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Abstract. We present a quadrilateral finite element with an embedded crack that can be used to model
tensile fracture in two-dimensional concrete solids and the crack growth. The element has kinematics that
can represent linear jumps in both normal and tangential displacements along the crack line. The cohesive
law in the crack is based on rigid-plasticity with softening. The required material data for the concrete
failure analysis are the constants of isotropic elasticity and the mode I softening curve. The results of two
well known tests are presented in order to illustrate very satisfying performance of the presented approach
to simulate failure of concrete solids.
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1. Introduction

Numerical finite element simulations of solids, that consider material failure, are not reliable if the

finite element formulations are based on the classical continuum mechanics. Mesh-dependent

solutions are obtained. Different approaches have been proposed to overcome this problem: non-

local continuum, higher order gradient plasticity, viscoplastic regularization, Cosserat continuum,

and some others (see e.g. (Ibrahimbegovic 2009) for a recent review on the topic). Those remedies

are nowadays often replaced by a modification of the classical continuum model, which allows for

discontinuity in displacements, e.g. (Jirásek and Zimmermann 2001). We talk about the embedded

discontinuity model. An embedded discontinuity finite element model can provide an adequate

inelastic dissipation in the discontinuity, regardless of the chosen finite element mesh. This ensures

mesh-independent solutions of simulations that include material failure. For a review on different

approaches towards derivation of the embedded discontinuity model we refer to (Jirásek and

Zimmermann 2001).

In this work we present a finite element formulation of the embedded discontinuity model that is

based on the quadrilateral two-dimensional finite element. The majority of works related to the

modeling of failure in two-dimensional solids by the embedded strong discontinuity finite element,

e.g. (Mosler 2005, Ibrahimbegovic and Brancherie 2003, Sancho et al. 2007, Jirásek and Zimmermann

2001, Brancherie and Ibrahimbegovic 2009), are based on the simple constant strain triangle. The

reason for this choice might be that more complex elements, like the quadrilateral element, are

*  Corresponding author, Dr. Boštjan Brank, E-mail: bbrank@fgg.uni-lj.si

DOI: http://dx.doi.org/10.12989/cac.2010.7.4.331



332 Jaka Dujc et al. 

much more difficult to design to be free of locking when the embedded discontinuity is added to the

finite element formulation, e.g. (Linder and Armero 2007, Manzoli and Shing 2006). Quadrilateral finite

element with embedded discontinuity, which is presented in this work, does not show any locking

problems. This is mostly due to its enriched kinematics that can model linear jumps in

displacements along the discontinuity line in both normal and tangential directions.

The derived quadrilateral finite element with embedded discontinuity is used for description of

tensile fracture process in the two-dimensional plain concrete solids and to model the crack growth.

Relatively simple constitutive equations are used for that purpose: the plane strain/plane stress linear

elasticity for the bulk concrete material and the rigid-plasticity with softening for the cohesive law

in the crack. The required material data are the constants of isotropic elasticity and the mode I

softening curve. This kind of cohesive law is fine for the case of monotonically increasing loading

when the crack width increases monotonically with the load. However, when the loading is cyclic or

the crack opens and closes during the loading process, a more demanding cohesive model would be

needed, e.g. the one based on the modeling of damage, e.g. (Brancherie and Ibrahimbegovic 2009,

Jehel et al. 2010).

The two-dimensional embedded crack formulation for plain concrete presented below can be

extended to three-dimensions and to the reinforced concrete members. For the embedded crack

modeling of reinforced concrete members we refer to e.g. (Manzoli et al. 2008, Dominguez and

Fernandez 2010) and for the three-dimensional embedded crack analysis of concrete members we

refer to (Feist and Hofstetter 2007, Gasser 2007).

2. Quadrilateral finite element with embedded crack line

In this section we briefly present a quadrilateral two-dimensional plane stress/plane strain finite

element with embedded crack line. The element assumes elastic material response up to the crack

initiation and rigid-plastic softening response along the crack line during the crack opening.

