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Abstract. For better estimation of elastic property of concrete composites, the effect of Interfacial Transition
Zone (ITZ) has been found to be significant. Numerical concrete composites models have been introduced
using Finite Element Method (FEM), where ITZ is modeled as a thin shell surrounding aggregate. Therefore,
difficulties arise from the mesh generation. In this study, a numerical concrete composites model in 3D
based on FEM and random unit cell method is proposed to calculate elastic modulus of concrete
composites with ITZ. The validity of the model has been verified by comparing the calculated elastic
modulus with those obtained from other analytical and numerical models.
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1. Introduction

The elastic modulus of concrete composites has been studied extensively. The primary phases in

concrete or mortar are aggregate and matrix (bulk paste). Empirical expressions for the estimation

of elastic modulus of mortar or concrete composites have been proposed (Hirsch 1962, Counto

1964, Lydon and Balendran 1986). In the field of composite mechanics, Hashin and Shtrikman

(1963) have derived bounds for elastic modulus of two-phase materials. Christensen and Lo (1979)

have obtained exact solutions for elastic modulus of a three-phase composite model consisting of

inclusion, matrix and equivalent homogeneous medium. By assuming the concrete composites was a

two-phase composite material, it was experimentally verified (Simeonov and Ahmad 1995) that the

test fell below the lower Hashin and Shtrikman (H-S) bound (Hashin and Shtrikman 1963).

Simeonov and Ahmad (1995) used H-S bounds and experimental data to investigate the elastic

modulus of concrete composites. They concluded that concrete composites should be considered to

be a three-phase composite instead of a two-phase one. Indeed, experiments have shown that the

structure of the cement paste surrounding the aggregate differs from that of bulk cement paste. The

phase in which the presence of the aggregates affects the properties of cement paste is taken as the

Interfacial Transition Zone (ITZ) (Mehta and Monteiro 1993, Mindess 1989). The mechanical
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properties of concrete composites are controlled by the presence of ITZ. Therefore, a three-phase

concrete is a composite material with aggregates as dispersed phase, ITZ as interphase, and cement

paste as continuous phase or matrix. In addition to the influence of elastic modulus and volume

fraction of aggregates and cement paste on the elastic modulus of concrete composites, it has been

found by experiment that the elastic modulus of three-phase concrete is intimately related to the

elastic modulus and volume fraction of ITZ (Simeonov and Ahmad 1995). The ITZ has a relatively

more porous structure than the matrix one. The boundary between transition zone and matrix is hard to

distinguish, and its stiffness may vary throughout its thickness. Because the volume fraction of ITZ is

determined by the surface area of aggregate, while the surface area of aggregate is dependent on the

maximum aggregate size and aggregate gradation, the volume fraction of ITZ and the corresponding

elastic modulus of concrete composites should be closely related to the maximum aggregate size and

aggregate gradation. It is estimated from experiments that the transition zone has lower stiffness than

the bulk paste (Cohen et al. 1994). Thus, if the volume of the transition zone is not negligible, this

may significantly affect the overall elastic modulus of mortar or concrete composites.

Many researchers have attempted to estimate the elastic modulus of concrete composites by

analytical or numerical methods. In the simplest models, for the determination of elastic modulus of

concrete composites without ITZ, empirical formulas have been obtained from experimental results.

However, empirical formulas are often too simple to show the influence of various parameters and

the use of a two-phase or three-phase model does not give insightful results because it does not

consider ITZ. An analytical four-phase model which assumes that concrete composites are composed of

aggregate, mortar matrix, ITZ and equivalent homogeneous medium has been introduced for the

estimation of elastic modulus of concrete composites (Nadeau 2003, Hashin and Monteiro 2002,

Ramesh et al. 1996, Garboczi 1997). ITZ is modeled as a thin shell surrounding aggregate. However, it

is practically difficult to determine elastic modulus of concrete since ITZ is too thin. Numerical

concrete composites models have been introduced using the conventional Finite Element Method.

