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Simulations of spacing of localized zones in reinforced 
concrete beams using elasto-plasticity and damage 

mechanics with non-local softening
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Abstract. The paper presents quasi-static plane strain FE-simulations of strain localization in reinforced
concrete beams without stirrups. The material was modeled with two different isotropic continuum crack
models: an elasto-plastic and a damage one. In case of elasto-plasticity, linear Drucker-Prager criterion
with a non-associated flow rule was defined in the compressive regime and a Rankine criterion with an
associated flow rule was adopted in the tensile regime. In the case of a damage model, the degradation of
the material due to micro-cracking was described with a single scalar damage parameter. To ensure the
mesh-independence and to capture size effects, both criteria were enhanced in a softening regime by non-
local terms. Thus, a characteristic length of micro-structure was included. The effect of a characteristic
length, reinforcement ratio, bond-slip stiffness, fracture energy and beam size on strain localization was
investigated. The numerical results with reinforced concrete beams were quantitatively compared with
corresponding laboratory tests by Walraven (1978).

Keywords: bond-slip; concrete; characteristic length; damage mechanics; elasto-plasticity; nonlocal the-
ory; reinforcement; strain localization.

1. Introduction

The analysis of reinforced concrete elements is complex due to occurrence of strain localization in

concrete. The strain localization which is a fundamental phenomenon in concrete under both quasi-

static and dynamic conditions (Bazant 1986, Wittmann, et al. 1992, van Vliet and van Mier 1996)

can occur in the form of cracks (if cohesive properties are dominant) or shear zones (if frictional

properties prevail). The determination of the width and spacing of strain localization is crucial to

evaluate the material strength at peak and in the post-peak regime. The concrete behaviour can be

modeled with continuum models, e.g.: non-linear elasticity (Palaniswamy and Shah 1974), fracture

(Bazant and Cedolin 1979), endochronic theory (Bazant and Bhat 1976), microplane theory (Bazant

and Ozbolt 1990), plasticity (Pietruszczak, et al. 1988, Menetrey and Willam 1995, Majewski, et al.

2007), damage (Dragon and Mróz 1979, Peerlings, et al. 1998), coupled plastic-damage (Lemaitre

1985, Salari, et al. 2004, Bobiński and Tejchman 2006b), and discrete ones using a lattice approach

(Vervuurt, et al. 1994, Cusatis, et al. 2003, Kozicki and Tejchman 2007a) or DEM (Donze, at al.
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1999, D’Addetta, et al. 2002). To describe properly strain localization within continuum mechanics,

the models should be enhanced by a characteristic length of micro-structure (Sluys 1992). There are

several approaches within continuum mechanics to include a characteristic length and to preserve

the well-posedness of the underlying incremental boundary value problem (de Borst, et al. 1992) in

engineering materials as: second-gradient (Pamin 1994, Pamin and de Borst 1998), micro-polar

(Mühlhaus 1986, Tejchman and Wu 1993, Tejchman, et al. 1999), non-local (Pijaudier-Cabot and

Bazant 1987,  Bobiński and Tejchman 2004) and viscous ones (Needdleman 1988, Sluys and de

Borst 1996). Thus, objective and properly convergent numerical solutions for localized deformation

(mesh-insensitive load-displacement diagram and mesh-insensitive deformation pattern) are

achieved. Otherwise, FE-results are completely controlled by the size and orientation of the mesh

and thus produce unreliable results, i.e., localized zone becomes narrower upon mesh refinement

(element size becomes the characteristic length) and computed force-displacement curves change

considerably depending on the width of the calculated localized zone. In addition, a premature

divergence of incremental FE-calculations is often met. The presence of the characteristic length

allows us to take into account inhomogeneities triggering strain localization (e.g. size and spacing of

micro-defects, aggregate size, fiber spacing) and to describe a size effect (dependence of strength

and other mechanical properties on the size of the specimen) observed experimentally on brittle

specimens. 