2.1 Kinematics

Let us consider a quadrilateral finite element occupying domain Ωe in R2. The element may be

divided by the crack line Γe into two subdomains, Ωe+ and Ωe− (Ωe=Ωe+
∪Ωe). Element's geometry is

defined by the bi-linear mapping ξ → x (ξ ∈ [-1, 1]×[-1, 1]; x ∈ Ωe) with

(1)

where xa are coordinates of the finite element node a and

(2)

To model the crack opening, the parameters αn0, αn1, αm0 and αm1 are introduced along the crack

line Γe. The mid-point of the crack line is denoted by xΓ. We assume the element displacement field

as:

x ξ( ) Na ξ( )xa      xa,
a 1=

4

∑ xa ya,[ ]T     ξ, ξ η,[ ]T= = =

Na ξ( ) 1

4
--- 1 ξaξ+( ) 1 ηaη+( )      

a      1  2  3   4

ξa  1–   1  1  1–
------------------------------------
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(3)

Here, da=[uxa, uya]
T are the nodal values of displacements, and uα are displacements due to the crack

opening. Interpolation matrices Mn0 (ξ, Γ
e),  Mn1(ξ, Γ

e), Mm0(ξ, Γ
e) and Mm1(ξ, Γ

e) are related to the

introduced crack-opening parameters. With four introduced crack-opening parameters we are in position

to model the following four independent modes of element separation along Γ e (see Fig. 1)

1. “n0” - constant opening in the direction of the crack normal n=[nx, ny]
T,

2. “n1” - linear opening in the direction of the crack normal n is linear; this mode corresponds to

the rotation of Ωe+ around xΓ ,

ux uy,[ ]T u ξ Γ
e,( )

Na ξ( )da
a 1=

4

∑  +

ud

= =

⎧ ⎪ ⎨ ⎪ ⎩

+ Mn0 ξ Γ
e,( )αn0 Mn1 ξ Γ

e,( )αn1 Mm0 ξ Γ
e,( )αm0 Mm1 ξ Γ

e,( )αm1+ + +

uα

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

Fig. l Different crack opening modes of quadrilateral finite element with embedded crack
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3. “m0” - constant opening in the direction of the crack line, which is defined by m=[mx, my]
T,

4. “m1” - linear opening in the direction of the crack line m; this mode corresponds to the

stretching of Ωe+ in the direction of ±m with zero stretching at xΓ.

Displacements Ωe− and Ωe+ for a particular separation mode are equal to, see Eq. (3)

umode=ud,mode+uα, mode, uα, mode=Mmodeαmode, mode ∈ [n0, n1, m0, m1] (4)

From Eq. (4) it follows 

(5)

By examining Fig. 1 we can determine umode and uα, mode. By using Eq. (5), we can further derive

the interpolation matrices Mmode (see (Dujc et al.) for details). Their forms are

1. for constant normal separation mode “n0”

(6)

2. for linear normal separation mode “n1”

(7)

3. for constant tangential separation mode “m0”

(8)

4. for linear tangential separation mode “m1”

(9)

The vector of small strains at 

(10)

is obtained from Eq. (3) and (6)-(9) (see (Dujc et al.) for details) and can be written as

(11)

where
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(12)

(13)

(14)

(15)

(16)

In Eqs. (14) and (16) we denoted by  a coordinate along Γ e, which has value 0

at xΓ and is positive in the direction of m. The lΓ represents the length of the crack. According to

Eqs. (13)-(16) the strains Eq. (11) can be divided into a regular part  and a singular part  as 

(17)

(18)

(19)

where the singular part is just a particular representation of the localized deformation at the crack.

The kinematic enrichment of the standard quadrilateral element, which leads to the strains Eqs.

(18)-(19), is viewed in what follows in the manner of the incompatible modes, e.g. (Ibrahimbegovic

and Wilson 1991).