The difficulty to model concrete composites in 3D arises from the mesh generation. Conventional

Finite Element Method allows only one material property to be assigned to each element. This

makes mesh generation difficult because finite elements of ITZ are much smaller compared with the

rest of the finite elements corresponding to aggregates and mortar matrix. Complicated interface

between materials may cause that the shape of elements lose its convexity and lead to ill-

conditioned stiffness matrix. In Lee and Park (2008), the authors propose a numerical concrete

composites model which uses a three-phase model and finite element with material discontinuity for

the determination of elastic modulus of concrete composites. The conventional numerical integration

generally used in Finite Element Method is suited for an element consisting of a single material and

not for an element composed of two or more materials. Adopting the numerical integration method

which accurately computes the stiffness of finite elements with material discontinuity allows to

describe ITZ influence on elastic modulus of concrete using uniform finite element mesh. The main

concept of the numerical integration for an element with material discontinuity is given in Zohdi

and Wriggers (2001). However, this method seems difficult to implement in finite element codes.

Therefore, in this work, in order to avoid meshing difficulties and to provide a powerful tool for

fast calculation of elastic modulus of concrete composites, we propose to use random unit cell

Finite Element Method. The random unit cells generated allows us to investigate the effects of ITZ

in the unit cell model. A study has been conducted with random unit cell method in order to

evaluate the effect of ITZ phase and the bounds of the method for the prediction of elastic modulus

in concrete composites. Results will be compared with other approaches.
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2. Numerical concrete composites model

Analytical and semi analytical models have been developed to evaluate the material properties of

distributed particles composites based on the homogenization techniques. They are often reduced to

specific cases. Therefore, numerical models seem to be a well suited approach to describe the

behavior of these materials, because there is no restriction on the geometry, on the material properties,

and on the number of phases in the composite. One approach to designing new composites is using

predictive Finite Element Method (FEM) to highlight the effects of changes in material properties

on the elastic mechanical properties of the composite. Young's modulus E is an important

mechanical property that may be calculated by a variety of methods. In order to obtain realistic

macroscopic behavior predictions of new composites by the computational means, 3D numerical

simulation of statistically representative micro-heterogeneous material samples is unavoidable.

In the study of composites, periodic 2D unit cells (Marus 2004), 3D single-particle and two-

particle unit cells finite element models have been used in the predictive analysis of elastic

properties of composites (Llorca et al. 2000). However, all periodic unit cells are based on the

assumption that the composite is made up of a repeated structure. The randomness of particle

arrangement in composites is neglected. Recently, some random unit cells have been developed to

model distributed particles composites (Gusev 1997, Bohm et al. 2002, Segurado and Llorca 2003,

Kari et al. 2007, Sun et al. 2007). Effective properties of randomly distributed spherical particles

composites using Random Sequential Adsorption (RSA) algorithm have been assessed and

compared with different analytical methods. In this work, a numerical homogenization approach is

based on the FEM and random unit cells. It allows the extension of the composites with arbitrary

geometrical inclusion configurations, providing a powerful tool for fast calculation of their

properties. RSA algorithm is used to generate the 3D Representative Volume Element (RVE)

models of randomly distributed particles.

2.1 Numerical generation of random unit cell model

The elastic properties of the composite are obtained by the finite element analysis of a periodic

cubic unit cell (RVE) of volume L3 containing a random distribution of non-overlapping particles.

The final particle generation has to be statistically isotropic (all directions in the unit cell are

equivalent) and in addition it should be suitable for finite element discretization. Both conditions

can be fulfilled using RSA algorithm to generate the coordinates of the particle centers (Rintoul and

