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Maximum axial load level and minimum confinement 
for limited ductility design of high-strength 

concrete columns
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Abstract In the design of concrete columns, it is important to provide some nominal flexural ductility even
for structures not subjected to earthquake attack. Currently, the nominal flexural ductility is provided by
imposing empirical deemed-to-satisfy rules, which limit the minimum size and maximum spacing of the
confining reinforcement. However, these existing empirical rules have the major shortcoming that the
actual level of flexural ductility provided is not consistent, being generally lower at higher concrete
strength or higher axial load level. Hence, for high-strength concrete columns subjected to high axial
loads, these existing rules are unsafe. Herein, the combined effects of concrete strength, axial load level,
confining pressure and longitudinal steel ratio on the flexural ductility are evaluated using nonlinear
moment-curvature analysis. Based on the numerical results, a new design method that provides a
consistent level of nominal flexural ductility by imposing an upper limit to the axial load level or a lower
limit to the confining pressure is developed. Lastly, two formulas and one design chart for direct
evaluation of the maximum axial load level and minimum confining pressure are produced.

Keywords: columns; confinement; ductility; high-strength concrete.

1. Introduction

When designing reinforced concrete columns, most structural engineers just concentrate on the

provision of sufficient strength to resist the vertical and lateral loads at ultimate limit state and

sufficient stiffness to limit the column drift at serviceability limit state. Although it is well known

that from the structural safety point of view, ductility is at least as important as strength (Bechtoula

H. 2005, Chung et al. 2004, Wu et al. 2004, Chung et al. 2006, Kim 2005, Kim and Kim 2007,

Kim et al. 2008, Maghsoudi and Bengar 2006, Marefat et al. 2005, Rubinstein et al. 2007), only

nominal ductility is provided by following empirical deemed-to-satisfy rules, e.g., limitations on

minimum bar size and maximum spacing, for detailing of the confining reinforcement. Decades of

practice have demonstrated that for normal-strength concrete (NSC) columns not subjected to

impact or earthquake loads, these empirical rules are generally satisfactory in the provision of

sufficient ductility. However, in recent years, it has been found from experimental investigations

(Bayrak and Sheikh 1998, Kim and Kim 2007, Li et al. 1991, Maghsoudi and Bengar 2006, Mendis
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et al. 2000, Razvi and Saatcioglu 1994, Sheikh et al. 1994) that the ductility so provided by

following these empirical rules decreases as the concrete strength increases and that therefore, for

high-strength concrete (HSC) columns, a larger amount of confining reinforcement is needed to

provide the same ductility as has been provided in the past to NSC columns. Furthermore, it has

been shown by both theoretical (Au and Bai 2006, Carreira and Chu 1986, Fafitis and Shah 1985,

Kim 2005, Sung et al. 2005, Lu and Zhou 2007) and experimental (Bayrak and Sheikh 1997,

Bechtoula et al. 2005, Chung et al. 2004, Marefat et al. 2005, Rubinstein et al. 2007, Watson and

Park 1994) studies that the ductility also decreases as the axial load level increases. 

From the above, it is evident that the existing empirical rules stipulated in the design codes do not

provide a consistent level of nominal ductility and may even be unsafe when applied to HSC

columns. For an overview, a summary of some existing rules is given in the following, where db=

diameter of longitudinal reinforcement; ds=diameter of confining reinforcement; s=spacing of

confining reinforcement; h=overall depth of column section and ρ=longitudinal steel ratio:

(1) American ACI 318-05 (ACI Committee 318 2005): ds ≥ 10 mm for db ≤ 32 mm; ds ≥ 13 mm

for db > 32 mm; s ≤ 16db or 48ds or h whichever is the smallest.

(2) Australian AS 3600-2001 (Standard Australia 2001): ds ≥ 6 mm for db < 20 mm; ds ≥ 10 mm

for db ≥ 20 mm; s ≤ 15db or h whichever is the smaller.

(3) European EC 2-2004 (European Committee for Standardization 2004): ds ≥ 6 mm or 0.25db

whichever is the larger; s ≤ 20db or h or 400 mm whichever is the smallest.

(4) Chinese GB 50010-2002 (Ministry of Construction 2002): ds ≥ 6 mm or 0.25db whichever is

the larger for ρ ≤ 3%; ds ≥ 8 mm or 0.25db whichever is the larger for ρ > 3%; s ≤ 15db or h

or 400 mm whichever is the smallest for ρ ≤ 3%; s ≤ 10db or 200 mm whichever is the

smaller for ρ > 3%.

(5) Hong Kong Concrete Code 2004 (Buildings Department 2004): ds ≥ 6 mm or 0.25db whichever is

the larger; s ≤ 12db or h whichever is the smaller.