2.2 Contitutive equations

We assume that the behavior of the concrete can be described by the plane stress/plane strain

Ba

∂Na

∂x
---------

 

0

0
∂Na

∂y
---------

∂Na

∂y
---------

∂Na

∂x
---------

 Bn,
nx 0

0 ny

ny nx

Bm,
mx 0

0 my

mymx

= = =

Gn0 Ban

a Ω
e+

∈

∑– δΓBnn+  δΓ x( ), ∞ for x Γ
e∈

0 otherwise⎩
⎨
⎧

= =

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎨ ⎩
Gn0

Gn0

Gn1 Ba
0 1

1– 0
xa

a Ω
e+

∈

∑– δΓBnnξΓ+=

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

⎧ ⎪ ⎨ ⎪ ⎩

Gn1

Gn1

Gm0 Bam

a Ω
e+

∈

∑– δΓBnm ,+=

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎨ ⎩

Gm0

Gm0

Gm1 HΓBmm B m xa⋅( )m
a Ω

e+
∈

∑– δΓBnmξΓ+=

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

⎧ ⎪ ⎨ ⎪ ⎩

Gm1

Gm1

ξΓ l– Γ 2⁄ lΓ 2⁄,[ ]∈

ε ε

ε ε ε+=

ε Bada
a 1=

4

∑ Gn0αn0 Gn1αn1 Gm0+ αm0 Gm1αm1+ + +=

ε Gn0αn0 Gn1αn1 Gm0αm0 Gm1αm1+ + +=



336 Jaka Dujc et al. 

elasticity 

up to the crack appearance. Here, σ is the stress vector and C is the corresponding constitutive

matrix. Once the crack appears, we assume that the bulk of the finite element Ωe/Γ e remains elastic

and that the tractions at the crack line Γ e are related to the crack opening by some cohesive

softening law. The crack appearance is governed by the failure criterion discussed further below.

Since the governing fracture mode in brittle materials is mode I, the orientation of the crack m is

chosen as perpendicular to the direction of the maximum tensile principal stress. The later is

evaluated by using the average stress field in the element .

We relate the tractions at a crack point 

(21)

to the crack opening  at that point, which is further defined in terms of the kinematic

parameters αn0, αn1, αm0 and αm1. The chosen cohesive law that relates t and  is based on rigid-

plasticity with softening. The failure criterion that checks for the initiation of the crack at 

and governs its further response is defined in terms of the tractions t and the stress-like softening

variable 

(22)

The later is defined in terms of the strain-like softening variable , i.e. . The remaining ingredients

of the rigid-plasticity with softening are the evolution equations for the crack opening and the

softening variable 

(23)

the loading/unloading conditions, and the consistency condition 

(24)

Here,  is the plastic multiplier. The plastic dissipation that takes place at  is given as

 .

2.3 Equilibrium equations

Let a two-dimensional body be discretized by the finite element mesh with Nel quadrilateral elements.

The weak form of the equilibrium equations for a discretized body can be written as 

(25)

Here, A is the assembly operator,  and  can be interpreted as virtual works of internal

and external forces, respectively, t(e) is element's thickness and  is vector of virtual strains.

Interpolation of virtual strains is carried out in the same way as interpolation of real strains, see Eq. (11)

(26)
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The crack opening parameters are viewed as element's additional degrees of freedom associated

with the incompatible modes. Therefore, the interpolation matrices  are defined as

(27)

which ensures the convergence of the derived element in the spirit of the patch test (see e.g.

Ibrahimbegovic and Wilson  1991). By introducing Eqs. (13)-(26) into Eq. (27), we obtain 

(28)

(29)
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(31)

A single element contribution to the internal virtual work can be now written as 
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 leads to a set of global equilibrium equations, see Eq. (25)

(34)

We have not used the term named “additional” in Eq. (32) when constructing the set of global

equilibrium Eq. (34). We have rather chosen to express the contribution of that term to Eq. (25) on

an element level. In view of Eqs. (32) and (28)-(31), the following equations are obtained for each

element of the mesh
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f
ext, e( )

Ae 1=

Nel
f
int e( ),

f
ext e( ),

–( ) 0=

hn0
e( )

t
e( )
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Fig. 2 Integration points of the quadrilateral finite element with embedded crack
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(35)-(38). The tn represents the normal and the tm the tangential component of the traction t at a

crack point. The vector form of Eqs. (35)-(38) is

(39)

A Gauss integration scheme with 2×2 points is used for the numerical integration of the

integrals of the form . A 2-point Gauss integration scheme is used for the numerical

integration of the integrals of the form , see Fig. 2. The integration along the crack is

thus carried out as

(40)

where f(ξΓ) in a scalar function,  is its value at the Gauss point with coordinate  and

 is its corresponding weight. By using Eq. (40), the  of Eq. (39) can be written as 

(41)

where  is the traction in the first integration point and  is the traction in the

second integration point.

