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Abstract. Before deciding if structures exposed to high temperature are to be repaired or demolished, their
final state should be carefully examined. Destructive and non-destructive testing methods are generally applied
for this purpose. Compressive strength and color change in mortars are observed as a result of the effects
of high temperature. In this study, ordinary and pozzolan-added mortar samples were produced using
different aggregates, and exposed to 100, 200, 300, 600, 900 and 1200ºC. The samples were divided into
two groups and cooled to room temperature in water and air separately. Compression tests were carried
out on these samples, and the color change was evaluated by the Munsell Color System. The relationships
between the change in compressive strength and color of mortars were determined by using a multi-
layered feed-forward Neural Network model trained with the back-propagation algorithm. The results
showed that providing accurate estimates of compressive strength by using the color components and
ultrasonic pulse velocity design parameters were possible using the approach adopted in this study.
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1. Introduction

At elevated temperatures, a change in the concrete color may be observed, especially when the

river siliceous aggregate is used. For example, previous studies have reported that pink or red colors

on the concrete surface indicated that the concrete had been exposed to a temperature of about 300-

600ºC. The gray color, however, shows that the concrete has suffered a temperature ranging from

600ºC to 900ºC. Moreover, the compressive strength of the concrete decreases about 50% when the

temperature reaches to 600ºC. This fact justifies that residual strength of the concrete can be

predicted after being subjected to elevated temperature by observing the color change (Neville

2000). Furthermore, Wang (2008) reported that variation in color on the surface may help estimate

the highest elevated temperatures that concrete structures can withstand.

Color is one of the physical properties of a material assessed by various color systems. The

Munsell Color System evaluates the color change quantified by decimal numbers considering the

components of hue, lightness, and chroma degree of the color (Fig. 1). The first component, hue,

indicates the color different from the other colors. The Munsell Color System describes the hue with

the numbers between 1 and 100 in a circular segment (Fig. 2). In the circular segment, red 5 (5R),

yellow 25 (5Y), green 45 (5G), blue 65 (5B), and purple 85 (5P) are placed sequentially occupying
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5 equal segments. Similarly, the mixtures of these colors such as yellow-red 15 (5YR), green-yellow

35 (5GY), blue-green 55 (5BG), purple-blue 75 (5PB), and red-purple 95 (5RP) are placed in the

circle (Fig. 2). Thus, ten segments are subdivided into ten equal parts for generating the decimal

number system. The second component lightness, on the other hand, describes the brightness of the

color and is designated with numbers 0 to 10. In this scale, 0 and 10 stand for black and white,

respectively. Degree of chroma is a component to identify a color. This indicates the amount of gray

in the color through the numbers 0 to 20. The chroma points out degree of departure of a color

from gray (Luke 1996, ASTM D 1535-08).

An experimental study was performed to investigate the effect of high temperature on mortars,

with and without pozzolan, by using the Munsell color measuring system according to ASTM D

1535-08. The compressive strength and the corresponding color change of each mortar specimen,

subjected to different temperature levels, were evaluated and a meaningful relationship between

them was found in a previous study by Yuzer and Kizilkanat (2008). In another research by Short et

al. (2001), the compressive strength and color change of the concrete exposed to high temperature

were measured. It was found that there was a good relation between these two parameters for the

concretes made with siliceous aggregates. An experimental study carried out by Lou and Lin (2007)

states that the intensity of red color on the mortar surface rises when exposed to high temperature.

The effects of high temperatures on mortar were analyzed using Energy Dispersive Signals. The

composition analyzed after fire, and the variations of Si, O and Ca were determined. As a result we

can say that there is a correlation between surface color and the minerals of components of the

mortar at elevated temperatures. Consequently, the evaluation of the surface color of the concrete

structures exposed to fire may be used for predicting the residual compressive strength.

Advances in computer and software technology have enabled the use of Neural Network (NN)

analysis for establishing non-linear relationships in engineering problems. NN analysis offers more

realistic and accurate predictions. A NN model is designed based on simulating the structure and

learning activities of the human brain. Garrett et al. (1997) defines a NN model as a computational

Fig. 1 Dimensions of the surface-color-perception solid Fig. 2 Designation systems for Munsell hue
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mechanism able to acquire, represent, and compute mapping from one multivariate space of

information to another, given a set of data representing that mapping.