Although the above empirical rules for detailing of the confining reinforcement appear to be quite

different in the different design codes, the actual confining pressures provided are more or less the

same. Using the formula developed by Mander et al. (1988), the minimum confining pressure

provided in each design code has been evaluated based on longitudinal steel diameter larger than 20

mm, as listed in Table 1. This is understandable because according to the design principle of strong

column and weak beam, plastic hinges should only appear at the base of the lowest storey columns

in multi-storey buildings, where the longitudinal steel content is fairly large in order to sustain the

axial load from upper storeys. From this table, it can be seen that the minimum confining pressures

Table 1 Nominal flexural ductility provided in existing design codes

Design
code

Minimum
confining pressure

(MPa)

Curvature ductility factor μ

fco = 20 MPa fco = 40 MPa

P/Agfco = 0.2 P/Agfco = 0.4 P/Agfco = 0.2 P/Agfco = 0.4

American ACI 318 0.24 6.00 4.86 4.71 2.87

Australian AS 3600 0.24 6.00 4.86 4.71 2.87

European EC 2 0.18 5.62 4.51 4.46 2.73

Chinese GB 50010 0.18 5.62 4.51 4.46 2.73

Hong Kong Concrete Code 0.19 5.68 4.57 4.50 2.76
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provided in the design codes vary within the narrow range of 0.18 to 0.24 MPa. With such

minimum confining pressures provided, the flexural ductility achieved within the range of concrete

strength of fco=20 to 40 MPa and the range of axial load level of P/Agfco=0.2 to 0.4 (fco is the

uniaxial compressive strength of the concrete, P is the axial load applied and Ag is the area of the

concrete section) has been evaluated using nonlinear moment-curvature analysis as per the method

recently developed by the authors (Au and Bai 2006, Au and Kwan 2004, Au et al. 2005, Ho et al.

2004, Kwan et al. 2002, Kwan et al. 2004). The flexural ductility so evaluated is expressed in terms

of the curvature ductility factor μ defined by Park and Paulay (1975), which has also been adopted

by others (Au and Kwan 2004, Au et al. 2005, Galal 2007, Maghsoudi and Bengar 2006,

Rubinstein et al. 2007). The results for the various design codes are presented in the third to sixth

columns of Table 1. It should be noted that the curvature ductility factors adopted in this study refer

to the section ductility, which can be related to the member’s ductility (e.g. displacement ductility

and rotation ductility) through the “plastic hinge length”.

From these results, it is clear that the curvature ductility factor decreases as the concrete strength

fco or the axial load level P/Ag fco increases. Nevertheless, provided that the concrete strength fco is

not higher than 40 MPa and the axial load level P/Ag fco is not higher than 0.4, a certain minimum

curvature ductility factor μmin is provided by each design code. Referring to the last column of Table

1, it can be seen that the minimum curvature ductility factors provided by the various codes vary

from 2.73 to 2.87. On average, for NSC columns, the minimum curvature ductility factor being

provided as nominal ductility by the existing codes is about 2.80. In a previous study by the authors

(Au and Kwan 2004, Ho et al. 2004), it has been found that for NSC beams, the minimum

curvature ductility factor being provided as nominal ductility by the existing codes is 3.32. Hence,

the minimum curvature ductility factors being provided to NSC columns and NSC beams are not

too different from each other. For consistency and simplicity, it is proposed to adopt a single value

of μmin=3.32 for both columns and beams.

With a view to improving the ductility design of NSC and HSC columns so as to ensure the

provision of a consistent level of nominal ductility, it is advocated herein that the traditional practice

of imposing empirical deemed-to-satisfy detailing rules should be abandoned and replaced by a

more scientific approach of imposing a fixed minimum curvature ductility factor μmin as a nominal

requirement. For structures not subjected to impact or earthquake loads, the value of μmin may be

taken as 3.32 while for structures subjected to impact or earthquake loads, a higher value should be

adopted, depending on the actual ductility demand. 

In the present study, the combined effects of concrete strength, axial load level, confining pressure

and longitudinal steel ratio on the flexural ductility of concrete columns are evaluated using

nonlinear moment-curvature analysis. It will be shown towards the end of the study that in order to

achieve the required minimum curvature ductility factor μmin, there is a necessity of imposing a

limit on either the maximum axial load level or the minimum confining pressure. The allowable

maximum axial load level is dependent on the confining pressure provided while the required

minimum confining pressure is dependent on the axial load level applied. Hence, no fixed limits

could be imposed. Nevertheless, two formulas and one design chart have been produced for direct

evaluation of the maximum axial load and minimum confining pressure.
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2. Nonlinear moment-curvature analysis

The method of analysis employed herein has been presented before in a series of studies

conducted by the authors (Au and Kwan 2004, Au et al. 2005, Ho et al. 2004, Kwan et al. 2002,

Kwan et al. 2004). It takes into account the actual stress-strain curves of the constitutive materials

as well as the stress-path dependence of the longitudinal steel reinforcement.

For the concrete, the stress-strain curves developed by Attard and Setunge (1996) for unconfined

and confined concrete, which have been shown to be applicable to a broad range of in-situ uniaxial

concrete strength fco from 20 to 130 MPa, are adopted. Fig. 1(a) shows the typical stress-strain

curves of concrete subjected to different confining pressures.

For the steel reinforcement, a linearly elastic-perfectly plastic stress-strain curve is adopted. Since

there could be strain increment reversal in the steel reinforcement despite monotonic increase of

curvature during failure, the stress-strain curve of the steel reinforcement is stress-path dependent.

The unloading path of the stress-strain curve is assumed to follow the same slope as the initial

elastic portion of the stress-strain curve. Strain hardening of the steel has not been incorporated as it

has been found that the effect of strain hardening is generally insignificant except when the steel

content of the section is very low (Ho et al. 2005). Fig. 1(b) shows the stress-strain curve of the

steel reinforcement with stress-path dependence considered.