Other numerical technique which enables to remedy the drawbacks of standard FE-methods and to

obtain mesh-independent results during the description of strain localization is the so-called strong

discontinuity approach which allows a finite element with a displacement discontinuity (Simone and

Sluys 2004). The approach describes softening by a traction-separation law which relates the

traction transmitted by the crack to the crack opening.

In a first step, a careful FE-analysis of a deterministic size effect (caused by strain localization) in

three reinforced concrete beams of a different size without shear reinforcement with two simple

isotropic continuum crack models was performed. The calculations were carried out with an elasto-

plastic constitutive law using a linear Drucker-Prager criterion with a non-associated flow rule in a

compressive regime and a Rankine criterion with an associated flow rule in a tensile regime. In

addition, the FE-calculations were performed with a damage mechanics model. To preserve the

well-posedness of the boundary value problem (de Borst, et al. 1992), to obtain mesh-independent

results, to take into account microscopic inhomogeneities triggering strain localization (e.g.

aggregate size) and to include a characteristic length of micro-structure, a non-local theory was used

in a softening regime as a regularization technique (Pijaudier-Cabot and Bazant 1987). The presence

of a characteristic length allows also to take into account a deterministic size effect, i.e., dependence

of strength and other mechanical properties on the size of the specimen. This is made possible since

the ratio l
c
/D governs the response of the model (l

c
 – characteristic length, D – specimen size). The

simulations of the spacing of localized zones in reinforced concrete beams were performed with a

different characteristic length of micro-structure, reinforcement ratio, fracture energy, bond-slip

stiffness between concrete and reinforcement and beam size. The numerical results were directly

compared with corresponding laboratory tests by Walraven (1978). A realistic determination of

localized zones (width and spacing) with a continuum model is important since initially cracks have

a continuous character (later they change into a discontinuous mode). A similar continuum FE-

calculation was performed by Pamin and de Borst (1998) using a second gradient-enhanced crack

model for one beam. In our calculations, two different continuum crack models were compared,

significantly finer FE-meshes were used and the calculations were performed for 3 different beam
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sizes. For the sake of simplicity, plane strain conditions were assumed in beams. This assumption is

justified for a large size beam since the yield stress in the reinforcement has not been reached in

experiments (Walraven 1978). Moreover, the spacing of localized zone is not influenced by the

assumed conditions (plane strain or plane stress) (Malecki, et al. 2007).

The present paper is a continuation of numerical studies of strain localization in a reinforced

concrete bar under tension with a similar elasto-plastic model with non-local softening (Malecki, et

al. 2007). The FE-simulations with a reinforced concrete bar under tension (Malecki, et al. 2007)

showed that the width of localized zone at the residual state increased strongly with increasing

characteristic length l
c
 and increased insignificantly with initial bond stiffness. It did not depend on

the reinforcement ratio, type of the softening curve (linear or exponential) and Gaussian distribution

of the tensile strength. The spacing of localized zones increased with increasing characteristic length

l
c
 and tensile softening modulus, and decreasing reinforcement ratio, fracture energy and initial bond

stiffness. It did not vary with a stochastic distribution of the tensile strength (using a usual Gaussian

distribution). The width and spacing of localized zones were similar for perfect bond and usual

bond-slip laws. However, localized zones occurred later for perfect bond.

2. Constitutive models for concrete

2.1. Elasto-plastic model 

To describe the behaviour of a quasi-brittle material like concrete, a simplified elasto-plastic

model was assumed. In the compression regime, a shear yield surface based on a linear Drucker-

Prager criterion and isotropic hardening and softening was used:

(1)

where q - Mises equivalent deviatioric stress, p – mean stress and ϕ – internal friction angle. The

material hardening (softening) was defined by the uniaxial compression stress σ
c
(κ1), wherein κ1 is

the hardening-softening parameter corresponding to the plastic normal strain during uniaxial

compression. The friction angle ϕ was assumed as (Abaqus 1998):

(2)

wherein  denotes the ratio between the uniaxial compression strength and biaxial compression strength