NN has been widely used in structural engineering for almost the last two decades Flood 1989, Zhao

2006, Yuzer et al. 2007) because most of the structural engineering problems are often too complicated

and include incomplete and noisy data. The most recent studies include predicting the compressive

strength of concrete using neural networks. Bilim et al. (2009) studied applicability of neural network

models on predicting the compressive strength of granulated blast furnace slag concrete. They used

different water-cement ratios, cement dosages and slag replacement ratios in their NN models

consisting of different algorithms. Their findings show that NN models can be an alternative method

for estimating the compressive strength of ground granulated blast furnace slag concrete. Saridemir

(2009) also used NN models to predict the compressive strength of concrete containing metakaolin and

silica fume. He suggested that estimating compressive strength of concretes containing metakaolin and

silicafume with NN models save time and money. Parichatprecha and Nimityongskul (2009) tried to

predict the high performance concrete by NN models. They used water and cement, water-binder ratio,

fly ash and silica fume as variables in their study. Their model resulted with an absolute fraction of

variance (R2) of 99%. In another research (Chiang and Yang 2005) which utilized Neural Network

applications in order to predict residual compressive strength due to high temperature, it was

emphasized that maximum exposure temperature, exposure time and heating and cooling rates were

the most important factors. In the study, exposure time, exposure temperature, water/cement ratio and

residual pulse velocity were chosen as input parameters. Good agreement was observed between the

predicted residual strength and the target values of compressive strength.

2. Research significance

Many methods have been developed to determine concrete quality. Sonreb Method is one of these

methods and which uses results of ultrasonic pulse velocity and rebound tests (Akman and Guner

1984). However this method does not perfectly give us accurate result of concrete quality. Since

carbonation of concrete that is exposed to high temperature is higher than the concrete that not

exposed to. This is because carbonation increases surface hardness value so this situation misleads

the determination of concrete quality. Therefore in our study to get more accurate results for

determining quality of concrete that exposed high temperature, in addition to ultrasonic pulse

velocity, color components were used instead of surface hardness. The principal aim of this study is

to develop and test multi-layered feedforward NNs, trained with the back-propagation algorithm, to

model the non-linear relationship among the three components of color, ultrasonic pulse velocity

and the compressive strength of concrete. To determine the above-mentioned input parameters, an

experimental program was carried out. First, eight series mortar specimens made of different

aggregates and mineral admixtures were exposed to high temperature effect. Then a relationship

was established using Neural Network analysis with these parameters, such as the change in color,

ultrasonic pulse velocity, and compressive strength. By using the NN model developed in this study,

an engineer can predict the compressive strength of the concrete with a very high accuracy. 
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3. Experimental procedure

The experimental study consisted of four parts, namely production of mortar specimens, curing,

heating and cooling duration, and physical and mechanical control testing.

3.1 Materials and specimen preparation

The mortar production was made with standard CEN sand and calcareous aggregates with the

same granulometry, ordinary Portland cement (CEM I 42.5 R), microsilica, fly ash, and slag. The

properties of cement and mineral admixtures are given in Table 1. Mineral admixtures replaced 10

% cement by weight. The water-cementitious material ratio was kept at 0.50, and the workability

adjusted by using superplasticizer at required dosage (0.4-2%). A total of 336 prism specimens with

dimensions of 40×40×160 mm were prepared. Three specimens were used for each temperature

Table 1 Chemical and physical properties of portland cement and mineral admixtures

Chemical composition (%) Portland cement Microsilica Fly ash B.F. Slag

CaO
SiO2

Al2O3

Fe2O3

MgO
SO3

Loss on ignition 

64.01
20.01
5.28
3.65
1.21
2.47
2.27

0.57
82.22
0.17
0.53
5.43
1.42
3.96

8.72
57.27
14.15
12.52
1.33
0.56

-

33.48
41.43
10.28
3.48
6.05

-
0.61

Specific weight (g/cm3) 3.14 2.02 2.01 2.80

Specific surface (Blaine, cm2/g) 3570 --- 3621 3910

Table 2 Specimen code

Cooling type In air (A) In water (W)

 Type of aggregate
Type of pozzolan 

Siliceous
 (S)

Limestone
(L)

Siliceous
(S)

Limestone
(L)

Ordinary portland cement (O) OSA OLA OSW OLW

Microsilica (Ms) MsSA MsLA MsSW MsLW

Fly ash (F) FSA FLA FSW FLW

Blast furnace slag (B) BSA BLA BSW BLW

Table 3 Mix proportions of mortar specimens (kg/m3)

