our FE investigations is to determine RVE in concrete under tension using two

alternative strategies (one of them was proposed by Nguyen et al. 2010). Concrete was assumed at

meso-scale as a random heterogeneous material composed of three phases: aggregate, cement matrix

and bond. The FE calculations of strain localization were carried out with a scalar isotropic damage

with non-local softening. 

2. Constitutive model for concrete

A simple isotropic damage continuum model was used describing the material degradation with

the aid of only a single scalar damage parameter D growing monotonically from zero (undamaged

material) to one (completely damaged material) (Katchanov 1986, Simo and Ju 1987). The stress-

strain function is represented by the following relationship 

(1)

where  is the linear elastic material stiffness matrix and  is the strain tensor (‘e’-elastic). The

loading function of damage is as follows

 (2)

where  denotes the initial value of κ when damage begins. If the loading function f is negative,

damage does not develop. During monotonic loading, the parameter κ grows (it coincides with )

and during unloading and reloading it remains constant. A Rankine failure type criterion was assumed to

define the equivalent strain measure  (Jirasek and Marfia 2005)

 (3)

where E denotes the modulus of elasticity and  are the principal values of the effective stress

tensor

(4)

If all principal stresses are negative, the loading function f is negative and no damage takes place.

To describe the evolution of the damage parameter D (determining the shape of the softening

curve under tension), the exponential softening law was used (Peerlings et al. 1998)

 (5)

where α and β are the material constants.

The constitutive isotropic damage model for concrete requires the following 5 material constants:

E, υ, κ0, α and β. The model is suitable for tensile failure (Marzec et al. 2007, Skar y ski et al.

2009) and mixed tensile-shear failure (Bobiński and  Tejchman 2010). However, it cannot realistically

describe irreversible deformations, volume changes and shear failure (Simone and Sluys 2004).

To properly describe strain localization, to preserve the well-possedness of the boundary value

problem, to obtain mesh-independent results and finally to include a characteristic length of micro-

structure lc in simulations (which sets the width of a localized zone), an integral-type non-local

theory was used as a regularization technique (Bažant and Jirasek 2002, Bobiński and Tejchman
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2004). The equivalent strain measure  was replaced by its non-local value (Pijauder-Cabot and

Bažant 1987) to evaluate the loading function (Eq. (2)) and to calculate the damage threshold

parameter κ 

 (6)

where V- the body volume, x - the coordinates of the considered (actual) point, ξ - the coordinates of

surrounding points and ω - the weighting function. As a weighting function ω, a Gauss distribution

function was used

 (7)

where lc denotes a characteristic length of micro-structure and the parameter r is a distance between

two material points. The averaging in Eq. (7) is restricted to a small representative area around each

material point (the influence of points at the distance of r = 3 × lc is only 0.01%). A characteristic

length is usually related to material micro-structure and is determined with an inverse identification

process of experimental data (Le Bellěgo et al. 2003). 

3. Input data

The FE investigations were performed with concrete described as a three-phase material composed of

the cement matrix, aggregate and interfacial transition (contact) zones between the cement matrix

and aggregate (the material constants for each phase are given in Table 1). The interface was

assumed to be the weakest component (Lilliu and van Mier 2003) and its width was 0.25 mm

(Gitman et al. 2007). For the sake of simplicity, the aggregate was assumed in the form of circles.

The number of triangular finite elements changed between 4,000 (the smallest specimen) and

100,000 (the largest specimen). The size of triangular elements was: sa = 0.5 mm (aggregate), scm =

0.25 mm (cement matrix) and sitz = 0.1 mm (interface). To analyze the existence of RVE under

tension, a plane strain uniaxial tension test (Fig. 1) was performed with a quadratic concrete specimen

representing a unit cell with the periodicity of boundary conditions and material periodicity (Fig. 2)

(Gitman et al. 2007, Skar y ski and Tejchman 2010).  

The unit cells of six different sizes were investigated b × h: 5×5 mm2, 10 × 10 mm2, 15 × 15 mm2,
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Table 1 Material properties assumed for FE calculations of 2D random heterogeneous three-phase concrete
material

Parameters Aggregate Cement matrix ITZ

Modulus of elasticity E [GPa] 30 25 20

Poisson's ratio υ [−] 0.2 0.2 0.2

Crack initiation strain κ0 [−] 0.5 8×10−5 5×10−5

Residual stress level α [−] 0.95 0.95 0.95

Slope of softening β [−] 200 200 200
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20 × 20 mm2, 25 × 25 mm2 and 30×30 mm2, respectively. For each specimen, three different stochastic

realizations were performed (Fig. 3) with the aggregate density of ρ = 30% (the results for ρ = 45%

and ρ = 60% showed the same trend). A characteristic length of micro-structure was assumed to be

lc = 1.5 mm on the basis of comparative experimental measurements using a Digital Image Correlation

technique (Skar y ski et al.  2009) and numerical studies with an isotropic damage model

(Skar y ski and Tejchman 2010). Thus, the maximum finie element size in 3 different concrete

phases was not greater than 3 × lc to obtain mesh-objective results (Bobiński  and Tejchman 2004,

Marzec et al. 2007).