Torquato 1997). According to this method and for spherical particle of diameter D, the inclusion

center positions are generated randomly and sequentially. Particle i is accepted if the center

coordinates verify the following conditions:
● The center distance between spherical particle i and all other particles, which are previously

accepted j = 1, 
…

, i−1 have to exceed a minimum value (2r + s1), where r is the particle radius

and s1 is the minimum distance between neighboring spherical particles, imposed by the

practical limitations for creating an adequate finite element mesh.
● The distance between particle surface and the cubic RVE surfaces and corners have to exceed a

minimum value s2 in order to avoid the presence of distorted finite elements during meshing.
● If the surface of the spherical particle i cuts any of the cubic RVE surfaces, this condition has to

be checked with the spherical volumes on the opposite surfaces because the microstructure of

the composite is periodic.
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RSA algorithm with the combination of the above conditions was used to generate RVE models

of the studied composite up to desired volume fractions of aggregates. The main idea of the method

is to find a globally homogeneous medium equivalent to the original composite. In the numerical

homogenization technique, the common approach to model the macroscopic properties of particle

composites is to create the RVE that should capture the major features of the underlying

microstructure. Random unit cell model generated is shown in Fig. 1.

2.2 Random unit cell finite element analysis

All finite element calculations were made with the commercial FE package COSMOSWORKS.

The matrix and the particles were meshed with 10 node-tetrahedral elements with full integration.

Perfect bond is assumed across particle/matrix interfaces. Uniaxial loading is employed and can be

either iso-displacement or iso-stress type. The iso-displacement loading predicts the upper bound of

Fig. 1 Unit cell model generated (RVE) for 30% volume fraction of spherical aggregates, L = 12 mm, D = 2
mm, s1 = 0.05r, s2 = 0.05r: (a) Complete unit cell, (b) Aggregates, (c) Matrix

Fig. 2 Finite element models generated for 30% volume fraction of spherical aggre-gates, L = 12 mm, D = 2
mm, s1 = 0.05r, s2 = 0.05r: (a) Complete meshed RVE, (b) Meshed aggregates, (c) Meshed matrix
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Young's modulus, while iso-stress loading predicts the practical lower bound of Young's modulus E. For

iso-displacement loading, a small strain of 1% is used. For iso-stress loading, a uniform compressive

pressure is applied. The finite element models of the random unit cell are shown in Fig. 2.

A study has been conducted in Abdelmoumen et al. (2007) to evaluate the effect of various

material and numerical parameters of the random unit cell method for the prediction of Young's

modulus of concrete composites.

The method to generate a unit cell with randomly distributed particles is based on the following:

if a large piece of composite is divided into equal halves, both halves will maintain the mechanical

properties of the original. If the process is continued many times, eventually a critical size will be

reached, below which the properties of the original composite will not be retained. The critical size of

the random unit cell is determined as the smallest size which is representative of the overall

composite. With the random unit cell method, the critical size of the cubic unit cell of volume L3

containing a random distribution of non-overlapping particles is generally regarded as a volume L3

of a heterogeneous material that is sufficiently large to be statistically representative of the composite

(Kanit et al. 2003). Whereas in many analytical methods, in the case of random unit cell method,

one must take care of the minimum size of the RVE which is required to give appropriate effective

material properties of a macroscopic composite structure. From these results (Abdelmoumen et al.

2007), it can be observed that it is sufficient to assume the critical size of RVE as L/D ≥ 5. This

value enables us to obtain a very small difference in Young's modulus and deviations around the

mean value for different unit cells generated. Moreover, with L/D ≥ 5 the difference in Young's modulus

between iso-displacement and iso-stress loading is very small. Therefore, in the following, we will

assume iso-displacement loading and L/D ≥ 5 in order to generate and to load random unit cells. In

Abdelmoumen et al. (2007), homogeneity and isotropy of generated cells have been examined. The

tests have shown that the method used to generate unit cells gives homogeneous and isotropic cells

for a wide range of ratio L/D. They have confirmed the choice to assume the size of RVE as L/

D ≥ 5. Moreover, the results have shown that elastic modulus is not influenced (less than 1%) by

the size, the gradation and the shape of aggregates (Abdelmoumen et al. 2007).

2.3 Numerical concrete composites model without ITZ

Before evaluating elastic modulus of concrete composites with ITZ, we propose to consider

concrete as a two-phase composite in order to show that the proposed method correlates with

previous analytical and experimental results.