Series OS MsS FS BS OL MsL FL BL

Cement 508 446 451 458 517 458 459 461

W/C 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Fine aggregate 1525 1484 1501 1524 1552 1527 1529 1537

Silica fume _ 49 _ _ _ 51 _ _

Fly ash _ _ 50 _ _ _ 51 _

Slag _ _ _ 50 _ _ _ 51

Superplasticizier (%) 0.5 0.4 0.4 0.4 1.7 2 2 2
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level. Prism mortar specimens conforming to TS EN 196-1 (2002) were demolded after 24 hours

and then stored in water tank at 20±2ºC until the testing day. The testing specimens were coded

according to aggregate type, mineral admixture, and the cooling method, and are shown in Table 2.

For example, MsLA means that silica fume added mortar has been mixed with limestone aggregate

and cooled in air to the room temperature. The mix proportions are summarized in Table 3.

3.2 High temperature effect and control tests

Heating and cooling procedures were planned as follows: specimens were heated to specified

temperature level without loading, then cooled to room temperature, and then tested. After 28 days

of curing period, specimens were dried in oven at 100±5ºC for 48 hours. Thereafter, the three

specimens of each group were heated up to 100, 200, 300, 600, 900 and 1200ºC with 6-10°C per

minute heating rate furnace (Fig. 3). After the target temperature was reached, all the samples were

removed from the furnace. Two cooling regimes were chosen. In one of the regimes, the specimens

were allowed to cool naturally to the room temperature (20±2oC) (Fig. 4). The other was rapid

cooling, the heated specimens were taken out of the furnace and immersed in water tank and then

Fig. 3 Specimens heated up to 1200oC in the furnace Fig. 4 Specimens after exposed to 1200oC

Table 4 Design parameters

Design
parameter

Definition Range

X1 Hue (1-100) 17.6-27.6

X2 Lightness (0-10) 3.8-7.6

X3 Chroma (0-20) 0.2-2.9

X4 Pulse velocity (mm/µsec) 0.59-4.3

Y Compressive strength (N/mm2) 2.8-60.0
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Table 5 Test results of the control specimens (20oC)

Specimen Hue Lightness Chroma
Pulse velocity

(mm/µs)
Compressive strength

(N/mm2)

OS 25.8 7.2 0.5 3.93 44.2

MsS 26.4 6.2 0.4 4.27 56.6

BS 22.7 6.5 0.8 3.94 48.3

FS 24.3 6.7 0.5 3.85 45.8

OL 27.9 6.3 0.4 3.96 50.8

MsL 27.3 6.1 0.6 4.26 54.2

BL 25.6 6.3 0.5 3.97 54.8

FL 26.2 6.4 0.5 3.87 57.7

Table 6 Cases used in constructing the NN model

Case No. Specimen code (X1) (X2) (X3) (X4) (Y1) (YNN)