( =1.2). The invariants q and p were defined as

(3)

where σij is the stress tensor and sij denotes the deviatoric stress tensor. The flow potential was

assumed as 

(4)

where ψ is the dilatancy angle (ψ ≠ ϕ). The increments of plastic strains  were calculated as 
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(5)

In turn, in the tensile regime, a Rankine criterion was used with a yield function f2 with isotropic

hardening and softening defined as

(6)

where σi – principal stresses, σt – tensile stress and κ2 – softening parameter (equal to the

maximum principal plastic strain ). The associate flow rule was assumed. The edge and vertex in

the Rankine yield function was taken into account by the interpolation of 2-3 plastic multipliers

according to the Koiter’s rule. The same procedure was adopted in the case of combined tension

(Rankine criterion) and compression (Drucker-Prager criterion).

This simple isotropic elasto-plastic model for concrete (Eqs.1-6) requires two elastic parameters:

modulus of elasticity E and Poisson’s ratio ν, one compresion plastic function σc = f(κ1), one tensile

plastic function σt = f(κ2), internal friction angle ϕ and dilatancy angle ψ. The disadvantages of the

model are the following: the shape of the failure surface in a principal stress space is conical (not

paraboloidal as in reality). In deviatoric planes, the shape is circular (during compression) and

triangular (during tension); thus it does not change from a curvilinear triangle with smoothly

rounded corners to nearly circular with increasing hydrostatic pressure. The tensile and compressive

meridians of the failure surface are the same, and the stiffness degradation due to strain localization

and non-linear volume changes during loading are not taken into account.

2.2. Damage model

The damage variable associated with a degradation of the material due to the propagation and

coalescence of micro-cracks and micro-voids was defined as the ratio between the damage area and

the overall material area (Kachanov 1986, Simo and Ju 1987). The simplest isotropic damage

continuum model describes the degradation with the aid of only a single scalar damage parameter D

growing monotonically from zero (undamaged material) to one (completely damaged material). The

stress-strain function was represented by the following relationship

 (7)

where  – linear elastic material stiffness matrix and εkl – strain tensor. The damage parameter

D acts as a stiffness reduction factor (the Poisson ratio ν is not affected by damage). A general

isotropic damage model should take into account two scalar parameters corresponding to two

independent elastic constants. The growth of the damage variable D was controlled by a damage

threshold parameter κ which was defined as a maximum of the equivalent strain measure ε reached

during the load history up to time t. The loading function of damage was

(8)

where κ0 – initial value of κ when damage begins. If the loading function f was negative, damage

did not develop. During monotonic loading, the parameter κ grew (it coincided with ) and during
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unloading and reloading it remained constant. To define the equivalent strain measure , Rankine

failure type criterion (Jirasek and Marfia 2005) was assumed.

(9)

where E denotes the modulus of elasticity and  are the principal values of the effective stress

(10)

To describe the evolution of the damage parameter D, an exponential softening law was used

(Peerlings, et al. 1998)

(11)

where α and β are the material parameters.

The constitutive isotropic damage model for concrete requires the following parameters: E, ν, κ0,

α and β. The model is suitable for tensile failure and cannot describe irreversible deformations. It

cannot also realistically describe volume changes (Simone and Sluys 2004).

3. Non-local approach

To describe properly strain localization, to preserve the well-posedness of the boundary value

problem, to obtain FE-results free from spurious discretization sensitivity and to capture a deterministic

size effect, a integral-type non-local theory was used as a regularization technique (Pijaudier-Cabot

and Bazant 1987, Bazant and Jirasek 2002) which achieves this by weighted spatial averaging of a

neighborhood of each material point of a suitable state variable. A principle of a local action does

not hold any more. Thus, stress at a certain material point depends not only on the state variable at

that point but on the distribution of state variables in a finite neighborhood of the point considered

(the principle of a local action does not hold – the non-local interaction takes place between any

two points). Elasto-plastic models of this kind were developed e.g., by Brinkgreve (1994) and

Bazant and Jirasek (2002). Usually, it is sufficient to treat non-locally only one variable controlling

material softening or degradation (Brinkgreve 1994,  Bobiński  and Tejchman 2004) (whereas stresses and

strains remain local). 