In the analysis, the axial load is applied at the geometric centre of the column section at the

beginning before any curvature or moment is applied. The moment-curvature behaviour of the

column section is then analysed by applying prescribed curvatures to the section incrementally

starting from zero. At a given curvature, the stresses developed in the core concrete (assumed to be

confined), cover concrete (assumed to be unconfined) and longitudinal steel are determined from the

strain profile and their respective stress-strain curves. The neutral axis depth and resisting moment

are subsequently evaluated from the conditions of axial and moment equilibrium. The above

procedure is repeated until the curvature is large enough for the resisting moment to increase to the

peak and then decrease to 50% of the peak moment.

Based on the moment-curvature analysis, a parametric study on the flexural ductility of column

sections has been carried out. The column sections analysed are shown in Fig. 2. They are all 1.0 m

by 1.0 m square column sections, each with longitudinal steel reinforcement placed uniformly

around the perimeter. In order to cover both NSC and HSC in the parametric study, the concrete

Fig. 1 Stress-strain curves of concrete and steel reinforcement
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Fig. 2 Column sections analysed

Fig. 3 Moment-curvature curves of column sections
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strength fco is varied from 40 to 100 MPa. Furthermore, the axial load level P/Ag fco is varied from

0.1 to 0.6, the confining pressure fr is varied from 0 to 4 MPa, and the longitudinal steel ratio ρ is

varied from 1 to 6% to study their effects. A constant steel yield strength of fy=460 MPa is adopted

in the parametric study.

Some of the moment-curvature curves obtained are plotted in Fig. 3. Fig. 3(a) shows the moment-

curvature curves at a constant axial load level of P/Agfco=0.3 and various concrete strengths of fco=

40, 70 and 100 MPa. It can be seen from these curves that as the concrete strength increases, the

flexural strength increases but the flexural ductility decreases. Fig. 3(b) shows the moment-curvature

curves at a constant concrete strength of fco=70 MPa and various axial load levels of P/Agfco=0.1,

0.3 and 0.6. It can be seen from these curves that as the axial load level increases from 0.1 to 0.3,

the flexural strength increases but as the axial load level further increases from 0.3 to 0.6, the

flexural strength decreases. On the other hand, as the axial load level increases, the flexural ductility

always decreases. Fig. 3(c) shows the moment-curvature curves at a constant concrete strength of fco
=70 MPa, a constant axial load level of P/Agfco=0.3 and various confining pressures of fr=0, 0.2, 1,

2 and 3 MPa. The moment-curvature curves for fr=0 and 0.2 MPa refer to the unconfined column

section and column section containing minimum confining pressure designed according to some of

the existing codes (ACI Committee 318 2005, Buildings Department 2004, European Committee for

Standardization 2004, Ministry of Construction 2002, Standard Australia 2001). It is evident from

these curves that as the confining pressure increases, the flexural strength increases marginally while

the flexural ductility increases considerably. In other words, the provision of confining pressure

would not significantly increase the flexural strength but is an effective means of improving the

flexural ductility.

3. Balanced axial load level and minimum flexural ductility

3.1 Failure modes and balanced axial load level

Three failure modes are observed. They are: (1) tension failure, in which the maximum strain that

can be developed in tension steel under flexure is larger than its yield strain; (2) compression

failure, in which the maximum strain that can be developed in tension steel under flexure is smaller

than its yield strain; and (3) balanced failure, in which the maximum strain that can be developed in

tension steel under flexure is equal to its yield strain. Tension failure occurs in columns subjected to

a relatively low axial load level and/or provided with a relatively high confining pressure.

Compression failure occurs in columns subjected to a relatively high axial load level and/or

provided with a relatively low confining pressure. In between these two failure modes, balanced

failure occurs in columns subjected to a moderate axial load level and provided with a moderate

confining pressure. 

The axial load level at which balanced failure occurs is called the balanced axial load level and

denoted by (P/Ag fco)b. It may be rigorously evaluated using nonlinear moment-curvature analysis by

an iterative process of adjusting the axial load level until balanced failure occurs. The balanced

axial load levels so evaluated for column sections with concrete strength fco ranging from 40 to 100

MPa, confining pressure fr ranging from 0 to 4 MPa and longitudinal steel ratio ρ ranging from 2 to

6% are listed in Table 2. From the tabulated results, it can be seen that the balanced axial load level

is not sensitive to the longitudinal steel ratio. Hence, for simplicity, the effect of the longitudinal
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steel ratio on the balanced axial load level may be ignored and a single value of balanced axial load

level may be adopted for each combination of concrete strength and confining pressure. The single

value of balanced axial load level to be adopted may be taken as the average of the balanced axial

load levels at ρ=2, 4 and 6%, as tabulated in the last column of Table 2.