1 OSW-100°C 25.7 7.0 0.5 4.08 48.5 50.06

2 OSW-300°C 23.2 6.5 0.8 3.72 33.5 39.05

3 OSA-600°C 19.7 6.5 0.7 3.22 41.8 53.59

4 OSW-600°C 20.9 5.4 1.1 3.19 30.4 32.61

5 OSA-900°C 18.9 7.6 0.4 1.31 20.5 19.87

6 OSA-1200°C 23.2 7.5 1.1 0.93 4.6 5.01

7 MsS-20°C 26.4 6.2 0.4 4.27 56.6 53.13

8 MsSA-100°C 26.8 6.3 0.4 4.09 51.3 52.58

9 MsSW-100°C 26.6 6.3 0.4 4.17 59.8 52.83

10 MsSA-200°C 27.2 6.0 0.4 4.15 49.5 52.91

11 MsSW-200°C 25.4 5.9 0.4 4.19 51.1 53.31

12 MsSA-300°C 25.6 5.9 0.5 4.06 57.3 52.48

13 MsSA-600°C 21.5 5.6 0.9 3.42 21.9 33.65

14 MsSW-600°C 22.0 4.2 0.9 3.24 39.0 38.10

15 MsSA-900°C 22.5 6.5 1.0 1.33 15.6 14.01

16 MsSW-900°C 21.6 4.6 1.3 1.36 11.5 13.73

17 MsSA-1200°C 20.1 6.7 2.9 0.96 3.1 3.01

18 MsSW-1200°C 20.7 5.6 2.6 1.20 2.8 3.02

19 BS-20°C 22.7 6.5 0.8 3.94 48.3 49.47

20 BSA-100°C 22.5 6.8 0.7 3.83 50.0 45.60

21 BSA-200°C 22.3 6.5 0.7 3.92 54.2 49.08

22 BSA-300°C 22.1 6.3 0.9 3.89 58.8 51.48

23 BSW-300°C 22.4 5.5 1.1 3.72 47.9 44.24

24 BSA-600°C 19.6 5.3 1.5 3.23 51.9 52.38

25 BSW-600°C 19.8 4.0 1.2 3.04 29.4 27.75

26 BSA-900°C 17.6 6.6 0.8 1.20 17.9 19.15

27 BSW-900°C 18.6 4.5 1.4 1.45 7.9 8.36

28 BSA-1200°C 20.1 6.7 1.5 0.59 6.0 6.24

29 BSW-1200°C 19.6 5.3 2.0 0.84 4.1 3.10

30 FSA-100°C 22.3 6.7 0.4 4.01 49.2 48.65
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Table 6 Continued

Case No. Specimen code (X1) (X2) (X3) (X4) (Y1) (YNN)

31 FSA-200°C 22.3 6.6 0.5 3.94 44.4 47.34

32 FSW-200°C 22.4 6.8 0.5 3.82 36.9 42.08

33 FSW-300°C 22.5 6.6 0.8 3.67 33.5 39.98

34 FSA-600°C 20.8 5.4 1.4 3.42 50.4 47.71

35 FSW-600°C 21.2 5.0 1.2 3.45 30.0 37.52

36 FSA-900°C 20.0 6.8 0.4 1.33 13.0 16.63

37 FSW-900°C 19.7 4.6 1.0 1.62 22.9 18.53

38 FSA-1200°C 20.3 6.9 1.9 0.90 6.5 6.22

39 FSW-1200°C 19.4 5.4 2.6 1.50 4.4 3.55

40 OL-20°C 27.9 6.3 0.4 3.96 50.8 52.03

41 OLA-100°C 29.5 6.6 0.3 3.79 49.9 51.32

42 OLW-100°C 31.0 6.6 0.2 3.81 51.3 52.05

43 OLA-200°C 28.9 6.9 0.2 3.81 55.4 51.09

44 OLW-200°C 28.9 6.5 0.3 3.81 47.5 51.57

45 OLA-300°C 28.7 6.9 0.3 3.79 45.7 50.07

46 OLA-600°C 19.8 6.6 0.8 2.83 53.1 51.80

47 OLW-600°C 20.2 6.0 0.7 2.72 32.5 32.35

48 OLA-900°C 21.3 6.9 0.7 2.50 35.8 33.21

49 OLW-900°C 20.3 5.0 1.1 2.52 24.4 23.97

50 OLA-1200°C 24.3 7.6 1.5 1.60 5.2 6.52

51 MsL-20°C 27.3 6.1 0.6 4.26 54.2 51.54

52 MsLA-100°C 28.6 6.1 0.3 4.30 58.1 53.10

53 MsLW-100°C 29.5 6.2 0.3 4.19 58.5 52.71

54 MsLA-200°C 30.1 6.1 0.2 4.26 51.7 53.11

55 MsLW-200°C 29.4 6.1 0.3 4.29 48.8 52.82

56 MsLA-300°C 25.6 5.7 0.5 4.23 49.2 53.06

57 MsLA-600°C 19.6 6.1 0.7 3.77 60.0 57.26

58 MsLW-900°C 19.9 5.3 1.3 1.85 24.4 17.53

59 BL-20°C 25.6 6.3 0.5 3.97 54.8 51.08

60 BLA-100°C 24.7 6.7 0.4 3.71 57.1 40.90

61 BLW-100°C 25.5 6.0 0.4 4.02 54.0 52.59

62 BLA-200°C 24.6 6.5 0.4 4.01 50.2 50.69

63 BLW-200°C 25.5 5.9 0.4 4.00 50.0 52.65

64 BLW-300°C 24.8 5.9 0.5 3.74 39.4 48.59

65 BLA-600°C 19.5 5.7 1.1 3.28 54.8 54.15

66 BLA-900°C 18.3 6.6 1.1 2.50 42.5 40.82

67 BLW-900°C 18.8 4.8 1.4 2.32 29.2 33.20

68 BLA-1200°C 22.7 6.8 2.2 1.39 4.2 3.23

69 FL-20°C 26.2 6.4 0.5 3.87 57.7 49.88

70 FLA-100°C 27.9 6.7 0.3 4.00 56.3 52.17

71 FLW-100°C 26.2 6.1 0.4 4.02 52.1 52.54

72 FLA-200°C 26.5 6.7 0.3 4.06 46.0 52.19

73 FLW-200°C 26.8 6.7 0.3 4.00 46.0 51.85

74 FLW-300°C 25.9 6.4 0.3 3.73 39.0 48.06



498 N. Yuzer, B. Akbas and  A.B. Kizilkanat

cooled to room temperature. After this process, the samples were kept 24±1 hours under the

laboratory conditions so that the surface of the samples became dry.