Firstly, a comparison is made with a method based on Mori-Tanaka theory and Eshelby's method

(Yang and Huang 1996) and published experimental data (Anson and Newman 1966). The Young's

modulus of cement paste and aggregates are Em = 28.3 GPa and Ea = 69 GPa respectively. The

Poisson's ratio of cement paste and aggregates are νm = 0.22 and νa = 0.21 respectively. For the

numerical concrete composites model considered in this work, a constant diameter D = 2 mm is

chosen for spherical aggregates and L/D = 6 is assumed. For the different approaches, Fig. 3 shows

the Young's modulus E of concrete obtained with different aggregate volume fractions Va. From Fig.

3, we can see a better correlation between experimental results and the proposed numerical concrete

composites model.

Secondly, a comparison is made with the values obtained by a numerical concrete model proposed

in Lee and Park (2008) and Christensen-Lo's model (three-phase composite sphere model)

(Christensen and Lo 1979) to verify the effectiveness of the proposed approach. The Young's
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modulus of cement paste is Em = 30 GPa and Poisson's ratio of cement paste and aggregates are νm

= 0.2 and νa = 0.2 respectively. Volume fraction of aggregates is set to Va = 23%. For the numerical

concrete composites model considered in this work, a constant diameter D = 2 mm is chosen for

spherical aggregates and L/D = 6 is assumed. For the different approaches, Fig. 4 shows the Young's

modulus E of concrete obtained with different ratios (Ea/Em). The values calculated by the proposed

numerical concrete composites model agree well with the values by Christensen-Lo's model, as

shown in Fig. 4.

3. Numerical concrete composites model with ITZ

The assumptions used in this work are detailed below.
● The elastic modulus of constituent phases and also those of resulting composites are assumed to

be isotropic.
● The aggregate inclusions are assumed to be spherical. In concrete composites, the aggregates

usually have randomly varying shapes. The sharp corners of the aggregates induce stress

concentrations that initiate micro-crack propagation. The overall stiffness of a composite unlike

strength is an average macroscopic property, and is less sensitive to the shape of the inclusion.
● Elastic properties of concrete composites depend not only on the elastic properties of aggregate,

ITZ and cement paste but also on the aggregate size, ITZ layer thickness. It is noted that the

elastic properties of ITZ vary through its thickness. In this work, however, ITZ is assumed to be

uniform layer for simplicity and we consider the same aggregate size.
● The elastic properties of ITZ can be estimated from existing studies. For example, in Lutz et al.

(1997), Young's modulus of ITZ is about 30-50% less than the Young's modulus of cement paste. It

has been shown that in actual concrete composites, although the thickness of ITZ layer depends on

factors such as water/cement ratio, it seems to be independent of the size of inclusions (Scrivener

and Nemati 1996). Therefore, it is reasonable to assume the thickness of ITZ layer to be constant. A

number of researchers have experimentally investigated ITZ layer thickness and elastic modulus.

They found that the average thickness of ITZ layer in typical concrete is about 50 µm. 

Fig. 3 Two-phase concrete composite: comparison with
previous analytical and experimental results

Fig. 4 Two-phase concrete composite: comparison with
previous analytical and numerical results
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● We assume that there is no overlap of ITZ layers between neighboring aggregates.

We propose to compute elastic modulus of concrete composites using the random unit cell Finite

Element Method. In the first approach, ITZ is described by a thin layer surrounding aggregate (Fig.

5a). In order to avoid meshing difficulties, we assume that the thickness of ITZ layer is 100 µm. In

the second approach, ITZ is described by a distinct phase of spherical inclusions equal to the

volume fraction of a thin layer adopted in the first approach (Fig. 5b). While the first approach is

closer to reality than the second, it is difficult to carry out finite element models with ITZ layer less

than 100 µm. Indeed, the mesh generation is difficult because finite elements of ITZ are much

smaller compared with the rest of the finite elements. This problem can lead to ill-conditioned

stiffness matrix. The second approach avoids meshing problems and allows to describe concrete

composites with very thin thickness of ITZ (less than 100 µm). Indeed, this numerical approach has

the advantages of the rapid mesh generation of 3D concrete models with uniform finite elements

and the elimination of elements distorsion. The results of the first approach with the thickness of

ITZ layer equal to 100 µm are considered as the reference. The estimations of elastic moduli

calculated by the second approach are compared with the results of the first approach This

comparison allows us to investigate the suitability of the second approach.