Table 2 Balanced axial load levels

fco
(MPa)

fr
(MPa)

Balanced axial load level (P/Agfco)b

ρ = 2% ρ = 4% ρ = 6% Adopted value

40

0

0.44 0.47 0.52 0.48

50 0.41 0.42 0.45 0.43

60 0.39 0.40 0.41 0.40

70 0.37 0.38 0.38 0.38

80 0.36 0.36 0.37 0.36

90 0.34 0.35 0.35 0.35

100 0.33 0.34 0.34 0.34

40

1

0.64 0.69 0.75 0.69

50 0.58 0.62 0.67 0.63

60 0.53 0.57 0.61 0.57

70 0.50 0.53 0.56 0.53

80 0.47 0.50 0.52 0.50

90 0.45 0.46 0.49 0.47

100 0.43 0.44 0.46 0.44

40

2

0.76 0.81 0.87 0.81

50 0.68 0.72 0.77 0.73

60 0.62 0.66 0.70 0.66

70 0.58 0.61 0.65 0.61

80 0.54 0.57 0.60 0.57

90 0.51 0.54 0.56 0.54

100 0.49 0.51 0.53 0.51

40

3

0.86 0.92 0.98 0.92

50 0.77 0.82 0.87 0.82

60 0.70 0.74 0.78 0.74

70 0.65 0.68 0.72 0.68

80 0.61 0.64 0.66 0.64

90 0.57 0.60 0.62 0.60

100 0.54 0.56 0.59 0.56

40

4

1.02 1.02 1.02 1.02

50 0.86 0.89 0.95 0.90

60 0.78 0.82 0.85 0.82

70 0.72 0.75 0.78 0.75

80 0.67 0.70 0.72 0.70

90 0.62 0.65 0.68 0.65

100 0.59 0.61 0.63 0.61
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Correlating the above rigorously evaluated balanced axial load levels to the concrete strength and

confining pressure, the following formula for direct evaluation of the balanced axial load level is

derived:

(1)

This formula is generally accurate to within 10% errors, which should be sufficiently good for

practical design applications.

3.2 Flexural ductility analysis

The flexural ductility of columns is expressed in terms of curvature ductility factor defined by

Park and Paulay (1975) as:

(2)

where μ=curvature ductility factor, φu=ultimate curvature and φy=yield curvature. The ultimate

curvature φu is taken as the curvature when the resisting moment has after reaching the peak

moment Mp dropped to 0.8 Mp, while the yield curvature φy is taken as that of an equivalent linearly

elastic-perfectly plastic system, which is actually equal to 4/3 times the curvature at 0.75 Mp before

reaching the peak moment. The definitions of yield and ultimate curvatures are illustrated in Fig. 4.

The curvature ductility factors are plotted against the various parameters at different confining

pressures in Fig. 5. Fig. 5(a) shows the variation of the curvature ductility factor μ with the concrete

strength fco. It is seen that at a constant confining pressure, the flexural ductility gradually decreases

as the concrete strength increases. This indicates that if HSC columns are designed just like NSC

columns, the flexural ductility would tend to be relatively low. It is also seen that at a higher

P Agfco⁄( )b 3.1 fco( )
0.5–

1 2fr+( )
0.3

=

μ φu φy⁄=

Fig. 4 Definitions of yield and ultimate curvatures
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confining pressure, the flexural ductility is generally higher. Hence, the reduction in flexural

ductility due to the use of HSC instead of NSC may be replenished by increasing the confining

pressure. Fig. 5(b) shows the variation of the curvature ductility factor μ with the axial load level P/

Agfco. It is noted that at a constant confining pressure, the flexural ductility rapidly decreases as the

axial load level increases. Therefore, if no limit is imposed on the maximum axial load level, the

flexural ductility might become unacceptably low. As before, since the provision of a higher

confining pressure would increase flexural ductility, the adverse effect of a higher axial load level

may be counteracted by providing a higher confining pressure. Fig. 5(c) shows the variation of the

curvature ductility factor μ with the longitudinal steel ratio ρ. It is obvious from this figure that

regardless of the confining pressure provided, the flexural ductility is not sensitive to the

longitudinal steel ratio.

From the above, it is evident that the flexural ductility of a column decreases as the concrete

strength or the axial load level increases but increases as the confining pressure increases.

Furthermore, to avoid the flexural ductility from becoming unacceptably low, an upper limit should

be imposed on the maximum axial load level. Alternatively, in order to restore the flexural ductility

to an acceptable level, a lower limit should be imposed on the minimum confining pressure. In

other words, to ensure the achievement of a certain minimum flexural ductility, it is necessary to

limit either the maximum axial load level or the minimum confining pressure. 

Fig. 5 Effect of concrete strength, axial load level and longitudinal steel ratio on ductility
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3.3 Minimum flexural ductility requirement

In the existing design codes, just barely minimum confining reinforcement is provided to the

concrete columns unless they are required to resist impact or earthquake loads. In fact, the confining

reinforcement is provided primarily to restrain outward buckling of the longitudinal reinforcement.

Consequently, as explained before and listed in Table 1, the confining pressure provided is only

about 0.2 MPa. With such a fixed confining pressure provided, the curvature ductility factor is not

really consistent. Within the range of concrete strength fco from 20 to 40 MPa and the range of axial

load level P/Agfco from 0.2 to 0.4, the actual curvature ductility factor achieved could vary between

2.73 to 6.00, as presented in Table 1. On the whole, provided the concrete strength fco is not higher

than 40 MPa and the axial load level P/Ag fco is not higher than 0.4, an average curvature ductility

factor of 4.46 and a minimum curvature ductility factor of 2.80 are provided. In order to provide a

consistent level of nominal flexural ductility, it is advocated that instead of imposing empirical

deemed-to-satisfy detailing rules or imposing a fixed minimum confining pressure, the nominal

requirement should be set by imposing a fixed minimum curvature ductility factor μmin. As the

minimum curvature ductility factor being provided to concrete beams is 3.32 (Ho et al. 2004), it is

proposed that this same minimum ductility should be provided to concrete columns, which, from

the robustness point of view, are key structural elements.