After heating and cooling, the color components of the specimens were measured using spectro

photometer, ultrasonic pulse velocities were obtained and compressive strength tests carried out

finally. Design parameters and test results are given in Table 4-6.

4. Neural network design

Neural networks (NNs) are considered to be simple mathematical structures and suitable tools in

establishing a reliable non-linear relationship among the various parameters. No complex mathematical

formulations are needed to design a NN. A NN model can be defined using three basic components:

transfer function, network architecture, and the learning law. NN models learn and generalize from

examples and experience to produce meaningful solutions to the problems even in cases where the

input data contains error or is incomplete (Rafiq et al. 2001, Gunaydin and Dogan 2004). The three-

layer feedforward NN model with 4 input nodes, 1 hidden layer and one output node is shown in

Fig. 5. The data presented to the NN model are represented by the input nodes, whereas the outputs

of the NN model are represented by the output nodes.

Table 6 Continued

Case No. Specimen code (X1) (X2) (X3) (X4) (Y1) (YNN)

75 FLA-600°C 20.0 6.1 0.9 3.08 57.7 48.53

76 FLW-600°C 20.8 5.0 1.0 3.38 45.6 35.08

77 FLW-900°C 19.7 5.6 1.5 2.25 29.0 31.47

1 OS-20°C 25.8 7.2 0.5 3.93 44.2 45.76

2 OSA-100°C 25.1 7.2 0.6 3.95 45.0 44.55

3 OSA-200°C 24.6 7.1 0.5 3.89 44.4 43.07

4 OSW-200°C 24.6 6.7 0.6 3.93 42.6 46.96

5 OSA-300°C 22.1 7.0 1.0 3.82 43.4 56.18

6 MsSW-300°C 24.0 5.5 0.6 4.01 46.3 52.28

7 BSW-100°C 22.6 6.8 0.7 3.88 47.8 47.04

8 BSW-200°C 22.6 6.0 0.8 3.78 45.8 44.58

9 FS-20°C 24.3 6.7 0.5 3.85 45.8 44.60

10 FSW-100°C 23.7 6.1 0.5 3.94 47.3 50.06

11 FSA-300°C 22.7 6.4 0.6 3.88 40.7 45.99

12 OLW-300°C 27.6 6.2 0.2 3.82 44.2 52.38

13 MsLW-300°C 26.7 6.4 0.4 4.15 48.1 52.67

14 MsLW-600°C 18.7 3.8 0.4 3.71 40.6 51.00

15 MsLA-900°C 20.8 7.4 0.6 2.30 43.1 41.07

16 BLA-300°C 25.1 6.6 0.4 3.67 42.9 41.60

17 BLW-600°C 20.2 4.8 1.0 3.52 41.3 43.20

18 FLA-300°C 25.7 6.6 0.4 3.69 43.5 44.05

19 FLA-900°C 19.6 6.9 1.0 2.48 41.3 48.28
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A typical NN model consists of a group of processing elements (PEs), or neurons, linked together

for constructing a relation in an input/output set of learning patterns. A PE is an information-

processing unit with three basic components: (1) a set of synapses; (2) an adder; (3) an activation

function. It may be defined by computing the sum of their weighted inputs, subtracting its threshold

from the sum, and transferring these results by a function as follows (Haykin 1994)

(1)

where ui represents the output of a PE, wij represents the synaptic weights associated with PE i, xj
represents the input signal, θi represents the threshold value of the PE, and ϕ (.) presents the

activation (or transformation) function. Any change in the synaptic weights will, in turn, change the

input-output behavior of the NN model (Haykin 1994). The most common form of activation

function used in the construction of NN model is the hyperbolic tangent function which generates

output values between -1 and 1 as given below (Neuro Solutions 2003)

(2)

where β controls the slope of the function. It is generally recommended to carry out a parametric

study by changing the number of PEs in the hidden layer in order to test the stability of the network

(Neuro Solutions 2003). In many engineering problems, a single hidden layer with an optimum

number of PEs is considered to be sufficient Rafiq et al. 2001). 