In order to get solution (the displacements at nodes of the finite element mesh and the crack-

opening parameters of each finite element), Eqs. (34) and (39) need to be solved.

2.4. Solution procedure

The solution of the set of global nonlinear equations in Eq. (34) and of the set of local nonlinear
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crack integration points. Equilibrium Eqs. (39) are used. With  and Eq.

(41) a system of four algebraic equations

(42)

is obtained that provides two trial tractions at each crack integration point, i.e.

  The trial failure criteria is further evaluated 

(43)

If the criterion (43) is satisfied, the values of softening plasticity local variables remain unchanged 

(44)

It means that that the crack has not appeared in the case of (ii) above. It also means that the

opening of the crack has not changed in the case of (i) above. If Eq. (43) is violated, the values of

crack openings are updated by backward Euler integration scheme

(45)

(46)

where  and . The values of  and  are obtained by

solving the system of two nonlinear equations

(47)

(48)

In Eqs. (47)-(48) the relations between the jumps in displacements at the integration points  and

the crack-opening kinematic parameters  are needed, which are easy to get. We

can thus determine the updated values of  once the values of the plastic

multipliers  and  are known. The final result of the above described softening plasticity

procedure are the new values of parameters , which influence the stress state of the element by

giving the new values of stress in the bulk integration points bip as 

(49)

Once the local variables are computed, we turn to the global phase (a). We perform a new

iterative loop, if needed, in order to provide new iterative values of nodal displacements. First, the

set of global equilibrium Eq. (34) is checked with newly computed  from the phase (b) 

(50)

If the convergence criterion (50) is satisfied, we move on to the next pseudo-time incremental step. If the
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convergence criterion fails, we perform a new iterative sweep within the present pseudo-time incremental

step. New iterative values of nodal generalized displacements of the finite element mesh are computed by

accounting for each element contribution. A single element contribution can be written as 

(51)

where the parts of the element stiffness matrix can be formally written as 

(52)

The static condensation in Eq. (51) allows to get the standard form of the element stiffness matrix

 that contributes to the finite element assembly 

(53)

where 

(54)

Solution of Eq. (53) gives the values of iterative update .

3. Examples

In this section we provide the results of numerical simulations of two well known tests to

illustrate a very satisfying performance of the proposed finite element. The finite element code was

generated by using symbolic manipulation code AceGen and the examples were computed by using

finite element program Ace-Fem, both developed by Korelc, see (Korelc).

3.1 Three point bending test

We consider a classical benchmark problem of a notched concrete beam subjected to three point

loads, see (Linder and Armero 2007) and references therein. Similar test was considered by other

authors, e.g. (Asferg et al. 2007). In Fig. 3 we present the geometry of the specimen, a 200 cm × 20

cm × 5 cm simply supported concrete beam with a 2 cm × 10 cm × 5 cm notch placed at the bottom
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Fig. 3 Three point bendign test: geometry data
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center of the beam. The beam is loaded by a downward displacement imposed at its top center. The

material characteristics of the material are: Young's modulus E = 3000 kN/cm2, Poisson's ratio

ν = 0.2 and the ultimate tensile strength σu = 0.333  kN/cm2. The crack propagates from the notch in

mode I fashion, therefore we define the cohesive response in the crack only in its normal direction.

The crack response in its tangential direction is not considered in simulations. The tensile failure

criterion (55) is of the form 

(55)

and the softening curve is 

(56)

where Gf  = 0.124·10-2 kN/cm is the fracture energy. Note, that . The assumed rigid-plastic

softening curve in the normal direction is presented in Fig. 4.