4. Numerical results for uniaxial tension

4.1 Standard averaging approach

The standard averaging is performed in the entire specimen domain. The homogenized stress and

strain are defined in two dimensions as

 and (8)

where  denotes the sum of all vertical nodal forces in the ‘y’ direction along the top edge of the

specimen (Fig. 1), u is the prescribed vertical displacement in the ‘y’ direction and b and h are the

width and height of the specimen.
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Fig. 1 Uniaxial tension test (schematically) Fig. 2 Deformed three-phase concrete specimen with
periodicity of boundary conditions and material
periodicity
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Fig. 4 presents the stress-strain relationships for various cell sizes and two random aggregate

distributions with the material constants of Table 1 (lc = 1.5 mm). In the first case, the aggregate

distribution was similar and in the second case it was at random in different unit cells. The results

show that the stress-strain curves are the same solely in an elastic regime independently of the

specimen size, aggregate density and aggregate distribution. However, they are completely different

at the peak and in a softening regime. An increase of the specimen size causes a strength decrease

and an increase of material brittleness (softening rate) (Fig. 4). The differences in the evolution of

stress-strain curves in a softening regime are caused by strain localization (in the form of a curved

localized zone propagating between aggregates, Figs. 5 and 6) contributing to a loss of material

homogeneity (due to the fact that strain localization is not scaled with increasing specimen size).

The width of a calculated localized zone is approximately wc = 3 mm = 2 × lc = 12 × scm (unit cell

5 × 5 mm2), wc = 5 mm = 3.33 × lc = 20 × scm (unit cell 10 × 10 mm2) and wc = 6 mm = 4 × lc = 24 × scm

Fig. 3 Concrete specimens of different size: (a) 5 × 5 mm2, (b) 10 × 10 mm2, (c) 15 × 15 mm2, (d) 20 × 20
mm2, (e) 25 × 25 mm2 and (f) 30 × 30 mm2 (aggregate density ρ = 30%)
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Fig. 4 Stress-strain curves for various sizes of concrete specimens and two different random distributions of
aggregate (a) and (b) using standard averaging procedure (characteristic length lc = 1.5 mm, aggregate
density ρ = 30%)

Fig. 5 Distribution of non-local softening strain measure for various specimen sizes and stress-strain curves
of Fig. 4(a) using standard averaging procedure (characteristic length lc = 1.5 mm, aggregate density
ρ = 30%)
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(unit cells larger than 10 × 10 mm2). 

Fig. 7 presents the expectation value and standard deviation of the tensile fracture energy Gf

versus the specimen height h for 3 different realizations. The fracture energy Gf was calculated as

the area under the strain-stress curves gf multiplied by the width of a localized zone wc

 (9)

The integration limits ‘a1’ and ‘a2’ are 0 and 0.001, respectively (Fig. 4). The fracture energy

decreases with increasing specimen size without reaching an asymptote, i.e. the size dependence of

RVE exists (since a localized zone does not scale with the specimen size). Thus, RVE cannot be

found for softening materials and a standard averaging approach cannot be used in homogenization-
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Fig. 6 Distribution of non-local softening strain measure for various specimen sizes and stress-strain curves
of Fig. 4(b) using standard averaging procedure (characteristic length lc = 1.5 mm, aggregate density
ρ = 30%)
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based multiscale models.

4.2 Localized zone averaging approach

Recently, the existence of RVE for softening materials was proved (based on Hill’s averaging

principle) for cohesive and adhesive failure by deriving a traction-separation law (for a macro crack)

instead of a stress-strain relation from microscopic stresses and strains (Verhoosel et al. 2010a,

2010b). This was indicated by the uniqueness (regardless of a micro sample size) of a macro

traction-separation law which was obtained by averaging responses along propagating micro discrete

cracks. Prompted by this approach and the fact that a localized zone does not scale with the micro

specimen size, Nguyen et al. (2010) proposed an approach where homogenized stress and strain

were averaged over a localized strain domain in softening materials rather (which is small compared

with the specimen size) than over the entire specimen. We used this method in this paper. In this

approach, the homogenized stress and strain are

 and  (10)

where Az is the localized zone area and σm and εm are the meso-stress and meso-strain, respectively.