Supervised and unsupervised learning algorithms are the two classes of NN model. Supervised

learning NN algorithms, for example back propagation neural networks (BPNNs), require the

training data to have been previously specified in different classes so that a subsequent test sample

may be assigned to the most appropriate class. Even though they train slowly and require many

training data, BPNN is the most commonly used NN algorithm for the analysis of structural and

civil engineering problems due to its versatile and robust technique and are capable of solving

predictive problems (Neuro Solutions 2003). Training data need not be specified in unsupervised

learning, since it organizes the data into clusters for the purpose of defining the various similarities

that exist within the data set. Test data is then examined to check if it falls within any of the

clusters in the training data (Yeung and Smith 2005). In this study, supervised learning algorithms

ui ϕ wijxj θi–

j 1=

n

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

f xi( ) βxi( )tanh=

Fig. 5 Neural network model
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with static back-propagation neural network are selected. 

The NN model in this study was developed in three steps: the modeling, the training, and the

testing steps. The experimental study, the identification of changes in color and ultrasonic pulse

velocity, and the internal rules were considered in the modeling phase. The preparation of the data

and the adaptation of the learning law for the training were performed during the training phase.

And the prediction accuracy of the model was evaluated at the testing phase, i.e. the comparison of

the actual and estimated compressive strengths. 

4.1 Modeling the neural network

The selection of the input variables affects the accuracy of the NN model predictions significantly.

In this study, the variables hue, lightness, chroma and pulse velocity were considered for the input

layer to evaluate the compression strength (output data) as shown in Table 4. The parameters are 1)

X1, 2) X2, 3) X3, 4) X4. Parameter 1 is the hue, parameter 2 is the lightness, parameter 3 is the

chroma, and parameter 4 is the pulse velocity. The ranges of data for the selected design variables

are given in Table 4. All the design variables were input to the NN as given above. 

A total of 96 cases were used for the NN model. Table 6 shows the value of the design

parameters for each case. The compression strength (output) and the input variables from the 96

cases were divided into two sets. One set was put aside for the training of the NN (first 77 cases in

Table 6), and the other was for validating the performance of the trained network (testing). For

testing purposes, 20% of the 96 cases (19 cases) were selected at random order for the testing set

for each training cycle (cases below the dotted line in Table 6). The data between the maximum and

minimum were selected for testing purposes. The data set including training and testing was first

normalized for the NN model. 

4.3 The training step

The standard back-propagation (BP) algorithm for the training of the network was employed in

this study using a commercial NN software (Neuro Solutions 2003). The NN models were created

using an input layer of 4 PEs corresponding to the 4-input parameters, and one PE corresponding to

an output layer selected as the target (Fig. 5). Several trials during the testing phase led to the

selection of one hidden layer and the hyperbolic tangent function was used as the activation

function.

In BP algorithm, NN models learn from examples and training or learning data are introduced

into the network with a series of examples of associated input and target output values. During the

learning, a gradual reduction of error between the model output and the target output occurs, and

the error is evaluated using the mean square error (MSE) as follows (Gunaydin and Dogan 2004,

Haykin 1994)

 (3)

where n is the number of samples to be evaluated in the training phase, (n = 77 for this study), yi is

the model output related to the sample i (i = 1, 2, ...., n), and Y(i) is the target output, i.e. the

MSE

yi Y i( )–( )2

i 1=

n

∑

n
-------------------------------=
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estimated compression strength. MSE is a good indicator of how successful the training run was.

The error was measured for each run of the epoch number selected. Epoch number shows the

training of all cases in a training set. Training is stopped when the MSE remained unchanged for a

given number of epochs. If it is not stopped, the NN memorizes the training values, and is unable to

make predictions when an unknown example is introduced to the NN. For supervised learning

control, the maximum number of epochs should be specified showing the number of iterations over

the training set. In this study, an epoch number of 6500 was found to be adequate for the final

training process in a series of more than 250 runs for the NN model.

