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Abstract. Digital image processing algorithms for the analysis and characterization of grains and voids
in cemented materials were developed using toolbox functions of a mathematical software package. Utilization
of grayscale, color and watershed segmentation algorithms and their performances were demonstrated on
artificially prepared self-compacting concrete (SCC) samples. It has been found that color segmentation
was more advantageous over the gray scale segmentation for the detection of voids whereas the latter
method provided satisfying results for the aggregate grains due to the sharp contrast between their colors
and the cohesive matrix. The watershed segmentation method, on the other hand, appeared to be very
efficient while separating touching objects in digital images. 
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1. Introduction

Image processing is the process of extracting significant information from digitized images by

transforming them into other images using various mathematical algorithms. In recent years, imaging

and analysis techniques have become widely used tools for a variety of experimental observations.

These techniques have enjoyed wide acceptance in many fields such as material, biomedical and

geo sciences. 

Research studies regarding determination of grain characteristics such as size, shape, orientation

and spatial distribution either in sliced sections of cohesive materials or discrete aggregate samples

using digital image analysis methods accelerated since 1980s (Michelland, et al. 1989, Yudhbir and

Abedinzadeh 1991, Raschke and Hryciw 1997, Mora, et al. 1998, Kwan, et al. 1999). Some

pioneering work, however, could be traced back to late 1960s (Saltykov 1967).

The majority of the above mentioned studies employed grayscale segmentation methods in the

analysis of grain characteristics. In order to determine particle properties properly, some researchers

have also used watershed segmentation to isolate touching grains (Ghalib and Hryciw 1999, Kim, et

al. 2003). One alternative method called as the digital cutting method, which is based on the
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threshold angle of contact wedge between grains has been proposed by Van den Berg, et al. (2002).

Digital image analysis data have been employed in the generation of finite element meshes (Yue,

et al. 2003). It has been also possible to estimate other material characteristics such as permeability

(Berryman and Blair 1986, Mowers and Budd 1996) and void ratio (Frost and Kuo 1996, Bhatia

and Soliman 1990, Obaidat, et al. 1998) using digital image analysis methods.

Cohesive materials involving granular assemblies were also subject to digital image analysis (Yue

and Morin 1996, Bisdom and Schoonderbeek 1983, Ruzyla 1984, Pareschi, et al. 1990, Francus

1998). It has been demonstrated that size, shape, spatial distribution of grains in cohesive matrix

such as rock and concrete specimens could be satisfactorily obtained using color and grayscale

segmentation methods (Crabtree, et al. 1984, Soroushian, et al. 2003). 

This study targets development of image analysis algorithms for the quantification of both grain

and void distributions in artificially prepared and segregated samples of granular assemblies in

cemented materials. The computer algorithms as presented here are fast enough and robust avoiding

operator dependent errors in the stage of threshold determinations. This aspect of the study is

especially reflected in the color segmentation, of which use has been found very beneficial while

separating voids from the rest of the image. Trials for segmenting the voids in grayscale

segmentation were not proved to be efficient since either void shapes could not be captured

satisfactorily or the voids and small objects in the cohesive matrix were not detected during

determination of the threshold levels. The color segmentation algorithm as employed in the code

avoids such error sources. The codes can be easily modified and applied to other types of material

investigations due to the universal toolbox functions being used. Although emphasis is given to

toolbox algorithms of grayscale, color, and watershed segmentation, results of digital image analyses

are also discussed.

2. Experimental work

Experimental work involved casting of artificial test specimens and establishment of the image

acquisition system. In order to observe applicability of segmentation algorithms, two specimens

were cast using basalt coarse aggregate, river sand and ordinary Portland cement and sliced

horizontally into 12 pieces. One of these specimens served as the control sample where proportioning

of the mixture has been made in such a manner that minimum segregation is allowed to take place

along the specimen length. The other specimen, on the other hand, has been artificially segregated

arranging mixture properties. The image acquisition system has been set using a digital camera and

a stand, which was used to adjust height of the camera. Details of test specimens and the image

acquisition system are given in the following.