With a fixed minimum curvature ductility factor μmin set as nominal requirement, certain limits are

automatically imposed on the various design parameters, which govern the flexural ductility of

concrete columns. From Fig. 5(a), it can be seen that for a given combination of axial load level and

confining pressure, there is a maximum concrete strength at which the required μmin is just achieved.

However, as the concrete strength is usually prescribed at the schematic design stage and a HSC is

used to take advantage of its higher strength, it is not considered advisable to impose any

unnecessarily restrictive limit on the concrete strength. Instead, since the flexural ductility decreases

with increasing axial load level and increases with increasing confining pressure, as depicted in Fig.

5(b), a limit should be imposed on either the maximum axial load level (P/Agfco)max or the minimum

confining pressure (fr)min. However, since the flexural ductility is dependent on both the axial load

level and confining pressure, the limits to be imposed cannot be set as constant values. Lastly, since

the flexural ductility is not sensitive to the longitudinal steel ratio, as shown in Fig. 5(c), it should be

simpler to impose limits on the maximum axial load level or minimum confining pressure that are

independent of the longitudinal steel ratio but applicable to a broad range of longitudinal steel ratios.

4. Maximum axial load level

For any given set of concrete strength fco, confining pressure fr and longitudinal steel ratio ρ, the

maximum axial load level (P/Agfco)max for achieving a minimum curvature ductility factor of μmin =

3.32 can be evaluated using nonlinear moment-curvature analysis by an iterative method of

successively adjusting the axial load level P/Agfco until the curvature ductility factor μ is equal to

3.32. The values of (P/Agfco)max so obtained for different combinations of concrete strength, confining

pressure and longitudinal steel ratio are presented in Table 3.

From the table, it is evident that the maximum axial load level decreases as the concrete strength

increases but increases as the confining pressure increases. Hence, when HSC is used in place of

NSC with no increase in the confining pressure, the maximum axial load level has to be reduced,
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Table 3 Maximum axial load levels

fco
(MPa)

fr
(MPa)

Maximum axial load level (P/Agfco)max

ρ = 2% ρ = 4% ρ = 6% Adopted value

40

0

0.26 0.27 0.31 0.26

50 0.21 0.20 0.22 0.20

60 0.18 0.16 0.16 0.16

70 0.16 0.13 0.12 0.12

80 0.15 0.12 0.10 0.10

90 0.14 0.11 0.09 0.09

100 0.13 0.10 0.08 0.08

40

0.5

0.56 0.60 0.65 0.56

50 0.35 0.39 0.41 0.35

60 0.32 0.34 0.35 0.32

70 0.27 0.30 0.32 0.27

80 0.27 0.27 0.28 0.27

90 0.23 0.25 0.27 0.23

100 0.22 0.23 0.23 0.22

40

1

0.75 0.90 > 1.0 0.75

50 0.62 0.72 0.85 0.62

60 0.53 0.59 0.68 0.53

70 0.44 0.39 0.46 0.39

80 0.34 0.32 0.33 0.32

90 0.31 0.29 0.29 0.29

100 0.28 0.26 0.26 0.26

40

2

0.97 > 1.0 > 1.0 0.97

50 0.82 0.95 > 1.0 0.82

60 0.71 0.81 > 1.0 0.71

70 0.63 0.70 0.78 0.63

80 0.57 0.62 0.68 0.57

90 0.50 0.54 0.57 0.50

100 0.44 0.43 0.42 0.42

40

3

> 1.0 > 1.0 > 1.0 > 1.0

50 0.97 > 1.0 > 1.0 0.97

60 0.86 0.96 > 1.0 0.86

70 0.76 0.84 0.95 0.76

80 0.68 0.75 0.82 0.68

90 0.61 0.66 0.72 0.61

100 0.56 0.60 0.64 0.56

40

4

> 1.0 > 1.0 > 1.0 > 1.0

50 > 1.0 > 1.0 > 1.0 > 1.0

60 0.94 > 1.0 > 1.0 0.94

70 0.85 0.93 > 1.0 0.85

80 0.77 0.84 0.92 0.77

90 0.70 0.75 0.82 0.70

100 0.63 0.68 0.74 0.63
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thus restricting the beneficial use of HSC. Nevertheless, with the confining pressure increased, the

maximum axial load level may be increased to allow better use of the HSC. From the maximum

axial load levels at different longitudinal steel ratios, it is also evident that the maximum axial load

level varies only slightly with the longitudinal steel ratio. Hence, for simplicity, the effect of the

longitudinal steel ratio may be ignored and a single value of maximum axial load level may be

adopted for each combination of concrete strength and confining pressure. The single value to be

adopted is taken as the lower bound of the maximum axial load levels at ρ=2, 4 and 6%, as

tabulated in the last column of Table 3. These maximum axial load levels, which are independent of

the longitudinal steel ratio, should be applicable within the range of longitudinal steel ratio ρ ≤ 6%.