The numerical concrete composites model is considered as a three-phase material composed of

matrix, ITZ and aggregates. Let Em, Eitz, Ea and νm = νitz = νa as their elastic modulus and Poisson's

ratios, respectively. Volume fraction of aggregates is set to Va = 20%, L/D = 6 and a constant diameter

D = 2 mm is chosen for spherical aggregates. For the first approach, the thickness of ITZ is

titz = 100 µm. Therefore, the volume fraction of ITZ Vitz = 6.62% is given by

(1)

For the second approach, we assume a constant diameter Ditz = 2 mm for the spherical ITZ phase

and a volume fraction of ITZ Vitz = 6.62%.

For the analysis, we have adopted dimensionless mechanical properties. As seen above, ITZ is

V
itz

D 2 t
itz

+⁄( )3

D 2⁄( )3
-------------------------- 1– V

a
=

Fig. 5 Numerical concrete composites model with ITZ (conceptual illustrations of 3D models)
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Table 1 Elastic modulus of concrete composites calculated with the proposed numerical models

Em = 100, Va = 20%, Vitz = 6.62%, L/D = 6, D = 2 mm

First approach titz = 100 µm Second approach Ditz = 2 mm

Ea = 2
Ea = 0.02Em

Eitz = 0.3Em E1 = 61.06
Ea = 2
Ea = 0.02Em

Eitz = 0.3Em E2 = 61.90

Eitz = 0.5Em E1 = 63.14 Eitz = 0.5Em E2 = 63.76

Eitz = 0.7Em E1 = 65.06 Eitz = 0.7Em E2 = 65.18

Ea = 10
Ea = 0.1Em

Eitz = 0.3Em E1 = 65.86
Ea = 10
Ea = 0.1Em

Eitz = 0.3Em E2 = 66.21

Eitz = 0.5Em E1 = 67.86 Eitz = 0.5Em E2 = 68.17

Eitz = 0.7Em E1 = 69.66 Eitz = 0.7Em E2 = 69.66

Ea = 20
Ea = 0.2Em

Eitz = 0.3Em E1 = 70.71
Ea = 20
Ea = 0.2Em

Eitz = 0.3Em E2 = 71.09

Eitz = 0.5Em E1 = 72.79 Eitz = 0.5Em E2 = 72.88

Eitz = 0.7Em E1 = 74.54 Eitz = 0.7Em E2 = 74.45

Ea = 50
Ea = 0.5Em

Eitz = 0.3Em E1 = 80.94
Ea = 50
Ea= 0.5Em

Eitz = 0.3Em E2 = 81.44

Eitz = 0.5Em E 1= 83.65 Eitz = 0.5Em E2 = 83.72

Eitz = 0.7Em E1 = 85.56 Eitz = 0.7Em E2 = 85.46

Ea = 80
Ea = 0.8Em

Eitz = 0.3Em E1 = 87.67
Ea = 80
Ea = 0.8Em

Eitz = 0.3Em E2 = 89.09

Eitz = 0.5Em E1 = 91.12 Eitz = 0.5Em E2 = 91.55

Eitz = 0.7Em E1 = 93.34 Eitz = 0.7Em E2 = 93.45

Ea = 100
Ea = Em

Eitz = 0.3Em E1 = 91.00
Ea = 100
Ea = Em

Eitz = 0.3Em E2 = 93.17

Eitz = 0.5Em E1 = 95.00 Eitz = 0.5Em E2 = 95.88

Eitz = 0.7Em E1 = 97.44 Eitz = 0.7Em E2 = 97.71

Ea = 120
Ea = 1.2Em

Eitz = 0.3Em E1 = 93.77
Ea = 120
Ea = 1.2Em

Eitz = 0.3Em E2 = 96.66

Eitz = 1.2Em E1 = 98.23 Eitz = 0.5Em E2 = 99.31

Eitz = 0.7Em E1 = 100.90 Eitz = 0.7Em E2 = 101.36

Ea = 150
Ea = 1.5Em

Eitz = 0.3Em E1 = 97.13
Ea = 150
Ea = 1.5Em

Eitz = 0.3Em E2 = 101.09

Eitz = 0.5Em E1 = 102.23 Eitz = 0.5Em E2 = 103.83

Eitz = 0.7Em E1 = 105.23 Eitz = 0.7Em E2 = 105.97

Ea = 200
Ea = 2Em

Eitz = 0.3Em E1 = 101.31
Ea = 200
Ea = 2Em

Eitz = 0.3Em E2 = 106.88

Eitz = 0.5Em E1 = 107.33 Eitz = 0.5Em E2 = 109.77

Eitz = 0.7Em E1 = 110.80 Eitz = 0.7Em E2 = 112.02

Ea = 500
Ea = 5Em

Eitz = 0.3Em E1 = 112.36
Ea = 500
Ea = 5Em

Eitz = 0.3Em E2 = 124.18

Eitz = 0.5Em E1 = 121.43 Eitz = 0.5Em E2 = 127.50

Eitz = 0.7Em E1 = 126.71 Eitz = 0.7Em E2 = 130.11

Ea = 1000
Ea = 10Em

Eitz = 0.3Em E1 = 117.84
Ea = 1000
Ea = 10Em

Eitz = 0.3Em E2 = 134.23