2.1. Sample preparation

Two cylindrical specimens, 10 cm in diameter and 60 cm in height, were cast using ordinary

Portland cement serving as the cementitious material. The well-known powder-type mix design

method of self-compacting concrete (SCC) has been applied to the design and production of the

specimen material (Okamura and Ouchi 1999). In order to increase the powder amount of the mix a

C-type fly ash and limestone powder were used. Characteristics of the self-compacting mix

proportions for the two specimens are given in Table 1. One should note that proportioning of self-
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compacting mixtures was the same except the admixture, a polycarboxylate type super plasticizer,

of which proportion has been set as 3.3% and 10% of the cement weight in order to produce a non-

segregating and an artificially segregated mixture, respectively.

The aggregate fraction of the mix consists of river sand and basalt type materials. The river sand

of which specific gravity, minimum dry unit weight and water absorption characteristics were

determined as 2.60, 14.6 kN/m3 and 1.1%, respectively, constitutes finer portion of the aggregate

fraction. The coarser portion of the aggregate, on the other hand, can be characterized as the

crushed basalt material. The specific gravity, minimum dry unit weight and water absorption of this

material were found as 2.7, 13.9 kN/m3 and 0.3%, respectively. These two types of aggregates are

combined together to yield the grain size distribution for the mix aggregate (Fig. 1).

In order to test the gray scale segmentation algorithm basalt has been selected as the coarse aggregate

material due to its dark color so that a sharp contrast between the cohesive matrix and aggregate grains

is ensured and a suitable environment for the preferred classification method of single-value

thresholding technique for grain detection is formed. Samples were cured in lime-saturated water for 90

days. Following the curing period, samples were horizontally sliced into 12 pieces using a pit saw. In

order to highlight voids on slice surfaces, sections have been plastered using jointing mortar and than

sandpapered until the section surface reappeared. In this manner, voids have been filled with yellow

Fig. 1 Grain size distribution of the mix aggregate

Table 1 SCC mix proportions

Material

Proportion

by weight per 
cubic meter, kg

by volume per 
cubic meter, l

cement 360 114

water 180 180

inert filler (limestone) 190 74

fly ash 140 62

sand 740 285

coarse aggregate 720 267

air content - 10

admixture 12-36 10.9-32.7
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mortar, which can be detected by means of color segmentation techniques. Finally, sections have been

polished to differentiate the coarse aggregate from the cohesive matrix (Fig. 2).

2.2. Image acquisition system 

The success of digital image processing operation greatly depends on the quality of the captured

image. Illumination conditions of sample and resolution of the image both influence outcomes of

the operations directly. In the current study, a video camera with a high sensitive charged-coupled-

device (CCD) sensor has been used. The camera (Philips ToUcam Pro II) has the capability of

acquiring pictures with a snapshot resolution of 1.2 million-picture elements. The pictures are

transferred directly via USB connection into a Pentium based personal computer without the need of

a frame grabber board. Image capturing hardware uses its own twain interface allowing manual

control of brightness-contrast, gamma and saturation, white balance and exposure values.

Since the surfaces of the samples are polished, diffuse illumination has been used to avoid the

blazes of the nearby additional light sources, which would otherwise cause erroneous results during

the analysis phase. The camera has been mounted in a photographic stand allowing the user to

adjust the height to obtain a sufficiently large measurement area on the sample tray.

3. Image acquisition

Image acquisition has been performed via the twain interface of the camera with a resolution of

1290*960 square pixels creating a field view of 147*110 mm. Captured data have been kept in disk

as an uncompressed image file format (BMP) since depending on the degree of compression,

information regarding sharpness and spectral contrast across boundaries is especially lost (Russ

Fig. 2 Surface preparation of sliced sections prior to image capturing (a) unpolished (b) sand papered and
polished
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1998). Two different sets of preprocessing adjustments in the twain interface have been applied for

grain and void detection. For grain detection, brightness, contrast, gamma and saturation values

have been set to intermediate values in order to extract grains from the rest of the image. It may be

noticed in Fig. 3a that detection of the grains appears to be a relatively easy task due to the black

color of the grains. However situation is different for voids appearing as white and bright spots in

the cohesive matrix resulting in RGB values closer to those of the matrix (Fig. 3b). In order to

ensure the separation of the voids and the background, their pixels values have been stretched by

means of brightness and gamma adjustments. Since the void detection is based on color

segmentation, saturation value has been set to its highest value to highlight the yellow pixels (Fig.