The values of (P/Ag fco)max tabulated in the last column of Table 3 are plotted against the concrete

strength fco for different values of confining pressure fr in Fig. 6. It is noted that for unconfined

columns, the maximum axial load levels are generally very low (≤ 0.26 for fco ≥ 40 MPa). With the

provision of some confinement amounting to just fr=0.5 MPa, the maximum axial load levels would

increase dramatically by up to or even more than 100%. Hence, at least some confinement should

always be provided or otherwise the maximum axial load level would be too low to allow effective

use of the strength potential of the concrete.

5. Minimum confining pressure

Likewise, for any given set of concrete strength fco, axial load level P/Agfco and longitudinal steel

ratio ρ, the minimum confining pressure (fr)min for achieving a minimum curvature ductility factor

of μmin=3.32 can be evaluated using nonlinear moment-curvature analysis by an iterative method of

successively adjusting the confining pressure fr until the curvature ductility factor μ is equal to 3.32.

The values of (fr)min so obtained for different combinations of concrete strength, axial load level and

longitudinal steel ratio are presented in Table 4.

From the table, it is seen that the minimum confining pressure increases as the concrete strength or

the axial load level increases. Hence, when HSC is used in place of NSC or the column is heavily

Fig. 6 Maximum axial load level plotted against concrete strength
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Table 4 Minimum confining pressures

fco
(MPa)

(P/Agfco)
Minimum confining pressure (fr)min

ρ = 2% ρ = 4% ρ = 6% Adopted value

40

0.1

0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00
60 0.00 0.00 0.00 0.00
70 0.00 0.00 0.00 0.00
80 0.00 0.00 0.00 0.00
90 0.00 0.00 0.02 0.02
100 0.00 0.00 0.07 0.07

40

0.2

0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00
60 0.01 0.02 0.02 0.02
70 0.03 0.06 0.09 0.09
80 0.06 0.13 0.20 0.20
90 0.14 0.24 0.34 0.34
100 0.24 0.36 0.46 0.46

40

0.3

0.06 0.03 0.00 0.06
50 0.23 0.16 0.08 0.23
60 0.39 0.32 0.27 0.39
70 0.57 0.56 0.51 0.57
80 0.71 0.70 0.78 0.78
90 0.95 1.01 1.07 1.07
100 1.22 1.23 1.35 1.35

40

0.4

0.30 0.22 0.11 0.30
50 0.52 0.42 0.35 0.52
60 0.73 0.70 0.62 0.73
70 0.95 0.91 0.92 0.95
80 1.20 1.15 1.18 1.20
90 1.51 1.39 1.50 1.51
100 1.83 1.84 1.85 1.85

40

0.5

0.39 0.26 0.12 0.39
50 0.68 0.52 0.41 0.68
60 1.00 0.84 0.70 1.00
70 1.34 1.17 0.99 1.34
80 1.68 1.54 1.35 1.68
90 2.02 1.84 1.78 2.02
100 2.47 2.25 2.20 2.47

40

0.6

0.50 0.31 0.17 0.50
50 0.98 0.73 0.46 0.98
60 1.43 1.09 0.78 1.43
70 1.88 1.52 1.12 1.88
80 2.27 1.89 1.56 2.27
90 2.89 2.56 2.12 2.89
100 3.47 3.13 2.80 3.47

Note: fr=0.5keρsfyh, where ρs and fyh are the volumetric ratio and yield strength of confinement respectively; ke
is the confinement effectiveness factor defined by Mander et al. (1988).
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loaded, a higher confining pressure needs to be provided. From the minimum confining pressures at

different longitudinal steel ratios, it is also seen that the minimum confining pressure varies only slightly

with the longitudinal steel ratio. Hence, for simplicity, the effect of the longitudinal steel ratio may be

ignored and a single value of minimum confining pressure may be adopted for each combination of

concrete strength and axial load level. The single value to be adopted is taken as the upper bound of the

minimum confining pressures at ρ=2, 4 and 6%, as tabulated in the last column of Table 4. These

minimum confining pressures, which are independent of the longitudinal steel ratio, should be

applicable within the range of longitudinal steel ratio ρ ≤ 6%.

The values of (fr)min tabulated in the last column of Table 4 are plotted against the concrete

strength fco for different values of axial load level P/Agfco in Fig. 7. It is noted that the rate of

increase of (fr)min with respect to (P/Agfco) is generally higher at a higher concrete strength. For

example, if the axial load level is increased from 0.3 to 0.6, then at fco=40 MPa, the value of (fr)min

would increase by 0.44 MPa (from 0.06 to 0.50 MPa) while at fco=80 MPa, the value of (fr)min

would increase by 1.49 MPa (from 0.78 to 2.27 MPa). This indicates the effectiveness of the

confining pressure or reinforcement is lower at a higher concrete strength. Hence, the empirical

rules in the existing design codes, which were originally developed for application to NSC columns,

must not be extrapolated for application to HSC columns.

6. Design formulas and chart

The maximum axial load level and minimum confining pressure for any given combination of

design parameters may be rigorously evaluated using nonlinear moment-curvature analysis. However,

such nonlinear analysis is rather cumbersome and not really practical. To resolve this problem,

design formulas for direct evaluation of the maximum axial load level and minimum confining

pressure are developed in the following for practical design applications.