In Fig. 5 we present two finite element meshes that were used. The coarser mesh consists of 530

finite elements and the finer one of 2186 finite elements. On the left side of Fig. 6 we plot the

reaction force Ry versus the imposed displacement uy for both meshes. The crack starts at the notch

when tn reaches the tensile strength σu. It has been chosen that the crack propagates in the direction

perpendicular to the maximum principal stress, i.e. in the mode I fashion. However, a problem was

encountered when using the above criterion to determine the crack direction. Namely, the direction

of the maximum principal stress at some point suddenly changes for 90 degrees. This causes a
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Fig. 4 Rigid-plastic cohesive law in crack normal direction

Fig. 5 Coarse and fine meshes for the three-point bending test
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problem in convergence with the fine mesh and a non-physical response with the coarse mesh, see

left side of Fig. 6. The crack direction problem was also reported in Mosler (2005), Sancho et al.

(2007) and Jirasek and Zimmermann (2001), and we direct the reader therein for further discussion.

One of the possible solutions is to define crack propagation in the direction of the maximum

circumferential stress that is evaluated on a circle of a small diameter centered at the crack tip.

In order to obtain a solution we predetermined direction of the crack. The crack was allowed to

propagate perpendicular to the length of the beam, which is expected for mode I situation. With this

modification we obtained results that are within the experimentally established bounds (the experimental

results have been taken from (Linder and Armero 2007)). The results of all simulations are

given in Fig. 6 (left). In the center and right side of Fig. 6 we present the deformed configuration

(magnified 100 times) of the area near the notch. 

3.2 Four point bending test

We consider another classical benchmark problem - the four point bending test of a concrete beam

with a notch, see (Linder and Armero 2007) and references therein. In Fig. 7 we present the specimen's

Fig. 6 Force versus imposed displacement curves (left). Deformed meshes around the notch (right)

Fig. 7 Four point bending test: geometry and loading
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geometry together with loading and supports. The material characteristics are: Young's modulus

E = 2880 kN/cm2, Poisson's ratio ν = 0.18 and the ultimate tensile strength σu= 0.28 kN/cm2. The

initiation and behavior of the crack is governed by the failure criterion (55) and the softening

curve 

(57)

with softening modulus Ks= -39.2 kN/cm
2. In Fig. 8 we present the mesh used in simulations. With

respect to the description of the crack opening we considered three cases: (i) “n0+m0” - constant

jump in displacements in both normal and tangential direction, (ii) “n0+n1” - linear jump in displacement

in normal direction only and (iii) “n0” - constant jump in displacements in normal direction only. In

the case “n0 + m0” we considered a reduced shear stiffness for the tangential response according to

(58)

The results are presented in Figs. 9 and 10. On the left side of Fig. 9 we plot the applied load

versus crack mouth sliding displacement. The results are compared with those from (Linder and

Armero 2007). We can see that all used formulations give good prediction of the limit load, while

only the mixed mode formulation “n0 + m0” was able to capture the softening response. On the

q max σu Ksξ–,[ ]=

φ tm( ) tm kmum– 0= =

Fig. 8 Four point bending test: geometry and loading

Fig. 9 Load versus crack mouth sliding displacement curves (left). The corresponding crack paths (right)
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right side of Fig. 9 we plot the crack paths that correspond to curves on the left side of the same

figure. In Fig. 10 we present the deformed (magnified 200 times) mesh of the area near the notch.

The crack paths presented in Fig. 9 and the deformed meshes presented in Fig. 10 are in agreement

with those from (Linder and Armero 2007).

4. Conclusions

A finite element with embedded strong discontinuity has been presented and used to model the

fracture process in two-dimensional concrete solids. The element has linear interpolations of the

displacements jumps (in both normal and tangential directions), which are important for its locking-

free response. The used cohesive law in the crack, which is based on rigid-plasticity with softening,

has proven to be a reasonable model for representation of the crack behavior, when the loading is

increasing monotonically. With this constitutive model, the simulations of two well known benchmark tests

have provided very satisfying results. In order to make the crack growth algorithm more robust, the

continuity of the crack has been enforced. As shown by the first numerical example, the tracking of

the direction of the crack propagation may be false, when related only to the local stress state in a

single element.
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