Eitz = 0.5Em E1 = 128.82 Eitz = 0.5Em E2 = 137.79

Eitz = 0.7Em E1 = 135.32 Eitz = 0.7Em E2 = 140.62

Ea = 5000
Ea = 50Em

Eitz = 0.3Em E1 = 123.47
Ea = 5000
Ea= 50Em

Eitz = 0.3Em E2 = 146.11

Eitz = 0.5Em E1 = 136.72 Eitz = 0.5Em E2 = 148.33

Eitz = 0.7Em E1 = 144.80 Eitz = 0.7Em E2 = 153.06
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assumed to be a uniform phase with a ratio (Eitz/Em) within the range of 30%−70%. In order to

study a large number of possible cement-based composites, the elastic modulus E of concrete is

calculated with a ratio (Ea/Em) within the range of 2%−5000%. Table 1 shows the elastic modulus

of concrete calculated with the different approaches. Fig. 6 gives the evolution of the error between

the first approach considered as much closer to reality (reference) and the second approach versus

the ratio log(Ea/Em) for different ratios (Eitz/Em). From these curves, we observe the following facts.

The elastic modulus of concrete is affected significantly by the ratio (Eitz/Em). The difference

between the approaches decreases when the ratio (Eitz/Em) increases. If the aggregate is softer than

the matrix (cement paste), the error is always smaller than 2% whatever the ratio (Eitz/Em). If the

aggregate is harder than the matrix, the error increases with the increase of the ratio (Ea/Em) and

with the decrease of the ratio (Eitz/Em). Therefore, if we prescribed for example an error less than

2% by using the second approach, we can define the following bounds (Fig. 6)

(2)

The bounds of the model defined above, enables the second method to be used for the elastic

modulus estimation of a large number of possible cement-based composites. In the following, we

propose to compare the results of the second approach with results obtained in the literature.

4. Comparison with analytical solutions

In Ramesh et al. (1996), a four-phase composite model consisting of aggregate, matrix, ITZ and

equivalent homogeneous medium is used to model a three-phase composite such as concrete or

mortar. This composite spheres model is an extension of the two-phase composite spheres model
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Fig. 6 Evolution of the error between E1 (first approach) and E2 (second approach)
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(Hashin and Shtrikman 1963). Analytical solutions for the elastic modulus of the four-phase composite

model are presented. The aggregate with ITZ and matrix can be viewed as a heterogeneous

inclusion that is embedded in the infinite equivalent homogeneous medium. The assumptions used

in analytical solutions of this model are detailed below.
● The elastic modulus of constituent phases and also those of resulting composites are assumed to

be isotropic.
● The aggregate inclusions are assumed to be spherical. 
● The derivation of analytical solutions uses linear theory of elasticity. The effects of porosity in

transition zone, aggregate and matrix are not considered.
● The thickness of transition zone is assumed to be constant. Also, its elastic modulus is taken to

be constant thickness.