The localized zone area Az is determined on the basis of a distribution of the non-local equivalent

strain measure  (Eq. (6)). As the cut-off value  is always assumed at the maximum

mid-point value usually equal to . Thus, a linear material behaviour is simply

swept out (which causes the standard stress-strain diagrams to be specimen size dependent), and an

active material plastic response is solely taken into account.

Fig. 8 presents the stress-strain relationships for various specimen sizes and two random aggregate

distributions with the material constants from Table 1 (lc = 1.5 mm) for the calculated localized

zones of Figs. 5 and 6. These stress-strain curves in a softening regime (for the unit cells larger than

10 × 10 mm2) are in very good accordance with respect to their shape. In this case, the statistically
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Fig. 7 Expected value and standard deviation of tensile fracture energy Gf versus specimen height h using
standard averaging (aggregate density ρ = 30%)
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representative volume element exists and is equal to 15 × 15 mm2. 

Fig. 9 presents the expectation value and standard deviation of the tensile fracture energy Gf

versus the specimen height h for 3 different realizations. The integration limits were a1 = 0 and

a2 = 0.004 (Eq. (9)). The fracture energy decreases with increasing specimen size approaching an

asymptote when the cell size is 15 × 15 mm2. Thus, the homogenized stress-strain relationships

obtained are objective with respect to the micro sample size. RVE does not represent the entire

material in its classical meaning, but the material in a localized zone.

Fig. 8 Stress-strain curves for various sizes of concrete specimens and two different random distributions of
aggregate (a) and (b) using localized zone averaging procedure (characteristic length lc = 1.5 mm,
aggregate density ρ = 30%)

Fig. 9 Expected value and standard deviation of tensile fracture energy Gf versus specimen height h using
localized zone averaging (aggregate density ρ = 30%)
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4.3 Varying characteristic length approach

With increasing characteristic length, both specimen strength and width of a localized zone increase. On

the other hand, softening decreases and material behaves more ductile (Skar y ski and Tejchman

2009). Taking these two facts into account, a varying characteristic length related to the reference

specimen size (assumed as 15 × 15 mm2 or 30 × 30 mm2) is introduced (to scale the width of a

localized zone with varying specimen height) according to the formula 

(11)

or

z· n′
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Fig. 10 Stress-strain curves for various sizes of concrete specimens and two different random distributions of
aggregate (a) and (b) using varying characteristic length approach (reference unit size 15 × 15 mm2,
characteristic length according to Eq. (11), aggregate density ρ = 30%)

Fig. 11 Stress-strain curves for various sizes of concrete specimens and two different random distributions of
aggregate (a) and (b) using varying characteristic length approach (reference unit size 30 × 30 mm2,
characteristic length according to Eq. (12), aggregate density ρ = 30%)
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(12)

where lc
15×15 = lc

30×30 = 1.5 mm is a characteristic length for the reference unit cell 15 × 15 mm2 or

30 × 30 mm2 and h is the unit cell height. A larger unit cell than 30 × 30 mm2 can be also used (the

width of a localized zone in the reference unit cell cannot be too strongly influenced by boundary

conditions, as e.g. the cell size smaller than 10 × 10 mm2). The characteristic length  is no longer

a physical parameter related to non-local interactions in the damaging material, but an artificial

parameter adjusted to the specimen size. 

The stress-strain relationships for various specimen sizes and various characteristic lengths are

shown in Figs. 10 and 11. A characteristic length varies between lc = 0.5 mm for the unit cell 5 × 5

mm2 and lc = 3.0 mm for the unit cell 30 × 30 mm2 according to Eq. (11), and between lc = 0.25 mm

lc
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30 30× h

30
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mm[ ]
mm[ ]

-------------×=

l c

v

Fig. 12 Distribution of non-local softening strain measure for various specimen sizes and stress-strain curves
from Fig. 10(a) using varying characteristic length approach (reference unit size 15 × 15 mm2, characteristic
length according to Eq. (11), aggregate density ρ = 30%)
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for the unit cell 5 × 5 mm2 and lc = 1.5 mm for the unit cell 30 × 30 mm2 according to Eq. (12). The

width of a calculated localized zone (for the reference unit cell 15 × 15 mm2) is approximately

wc = 2 mm = 4 × lc = 8 × scm (cell 5 × 5 mm2), wc = 4 mm = 4 × lc = 16 × scm (cell 10 × 10 mm2), wc = 6

mm = 4 × lc = 24 × scm (cell 15 × 15 mm2), wc = 8 mm = 4 × lc = 32 × scm (cell 20 × 20 mm2), wc = 10

mm = 4 × lc = 40 × scm (cell 25 × 25 mm2) and wc = 12 mm = 4 × lc = 48 × scm (cell 30 × 30 mm2)