Fig. 7 Minimum confining pressure plotted against concrete strength
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Correlating the maximum axial load levels listed in the last column of Table 3 (values of

(P/Agfco)max > 1.0 or < 0.1 are ignored because they fall outside the practical range) to the respective

concrete strengths and confining pressures, the following formula for direct evaluation of the

maximum axial load level is derived:

(3)

Comparing the predicted values by the above formula to the rigorously evaluated values by

nonlinear moment-curvature analysis, it can be shown that the predicted values of maximum axial

load level are generally accurate to within an error of 17%. Hence, this formula should be

sufficiently accurate for practical applications.

Similarly, correlating the minimum confining pressures listed in the last column of Table 4 (values

of (fr)min<0.2 MPa are ignored because they fall outside the practical range) to the respective

concrete strengths and axial load levels, the following formula for direct evaluation of the minimum

confining pressure is derived:

(4)

Comparing the predicted values by the above formula to the rigorously evaluated values by

nonlinear moment-curvature analysis, it can be shown that the predicted values of minimum

confining pressure are generally accurate to within an error of 17%. Hence, this formula should also

be acceptable for practical applications.

Putting Eqs. (3) and (4) together, it can be seen that they are equivalent to each other, in the sense

that that Eq. (4) can be derived by solving Eq. (3) for the minimum confining pressure while Eq.

(3) can be derived by solving Eq. (4) for the maximum axial load level. Combining these two

equations, the following equation is obtained as the condition for achieving the required minimum

curvature ductility factor of μmin=3.32:

(5)

This equation reveals that for any prescribed concrete strength, there are many possible combinations of

limiting values of axial load level and confining pressure that would lead to the achievement of the

required minimum flexural ductility. These combinations are best studied by plotting the corresponding

values of axial load level and confining pressure calculated by Eq. (5) in the form of contour lines for

different concrete strengths in an interaction diagram, as shown in Fig. 8. It is noteworthy that the area

underneath the contour line for a prescribed concrete strength demarcates the scenario of μ > μmin whereas

the area above the contour line demarcates the scenario of μ < μmin. This figure may be used as a design

chart for determining the desirable combination of axial load level and confining pressure for achieving the

required minimum flexural ductility. Although Figs. 6 and 7 may also be used as design charts, Fig. 8

should be more convenient to use because very often both the axial load level and the confining pressure

need to be considered at the same time during the design process.

Based on Fig. 8, the role of the failure mode in the ductility design of concrete columns may be

revealed by expressing the maximum axial load level in terms of the axial load to balanced axial

load ratio, which is denoted by γ and defined by:

(6)

When γ < 1.0, tension failure occurs and when γ > 1.0, compression failure occurs. In general, the

P Ag fco⁄( )
max

24.5 fco( )
1.20–

1 3.5fr+( )
0.65

=

fr( )
min

0.0019 fco( )
1.85

P Ag fco⁄( )
1.54

0.28–=

P Ag fco⁄( )

1 3.5fr+( )
0.65

------------------------------ 24.5 fco( )
1.20–

≤

γ P Ag fco⁄( ) P Ag fco⁄( )⁄ b=
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flexural ductility is higher when tension failure occurs and is lower when compression failure

occurs. There is a common belief among structural engineers that sufficient nominal flexural

ductility may be provided to concrete columns simply by allowing only tension failure to occur, as

in the case of concrete beams. To investigate whether this belief is correct, in Fig. 8, the contours of

γ = 1.1, 1.0, 0.9 and 0.8 are also plotted. It should be noted that the area underneath the contour line

γ = 1.0 denotes the occurrence of tension failure whereas the area above the contour line denotes

the occurrence of compression failure. 

From these contour lines, it can be seen that the failure mode has no direct bearing on whether

the required μmin would be achieved. When the concrete strength is high and/or the confining

pressure is low, the occurrence of tension failure does not guarantee the achievement of μmin. For

example, for a column with fco=80 MPa and fr=1 MPa, and subjected to P/Agfco=0.45, tension

failure would occur but the required μmin would not be achieved. On the other hand, when the

concrete strength is low and/or the confining pressure is high, the occurrence of compression failure

does not necessarily hinder the achievement of μmin. For example, for a column with fco=60 MPa

and fr=2 MPa, and subjected to P/Agfco=0.70, compression failure would occur but the required μmin

would be achieved. Hence, controlling the failure mode is not a proper way of ensuring the

achievement of the required minimum flexural ductility.

7. Existing design codes

In the existing design codes (ACI Committee 318 2005, Buildings Department 2004, European

Committee for Standardization 2002, Ministry of Construction 2002, Standard Australia 2001), only

empirical rules for the detailing of the confining reinforcement are imposed, which, as depicted in

Table 1, are equivalent to the provision of a nominal confining pressure of about 0.2 MPa. Most of

the design codes do not impose any limit on the maximum axial load level. However, since the

Fig. 8 Design chart for axial load level and confining pressure



Maximum axial load level and minimum confinement for limited ductility design 373

flexural ductility would decrease as the axial load level increases, the maximum axial load level

should be controlled or otherwise the flexural ductility could become unacceptably low. Substituting

the confining pressure of 0.2 MPa into Eq. (3), the maximum axial load level to be imposed in

conjunction with the empirical detailing rules in the existing design codes is obtained as:

(7)

For NSC columns with fco ≤ 40 MPa, the maximum axial load level is 0.41. However, for HSC

columns, the maximum axial load level would decrease to 0.25 at fco=60 MPa, 0.18 at fco=80 MPa,

and 0.14 at fco=100 MPa. These maximum axial load levels are much too low for the effective use

of HSC. Hence, it is professed that the empirical detailing rules in the existing design codes are not

applicable to HSC columns and that even when these empirical rules are applied to NSC columns,

an additional requirement of limiting the maximum axial load level at 0.4 should be imposed.