Each layer in NN model has a vector of PEs, learning rule, and learning parameters. The learning

rule is the way by which the correction term is introduced. The learning rate is the amount of

correction to be applied to the weights. Momentum as the learning rule is widely used due to its

simplicity and efficiency compared to the standard gradient minimum. The appropriate step size and

learning rate (momentum coefficient) should be decided based on the learning of the network. These

terms are specified at the start of the training cycle and affect the speed and stability of the NN. The

learning rate ranges between 0.0-1.0 and determines the amount of weight modification among the

neurons during each cycle of training iteration (Neuro Solutions 2003). In this study, a momentum

coefficient of 0.1 for the hidden layer, and 0.7 for the output layer functioned very well, therefore,

the step size was selected as 1.0 for the hidden layer and 0.7 for the output layer. 

4.4 The testing step

Testing set shows the performance of the NN model. The testing is performed with the best

weights obtained during the training. The weighting factors remain unchanged in this phase. The

trained weighting factors of the NN are validated with testing data to test the accuracy of the

predictions of the trained NN model. The NN’s performance in this study, for both training and

testing cases, was measured by using the absolute compressive strength percentage error (EPECS)

formula as follows

(4)

Overall performance of the NN model may be evaluated through weighted error (WE) which can be

defined as follows (Hegazy 1998)

WE(%) = 0.5(Average EPECS for Training Set + Average EPECS for Testing Set) (5)

5. Discussion

Test results have shown that high temperature caused significant variation in strength, ultrasonic

pulse velocity and color of mortar (Table 6). The use of mineral admixture, aggregate type, and

cooling method were influential on this variation. These variations were observed; compressive

strength and ultrasonic pulse velocity were decreased meanwhile color of mortar turned from yellow

to red (Figs. 6-15). Samples cooled in water have shown less compressive strength than samples

cooled in air (Figs. 6 and 7). This is because huge thermal stress and cracks could happen if the

variation of temperature is fast and the temperature gradient is high (Shackelford 2005). In addition,

EPECS
y i( ) Y i( )–

Y i( )
----------------------- 100%×=
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the rehydration of the dehydrated components of the cement paste causes changes in volume, cracks

occur and the concrete turns into a porous structure (Dias et al. 1990, Andrade et al. 2003). The use

of mineral admixtures in the mortars exposed to high temperature did not significantly influence the

rate of strength loss in comparison to the mortars without mineral admixtures. The mortars made

with calcareous aggregates have shown better performance (especially at 900oC) than mortars made

Fig. 6 The relation between the relative compressive strength and temperature of the mortars with siliceous sand

Fig. 7 The relation between the relative compressive strength and temperature of the mortars with calcareous sand
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with siliceous aggregates (Figs. 6 and 7). This occurs because the effect of aggregates on the

concrete behavior at elevated temperature depends on their mineralogical compositions. 

Before the high-temperature effect, as seen in Table 4, the hue component of all samples is

yellow, lightness is medium dark and chroma is very weak. For all groups, when the temperature

Fig. 8 The relation between the color change (hue) and temperature of the mortars with siliceous sand

Fig. 9 The relation between the color change (hue) and temperature of the mortars with calcareous sand
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increased from 20 to 300oC, the hue of color changed a little from yellow into greenish yellow, at

300oC again, yellow, when increased from 300 to 1200oC, it became reddish yellow (Figs. 8 and 9).

The lightness component of the color shows difference for cooling regime. Specimens cooled in air

lighter than specimens cooled in water at 600oC and above (Figs. 10 and 11). When the chroma

component is examined the change is very low in all groups from 20 to 600oC. But bigger increase

occurs at 900 and 1200oC (Figs. 12 and 13) especially at mortars with siliceous aggregate. 

In this study to make accurate prediction of the change in compressive strength, the NN model

Fig. 11 The relation between the lightness and temperature of the mortars with calcareous sand

Fig. 10 The relation between the lightness and temperature of the mortars with siliceous sand
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which establishes the non-linear relationship among the three components of color, ultrasonic pulse

velocity and the compressive strength of concrete has been applied. Average EPECS for the 19

testing cases was calculated as 8.94%, while it was 10.48% for the training set (77 cases). Thus, the

WE was found to be 9.72%. Fig. 16 shows the error on the estimated compressive strength vs.

actual compressive strength for the nineteen testing samples. The last column in Table 6 (YNN) also

shows the estimated compression strength for the training and testing samples. A systematic study

Fig. 13 The relation between the color change (chroma) and temperature of the mortars with calcareous sand