3b). For the void detection, image acquisition has been performed for the same slices in low

lighting condition with a relatively lower shutter speed to avoid interference of the colors. It

appeared that default imaging parameters of the camera were satisfactory for grain detection using

gray scale segmentation whereas adjustment of the saturation parameter to its highest value was

essential for the detection of void color during color segmentation. Proportioning of shutter speed,

brightness, contrast and gamma values has been made based on visual inspection of the raw images

so that void shapes are better separated from the rest of the image.

4. Image processing

Image processing involved grayscale, color and watershed segmentation. The grayscale segmentation

was employed in the determination of segregation of grains in the soft cohesive matrix of artificial

segregated SCC sample whereas the color based segmentation was utilized for the detection of

voids within the specimens. The watershed segmentation was used in order to isolate touching

Fig. 3 Camera adjustments (a) for grain and (b) for void detection
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grains and voids prior to the determination of their spatial distribution and shape characteristics. The

toolbox of a mathematical analysis software package was employed in image processing M-files of

the digital image analysis algorithms (Mathworks 2005).

4.1. Grayscale segmentation

Captured images in RGB colors have been processed as multidimensional arrays. A transformation

into grayscale images has been made eliminating the hue and saturation information while retaining

the luminance, reducing the image into an 8-bit intensity one (Fig. 4a) with element values ranging

0 to 255. Particle analysis requires conversion of the captured image into a binary image following

a contrast stretching transformation step (Fig. 4b), which is necessary to make grain shapes more

visible. The transformation process consists of a piecewise linear function, which increases the

dynamic range of the gray levels. The image is then thresholded in order to filter out the cohesive

matrix from the rest of the picture obeying the methodology suggested by Otsu (1979). This method

works on the gray levels of the image (Fig. 4b) by minimizing the intra-class variance of the black

and white pixels. Resulting binary image of this step is given in Fig. 4(c). The white spots, appearing

within the coarse grains probably result from non-uniform illumination or noise of various sources

(environmental, transmission, etc). They were eliminated using a morphological operation as shown

in Fig. 4(d). This was made by first finding the pixels that were not connected to its neighbors

according to the eight adjacency pixel relationship (Gonzalez and Woods 2002) and then removing

them from the image. This process eliminated noisy pixels enclosed in the coarse grains. The same

technique was used for the elimination of finer aggregates in the cohesive matrix using the negative

of the image as shown in Figs. 4(e). The touching grains in the final processed image were

separated using the watershed segmentation as explained later in the text.

4.2. Color segmentation

Color segmentation has been performed using L*a*b* color space for the determination of voids

Fig. 4 Image processing flow chart of coarse grain detection by gray scale segmentation
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in 2-D sections. The L*a*b* color space model (Robertson 1997) has been introduced as a device

independent color model enabling quantification of visual differences in any digitized image since

influence of lighting conditions could be easily normalized in this space. The L*a*b color space

consists of the luminosity ‘L*’ or brightness layer, the chromaticity layer ‘a*’ indicating the location

of the color along the red-green axis, and the chromaticity layer ‘b*’ indicating where the color falls

along the blue-yellow axis (Fig. 5). During color segmentation, therefore, captured images were

transformed into L*a*b* space firstly. 

It has been necessary to select only specific colors in the original image so that color

segmentation could be performed satisfactorily without increasing computational effort and

complexity of the algorithm. This has been made visually depending on the appearance of the

original image. Two tones of yellow and gray colors were selected for the voids and the cohesive

matrix, respectively. Such a two-tone definition was made in order to avoid erroneous segmentation

Fig. 5 The L*a*b* color space model in color segmentation

Fig. 6 Image processing flow chart of void detection by color segmentation
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since color transition from the voids to the cohesive matrix in captured images takes place

gradually. The grain objects, on the other hand, were related to the black color.