If the same maximum axial load level of 0.4 were to be applied in the design of HSC columns,

the confining pressure has to be increased. Substituting the axial load level of 0.4 into Eq. (4), the

minimum confining pressure needed is obtained as:

(8)

For NSC columns with fco≤40 MPa, the minimum confining pressure is 0.2 MPa. But, for HSC

columns, the minimum confining pressure has to be increased to 0.69 MPa at fco=60 MPa, 1.38

MPa at fco=80 MPa, and 2.23 MPa at fco=100 MPa. Hence, if the existing design codes were to be

applied to HSC columns with the same maximum axial load level of 0.4 imposed, the rules for the

detailing of confining reinforcement have to be changed to cater for the above minimum confining

pressure requirements.

Although the existing design codes do allow the use of HSC, so far very few guidelines have

been provided for the ductility design of HSC members. This is unsafe as the use of HSC without

proper detailing or with no limitations imposed could lead to insufficient ductility or even brittle

failure. It is advocated that as HSC is becoming more and more commonly used, it is now a matter

of urgency to incorporate some ductility design rules in the design codes. For concrete beams, the

minimum ductility design method developed in a previous study by the authors (Ho et al. 2004)

may be referred to while for concrete columns, the ductility design method developed in the present

study should be a useful reference.

8. Conclusions

The empirical deemed-to-satisfy detailing rules for concrete columns in the existing design codes

have been reviewed. It was found by theoretical analysis that the confining pressure being provided

is rather low and that the curvature ductility factor so achieved is not consistent, being generally

lower at higher concrete strength or higher axial load level. Therefore, when these empirical rules

are applied to HSC columns or heavily loaded columns, the flexural ductility could become

unacceptably low. It is thus advocated that these empirical rules in the existing design codes should

be changed or even better replaced by a more scientific approach of requiring a minimum curvature

ductility factor μmin to be achieved. As the value of μmin being provided by the existing design codes

to NSC beams and columns is around 3.32, it is suggested to set μmin=3.32 as a nominal

requirement for all members, including HSC beams and columns, except for members subjected to

P Ag fco⁄( )
max

34.6 fco( )
1.20–

=

fr( )
min

0.0005 fco( )
1.85

0.28–=
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impact or earthquake loads, in which case, the value of μmin should be increased to meet with the

actual ductility demand. 

Using nonlinear moment-curvature analysis, the effects of the concrete strength, axial load level,

confining pressure and longitudinal steel ratio on the flexural ductility of concrete columns have

been studied. The analytical results revealed that the flexural ductility decreases as the concrete

strength or the axial load level increases, increases as the confining pressure increases, and is not

sensitive to the longitudinal steel ratio. Based on these results, a set of maximum axial load levels

and a set of minimum confining pressures for achieving the minimum curvature ductility factor of

μmin=3.32 have been obtained. As the maximum axial load level is dependent on the confining

pressure and the minimum confining pressure is dependent on the axial load level, no single limit

could be imposed on either the maximum axial load level or the minimum confining pressure.

Nevertheless, by correlation analysis, one formula for evaluating the maximum axial load level in

terms of the concrete strength and confining pressure and another formula for evaluating the

minimum confining pressure in terms of the concrete strength and axial load level have been

derived. Both formulas are applicable to the range of longitudinal steel ratio not higher than 6%.

Furthermore, a design chart for evaluating the allowable combinations of axial load level and

confining pressure at any given concrete strength ranging from NSC to HSC has been produced. 

Finally, it is proposed that if the empirical detailing rules in the existing design codes were to be

retained, a maximum axial load level which decreases with the concrete strength as per Eq. (7)

should be imposed and that if the maximum axial load level is set as a constant of 0.4, a minimum

confining pressure which increases with the concrete strength as per Eq. (8) should be imposed.
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Notations

Ag Area of column section (Ag = bh)

As Total area of longitudinal steel reinforcement

b Breadth of column section

d Effective depth of column section

db Diameter of longitudinal reinforcement

di Depth to centroid of steel at ith layer from extreme compressive fibre

dn Depth to neutral axis

ds Diameter of confining reinforcement

Es Elastic modulus of steel reinforcement

fco Peak stress on stress-strain curve of unconfined concrete

fr Confining pressure produced by confining reinforcement

(fr)min Minimum confining pressure to achieve minimum curvature ductility factor

fy Yield strength of steel reinforcement

h Total depth of the column section

Mp Peak moment

P Axial load applied at centroid

(P/Agfco)b Balanced axial load level

(P/Agfco)max Maximum axial load level to achieve minimum curvature ductility factor

s Spacing of confining reinforcement

γ Axial load to balanced axial load ratio

εps Residual plastic strain in steel reinforcement

εs Strain in steel

φu Ultimate curvature 

φy Yield curvature 

μ Curvature ductility factor

μmin Minimum curvature ductility factor

ρ Longitudinal steel ratio (ρ = As/Ag)

σs Stress in steel reinforcement