The elastic modulus computed from a four-phase composite model is compared with the elastic

modulus computed from the second approach presented in this work. The volume fraction of ITZ is

assumed as 10%, Eitz value is taken as 0.5 Em. Em = 19.17 GPa, Eitz = 9.59 GPa and νm = νitz = 0.26.

Mechanical characteristics of the aggregates are given in Table 2. For the numerical concrete

composites model considered in this work, constant diameters D = 2 mm and Ditz = 2 mm are

respectively chosen for spherical aggregates and the spherical ITZ phase. Table 3 shows the elastic

modulus of concrete composites derived from the analytical model (Ramesh et al. 1996) and the

second approach of the numerical concrete composites model. The comparison of elastic modulus is

given in Fig. 7. Moreover, we have studied the influence of Va on the error between the numerical

approach and the analytical approach versus the ratio log (Ea/Em) (Fig. 7). Firstly, for (Eitz/Em) = 0.5

considered in this example, we find again the bounds of the numerical model defined by Eq. (2).

Indeed, if we prescribed for example an error less than 2% by using the second approach of the

numerical concrete composites model, we obtain 0.86 ≤ (Ea/Em) ≤ 2. In Ramesh et al. (1996), (Ea/

Em) less than 0.86 is not considered. However, we can assume that for softer aggregates, the bounds

of the numerical model (2) should be found again. Secondly, from Fig. 7 we observe a very low

influence of Va on the error versus log (Ea/Em). This remark allows us to extend the applicability

and the bounds of the numerical model for different values of Va.

Table 2 Mechanical characteristics of the 
aggregates

Aggregate type Ea (GPa) νa

Steel 206 0.3

Sand 75.8 0.15

Gravel 59.6 0.15

Limestone 30.7 0.15

Lead 16.6 0.45

Fig. 7 Evolution of the error between E1 (analytical
model) and E2 (second ap-proach of the numerical
model). Eitz = 0.5Em
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5. Comparison with another numerical model

In Lee and Park (2008), the authors propose a numerical concrete model which uses a three-phase

model and finite element with material discontinuity for the determination of elastic modulus of

concrete. The conventional numerical integration generally used in Finite Element Method is suited

for an element consisting of a single material and not for an element composed of two or more

materials. Adopting the numerical integration method which accurately computes the stiffness of

finite elements with material discontinuity allows to describe ITZ influence on elastic modulus of

concrete using uniform finite element mesh. The main concept of the numerical integration for an

element with material discontinuity is given in Zohdi amd Wriggers (2001).

The elastic modulus computed from the numerical concrete model with material discontinuity is

compared with the elastic modulus computed from the second approach of the proposed model. The

volume fraction of ITZ is within the range 1% − 7% and the ratio (Eitz/Em) within the range 0.3 − 0.7. Va

= 39.2%, Em= 37.7 GPa, Ea = 58.8 GPa and νm = νitz = νa = 0.3. For the numerical concrete composites

model considered in this work, constant diameters D = 2 mm and Ditz = 2 mm are respectively

chosen for spherical aggregates and the spherical ITZ phase. The comparison of elastic modulus

computed from the numerical concrete model with material discontinuity and those computed from

numerical concrete composites model with the second approach is given in Table 4. This comparison

allows us to verify the bounds of the numerical model defined by Eq. (2). Moreover, we have

studied the influence of Vitz on the error between the numerical approaches versus the ratio (Eitz/Em)

(Fig.  8). We have observed a low influence of Vitz on the error for different values of the ratio (Eitz/

Em). As defined in Eq. (2), for (Ea/Em)=1.56 considered in this example, the error is always less

than 2% for Vitz within the range 1% − 7 %. This remark allows us to extend the applicability and

the bounds of the numerical model for different values of Vitz.