(Figs. 12 and 13). The width of a calculated localized zone (for the reference unit cell 30×30 mm2)

is approximately wc = 1 mm = 4 × lc = 4 × scm (cell 5 × 5 mm2), wc = 2 mm = 4 × lc = 8 × scm (cell 10 × 10

mm2), wc = 3 mm = 4 × lc = 12 × scm (cell 15 × 15 mm2), wc = 4 mm = 4 × lc = 16 × scm (cell 20 × 20 mm2),

wc = 5 mm = 4 × lc = 20 × scm (cell 25 × 25 mm2) and wc = 6 mm = 4 × lc = 24 × scm (cell 30 × 30 mm2)

(Figs. 14 and 15). A localized zone is scaled with the specimen size. Owing to that the material

does not lose its homogeneity and its response during softening is similar for the cell 15 × 15 mm2

and larger ones. Thus, the size of the representative volume element is again equal to 15 × 15 mm2.

Fig. 13 Distribution of non-local softening strain measure for various specimen sizes and stress-strain curves
from Fig. 10(b) using varying characteristic length approach (reference unit size 15 × 15 mm2,
characteristic length according to Eq. (11), aggregate density ρ = 30%)
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The expectation value and standard deviation of the unit fracture energy gf = Gf/wc versus the

specimen height h are demonstrated in Fig. 16. With increasing cell size, the value of gf stabilizes

for the unit cell of 15 × 15 mm2.

6. Conclusions

The 2D results of our plane strain FE simulations under tensile loading of softening quasi-brittle

materials with a random heterogeneous three-phase structure revealed the following points:
● The representative volume element (RVE) cannot be defined in quasi-brittle materials with a

standard averaging approach (over the entire material domain) due to occurrence of a localized

zone whose width is not scaled with the specimen size. The shape of the stress-strain curve

Fig. 14 Distribution of non-local softening strain measure for various specimen sizes and stress-strain curves
from Fig. 11(a) using varying characteristic length approach (reference unit size 30 × 30 mm2,
characteristic length according to Eq. (12), aggregate density ρ = 30%)
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Fig. 15 Distribution of non-local softening strain measure for various specimen sizes and stress-strain curves
from Fig. 11(b) using varying characteristic length approach (reference unit size 30 × 30 mm2,
characteristic length according to Eq. (12), aggregate density ρ = 30%)

Fig. 16 Expected value and standard deviation of unit fracture energy gf versus specimen height h using
varying characteristic length approach: (a) reference cell size 15 × 15 mm2, (b)  reference cell size
30 × 30 mm2 (aggregate density ρ = 30%)
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depends on the specimen size beyond the elastic region. 
● The 2D representative volume element (RVE) can be determined in quasi-brittle materials using

both a localized zone averaging approach and a varying characteristic length approach. In the

first case, the averaging is performed over the localized domain rather than over the entire

domain, by which the material contribution is swept out. In the second case, the averaging is

performed over the entire domain with a characteristic length of micro-structure being scaled

with the specimen size. In both cases, convergence of the stress-strain diagrams for different

RVE sizes of a softening material is obtained for tensile loading. The size of a two-dimensional

statistically representative volume element is approximately equal to 15 × 15 mm2.

The FE calculations will be continued. The representative volume element (RVE) will be determined for

shear and mixed mode loading.
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50 . Skarz·yński and J. TejchmanL

Meth. Eng., 63(1), 77-102.
Kanit, T., Forest, S., Galliet, I., Mounoury, V. and Jeulin, D. (2003), “Determination of the size of the

representative volume element for random composites: statistical and numerical approach”, Int. J. Solids
Struct., 40, 3647-3679.

Kouznetsova, V.G., Geers, M.G.D. and Brekelmans, W.A.M. (2004), “Size of representative volume element in a
second-order computational homogenization framework”, Int. J. Multiscale Comput. Eng., 2(4), 575-598.

Katchanov, L.M. (1986), Introduction to continuum damage mechanics, Dordrecht: Martimus Publishers.
Kozicki, J. and Tejchman, J. (2008), “Modeling of fracture processes in concrete using a novel lattice model”,

Granular Matter, 10(5), 377-288.
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