Five sample regions consisting of small triangles were generated on the image. Each sample

region has been assigned one of the specified colors. The average a*b* values of pixels within the

sample regions were calculated in the L*a*b* color space. Color classification is made based on the

closest Euclidian distance of each pixel to these average values. This procedure is also illustrated in

Fig. 5. Following color segmentation two tones of the yellow color that were detected in the images

have been added together and thresholded to form the resulting image, which has become ready for

watershed segmentation where touching voids are separated. The flow chart diagram of the color

segmentation process for void detection is given in Fig. 6.

4.3. Watershed segmentation

A frequent problem encountered in the analysis of digital images is the objects that are in contact.

Such contacts avoid one-by-one analysis of individual objects. In order to measure the size and

Fig. 7 Watershed segmentation algorithm tree
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shape of these objects, sections that are in contact should be separated. It appears that the watershed

segmentation algorithm originally developed by Beucher and Lantuejoul (1979) and then improved

by Vincent and Soille (1991) is the most preferred technique for grain size or grain distribution type

problems. Watershed segmentation requires grayscale images as topological surfaces, whose catchment

basins are the objects to be identified (Gonzales, et al. 2004). A three-dimensional illustration of

topological surface generation is shown in Fig. 7. The topological surface can be generated with a

process called distance transform, which calculates the Euclidian distances from each pixel to the

nearest black pixel (Fig. 7b). Results of the method, however, may be highly influenced by the

presence of irregular boundaries and interior holes. Besides, lack of a minimum in the ridge of the

Euclidian distance map may cause erroneous segmentations of the grains (Russ 1998). Since the

distance map consists of numerous local catchment basins and watershed lines, application of

watershed algorithm results in over segmentation of the objects. This effect, however, may be

overcome by means of a multidimensional image-filtering algorithm, which eliminates local

watershed lines generating a smoothed image as shown in Fig. 7(c). Following the smoothing stage

of watershed application, separation lines along the contact points of the grains and voids are

obtained as shown in Fig. 7(d), which is superimposed on the original binary image (Fig. 7a) to

come up with the segmented image (Fig. 7e). The generation of a separation line may be further

explained by the help of the flooded basins analogy where the line passing through the center of the

plateau formed by watersheds between two neighboring catchment basins is considered as the

dividing border as soon as the gradually increasing water levels in the basins finally form a single

water level when they get into contact at the center of the plateau.

5. Image analysis

The image segmentation (i.e. segmented grains or voids in Fig. 4e and Fig. 6e) is followed by the

characterization of the regions. The sectional area and the centroid for each grain and void were

defined for the problem of interest. A region map, where labels are assigned to pixels has been

generated using the eight adjacency pixel relationship (Fig. 8). This process has been used to

improve the accuracy near the corners and edges of the regions. Quantitative information about the

objects could then be obtained examining their regional properties using various algorithms in the

region map. For instance, grain and void size distribution of the objects in a certain slice of any

geomaterial can be easily acquired since number of corresponding pixels for each region is already

known. Area information can be gathered either in terms of percent of the total pixel area or

numerical value of the physical quantity provided that a suitable scale is available in the image. 

Fig. 8 Binary image, binary matrix, label matrix and labeled images
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6. Results and discussions

An experimental study has been pursued parallel to the development of the image analysis

algorithms so that their performances could be assessed using images of the sliced sections of the

test samples. Images were analyzed according to the above given methodology. Analysis results

pertinent to the quantification of the slice images are presented and discussed as in the following.

Since one of the artificially prepared samples was intentionally segregated by means of additives,

image analysis algorithms were expected to capture non-uniform grain and void distribution along

sample length. This aspect of the tested materials is shown in Fig. 9 where digital images of the

upper faces of the slices along sample length can be seen. Non-uniform grain and void distributions

of the segregated sample are visible in Figs. 9b and 9d, respectively. The other sample, on the other

hand, exhibits quite uniform distribution since the cohesive matrix of this sample was able to

provide enough resistance to avoid segregation (Figs. 9a and 9c). 