Fig. 12 The relation between the color change (chroma) and temperature of the mortars with siliceous sand
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was also carried out to determine the effect of the number of hidden layers and PEs (Table 7). For

this purpose, the number of PEs is selected as 4, 6, 8, 10, 12, and 20 for two different NN models

having one and two hidden layers, respectively. As can be seen from Table 7, as the number of PEs

increase, the error for the training cases as well as testing cases tend to decrease for NN models

having only one hidden layer. As the number of hidden layers increase, the error for the testing

cases increases significantly. Table 7 shows the NN model used in this study having one hidden

Fig. 14 The relation between the ultrasonic pulse velocity and temperature of the mortars with siliceous sand

Fig. 15 The relation between the ultrasonic pulse velocity and temperature of the mortars with calcareous sand
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layer and 4 PEs gives the smallest WE and the error for the training and testing cases for this model

are close the each other. It is noteworthy that the error for the training cases is the smallest in the

NN model having 2 hidden layers and 20 PEs, however it is the highest for the testing cases in the

Fig. 16 Error on the estimated compression strength vs. actual compression strength for the nineteen testing samples

Fig. 17 Sensitivity analyses results

Table 7 Effect of number of hidden layers and PEs

Number of 
hidden layers

Number 
of PEs

Error for the training
 case (%)

Error for the testing
case (%)

WE
(%)

1

4 10.48 8.94 9.72

6 12.04 13.05 12.55

8 9.75 12.39 11.07

10 9.67 12.43 11.05

12 10.96 10.61 10.79

20 9.27 12.11 10.69

2

4 13.12 11.03 12.08

6 9.64 11.37 10.51

8 9.89 13.37 11.63

10 7.11 12.99 10.05

12 7.27 12.61 9.94

20 5.51 14.15 9.83
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same NN model (Table 7). In one of our previous studies (Yuzer et al. 2007), high temperature

effect on concrete that is produced with siliceous aggregate and different pozzolan such as silica

fume, fly ash and slag was investigated using a NN model. A relation was established between

color components, ultrasonic pulse velocity, and residual compressive strength. When the actual and

predicted residual compressive strength were compared the results showed 96.47% of average

accuracy for testing cases. 

After the NN model was trained, a sensitivity analysis was performed to explore the cause and

effect relationship between the input and output parameters on the model. Sensitivity analysis

provides valuable information as to which input parameters have the most significant effect on the

NN model. This gives the user the option of eliminating the insignificant input channels from the

network reducing the size of the network. This would reduce the complexity and the training times.

During the analysis, the network weights are not affected, because the network training is disabled.

The inputs to the network are temporarily increased and the corresponding change in the output is

reported as a percentage summing to 100% in total (Neuro Solutions 2003). The pulse velocity was

found to be the most effective parameter on compressive strength with 40.7%, while lightness was

found to be the least significant parameter with 12.16%. The effects of hue and chroma were

25.83% and 21.31%, respectively (Fig. 17). 

6. Conclusions 

A NN model was constructed to develop and test the compressive strength of mortar by using the

four input parameters color components (hue, lightness and chroma) and ultrasonic pulse velocity.

The data of 77 cases were used to train the NN model. The testing of the NN model was done by

the data from 19 testing cases. The average accuracy was found to be 90.3%. The results showed

that providing accurate estimates of compressive strength by using the four design parameters were

possible using the approach adopted in this study. It should also be noted that the small attributes,

which might be provided by the other parameters, may enhance the NN’s prediction capability, i.e.

the more the number of input parameters, the higher the accuracy. The NN model constructed in

this paper can predict well the compressive strength of concrete with given color parameters and

pulse velocity if they vary in the range used in this study.

It is recommended that the color change may give an indication of both the temperature to which

concrete has been exposed, and the loss of compressive strength. The color change on the surface of

the concrete structure exposed to high temperature may be used as a non-destructive testing method

to evaluate the residual properties of the concrete.
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Notations

Amplitude(i) = normalization coefficient for processing element i

Data(i) = neural network data for processing element i

EPECS = compressive strength percentage error

f(xi) = hyperbolic tangent function

lowerlimit = -1

max(i) = maximum value within the input processing element i

min(i) = minimum value within the input processing element i

MSE = mean square error

n = number of samples

Normalized Data(i) = normalized data for processing element i

Offset(i) = normalization coefficient for processing element i

ui = output of a processing element

upperlimit = 1

xi = neural network model output related to sample i

Xi = target output related to sample i

wij = synaptic weights associated with processing element PE i 

WE(%) = overall performance of the neural network model

β = parameter that controls the slope of f(xi)

θi = threshold value of the processing element

ϕ(.) = activation (or transformation) function