Table 3 Elastic modulus of concrete composites calculated with analytical and numerical models

Vitz = 10%, Eitz = 0.5 Em, Em = 19.17 GPa, νm = νitz = 0.26

Analytical model (Ramesh et al. 1996) Numerical model (second approach)
D = 2 mm, Ditz = 2 mm, L/D=6

Va = 20%

Sand E1 = 22.12

Va = 20%

Sand E2 = 23.24

Gravel E1 = 21.51 Gravel E2 = 22.36

Limestone E1 = 19.49 Limestone E2 =19.78

Lead E1 = 17.55 Lead E2 =17.63

Va = 30%

Steel E1 = 28.13

Va = 30%

Steel E2 =31.22

Gravel E1 = 23.73 Gravel E2 =24.79

Limestone E1 = 20.35 Limestone E2 =20.72

Va = 40%

Steel E1 = 33.66

Va = 40%

Steel E2 =37.83

Sand E1 = 28.06 Sand E2 =29.77

Gravel E1 = 26.34 Gravel E2 =27.59

Limestone E1 = 21.31 Limestone E2 =21.73

Lead E1 = 17.11 Lead E2 =17.26
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6. Conclusions

A numerical concrete composites model has been proposed for better estimation of elastic

modulus of concrete composites with ITZ. The numerical model adopts the Finite Element Method

and random unit cell method. In spite of the fact that the proposed approach does not consider ITZ

as a thin layer of matrix material surrounding each aggregate, the estimations of elastic modulus of

Table 4 Elastic modulus of concrete composites calculated with two numerical models

Va = 39.2%, Em = 37.7 GPa, Ea = 58.8 GPa, νm = νitz = νa = 0.3

Numerical model with material discontinuity
(Lee and Park 2008)

Numerical model (second approach)
D = 2 mm, Ditz = 2 mm, L/D = 6

Vitz = 1%

Eitz = 0.3Em E1 = 44.17

Vitz = 1%

Eitz = 0.3Em E2 = 44.22

Eitz = 0.5Em E1 = 44.27 Eitz = 0.5Em E2 = 44.39

Eitz = 0.7Em E1 = 44.31 Eitz = 0.7Em E2 = 44.52

Vitz = 2%

Eitz = 0.3Em E1 = 43.86

Vitz = 2%

Eitz = 0.3Em E2 = 43.78

Eitz = 0.5Em E1 = 43.96 Eitz = 0.5Em E2 = 44.11

Eitz = 0.7Em E1 = 44.10 Eitz = 0.7Em E2 = 44.38

Vitz = 3%

Eitz = 0.3Em E1 = 43.44

Vitz = 3%

Eitz = 0.3Em E2 = 43.32

Eitz = 0.5Em E1 = 43.67 Eitz = 0.5Em E2 = 43.83

Eitz = 0.7Em E1 = 43.90 Eitz = 0.7Em E2 = 44.23

Vitz = 4%

Eitz = 0.3Em E1 = 43.08

Vitz = 4%

Eitz = 0.3Em E2 = 42.87

Eitz = 0.5Em E1 = 43.39 Eitz = 0.5Em E2 = 43.54

Eitz  = 0.7Em E1 = 43.68 Eitz = 0.7Em E2 = 44.06

Vitz = 7%

Eitz = 0.3Em E1 = 42.01

Vitz = 7%

Eitz = 0.3Em E2 = 41.61

Eitz = 0.5Em E1 = 42.53 Eitz = 0.5Em E2 = 42.75

Eitz = 0.7Em E1 = 43.04 Eitz = 0.7Em E2 = 43.64

Fig. 8 Evolution of the error between E1 (numerical model with material discontinuity) and E2 (second
approach of the numerical model). (Ea/Em) = 1.56
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concrete composites are in good agreement with results given in the literature. The bounds of the

model enable the method to be used for elastic modulus estimation of a large number of possible

cement-based composites. For the determination of concrete composites elastic modulus, the method

provides a powerful tool for fast calculation of 3D numerical concrete composites model, avoids

meshing problems and allows to describe concrete composites with very thin thickness of ITZ.
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