The non-uniformity of grain and porosity distribution, however, can be best judged using results

of digital image analyses. Ratio of the total grain area to the surface area of the slice (area ratio) is

plotted with respect to sample length in Fig. 10a. Area ratios for the segregated and non-segregated

samples were computed as 0.25 and 0.26, respectively. These values are quite close to each other

and do not yield much information regarding the influence of the cohesive matrix characteristics on

segregation. Instead, standard deviation of the data better demonstrates such an effect. This

parameter has been calculated as 0.183 for the segregated sample whereas it has been found as

0.041 for the non-segregated one. Similar evaluations can be made for the porosity distribution

Fig. 9 (a) Grain distribution for the non-segregated specimen, (b) grain distribution for the segregated
specimen, (c) void distribution for the non-segregated specimen, (d) void distribution for the
segregated specimen
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along sample length as shown in Fig. 10(b). Porosity is defined as the ratio of the void area to the

total section area in this figure. Random distribution of the porosity in the segregated sample is

remarkable. The non-segregated sample, however, exhibited more uniform porosity distribution.

Respective values of average porosity and its standard deviation have been found as 0.0067 and

Fig. 10 (a) Grain area ratio variation and (b) porosity variation along specimen length

Fig. 11 Void shape characteristics in (a) non-segregated and (b) segregated specimens
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0.0032 for the non-segregated sample. Same parameters happened to be 0.027 and 0.0167 for the

segregated sample indicating higher void volume and its non-uniform distribution. Note that it was

even not possible to compute porosity for the top fourth image of the segregated sample due to

excessive disintegration of the fine river sand under dynamic impact of the blade during slicing

operation. Same effect did not exist for coarser basalt grains.

It has been observed that cohesive matrix characteristics control void shape as well. A closer look

to the slice images revealed that voids of the segregated sample are more rounded compared with

those of the segregated sample. An example to this observation can be given from the image of the

eighth slice from the top of the sample (i.e. at 400 mm). An enlarged portion of this image is

presented in Fig. 11. The image on the left hand side (i.e. Fig. 11a) belongs to the non-segregated

sample whereas Fig. 11(b) is from the segregated one. It is clearly seen that shapes of the voids in

the non-segregated sample are more circular than those in the segregated one. This characteristics of

the voids can be numerically expressed using the roundness parameter, R, which is defined as

R=(4⋅π⋅area)/(perimeter)2 where area and perimeter are given in pixels for each void. The roundness

ratio equals to unity for a perfectly circular void. The roundness values are typed next to each void

in Figs. 11(a) and 11(b). One should note that the average roundness value on area basis (Rav=ΣRi⋅Ai

/ ΣAi) for the segregated sample is found as 0.77 being closer to unity when compared with that of

the image of the non-segregated sample containing more irregularly shaped voids thereby yielding

an average roundness value of 0.47.

7. Conclusions

The study demonstrated that digital image analysis subroutines readily available in commercial

mathematical analyses software packages could be easily organized to form problem specific

algorithms. Although the performance of the algorithms developed herein was tested on the images

of SCC samples, they are equally applicable to the investigation of geomaterials such as rock with

breccias, sandy and gravelly clay samples. Results of the image analyses showed that image

analysis methodology as presented here was able to demonstrate that characteristics of the cohesive

matrix would have considerable influence on the distribution of coarser grains and voids in SCC

samples. The more irregularly shaped voids and random distribution of the porosity in segregated

samples may be attributed to the additives used to trigger segregation in concrete samples. It has

been noticed that color segmentation would be especially helpful if several different objects with

varying colors exist in the original image. The gray scale segmentation, itself, could not fully

differentiate the voids from the cohesive matrix. The color segmentation, on the other hand,

generates several object layers and can fulfill this task much more effectively. 
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