Initially, in the calculations, the softening parameters κi (i=1,2) were assumed to be non-local:

        with i=1, 2 (12)

where (x) is the non-local softening parameter, V – the volume of the body, x – the coordinates

of the considered (actual) point, ξ – the coordinates of the surrounding points and ω denotes the

weighting function. In general, it is required that the weighting function should not alter a uniform field

which means that it must satisfy the normalizing condition (Bazant and Jirasek 2002). Therefore, as

a weighting function ω in Eq. (12), a Gauss distribution function was used for 2D-problems:
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(13)

The averaging in Eq. (13) is restricted to a small representative area around each material point

(the influence of points at the distance of r = 3l
c
 is only of 0.1%) (Fig. 1). The characteristic length

can be related to the micro-structure of the material (e.g. aggregate size in concrete). According to

Pijaudier-Cabot and Bazant (1987), it is in concrete approximately 3 × d
a
, where d

a
 is the maximum

aggregate size. It is usually determined with an inverse identification process of experimental data

(Geers et al. 1996, Mahnken and Kuhl 1999) since it cannot be directly measured. Recently, Le

Bellego et al. (2003) presented a calibration method of non-local models containing a characteristic

length on the basis of 3 size effect bending tests. However, the determination of one representative

characteristic length of micro-structure is very complex in concrete since strain localization can

include a mixed mode (cracks and shear zones, Bazant and Jirasek 2002), a characteristic length is

one-dimensional but is related to the fracture process zone with a certain area or volume (Bazant

and Jirasek 2002) which increases during deformation (e.g. on the basis of acoustic emission

measurements by Pijaudier-Cabot, et al. 2004). In turn, other researchers conclude that the

characteristic length is not a constant, and it depends on the type of the boundary value problem

and the current level of damage (Ferrara and di Prisco 2001). Thus, a determination of l
c
 requires

further numerical analyses and measurements, e.g., using a DIC technique (Kozicki and Tejchman

2007b). In particular, the measurements of load-displacement curves and widths of the fracture

process zone in experiments with the same concrete, different boundary value problems and

specimen sizes are of importance.

The FE-calculations show that a classical non-local assumption (Eq.12), does not fully regularize

a boundary value problem in elasto-plasticity (Brinkgreve 1994, Bobiń ski  and Tejchman 2004).

Therefore, a modified formula (according to Brinkgreve 1994) was used to calculate the rate of the

non-local softening parameter:

 (14)

where m denotes a non-local parameter controlling the size of the localized plastic zone and the

distribution of the plastic strain. For m = 0, a local approach is obtained and for m = 1, a classical

non-local model is recovered. If the non-local parameter m > 1, the influence of non-locality
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Fig. 1 Region of the influence of characteristic length l
c
 and weighting function ω
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increases and the localized plastic region reaches a finite mesh-independent size (Bobiński and

Tejchman 2004). Brinkgreve (1994) derived an analytical formula for the thickness of a localized

zone in an one-dimensional bar during tension with necking using a modified non-local approach by

Eq. (14). According to this formula, if the parameter m = 1, the thickness of the localized zone was

equal to zero (similarly as in a local approach). Eq. (14) can be rewritten as: 

          with i=1, 2 (15)

Since the increments of the softening parameter are not known at the beginning of each iteration,

the extra sub-iterations are required to solve Eq. (15) (Strömberg and Ristinmaa 1996). To simplify

the calculations, the non-local increments was replaced by their approximation  calculated on the

basis of the known total strain increments (Brinkgreve 1994): 

  with i =1, 2  (16)

For the Drucker-Prager and Rankine criteria, the quantities  and  were calculated

according to the formulae

  and  (17)

where ∆eij is the total deviatoric strain increment tensor and ∆ε1 denotes the maximum principal

value of the total strain increment tensor. Eq. (16) enables to ‘freeze’ the non-local influence of the

neighboring points and to determine the actual values of the softening parameters using the same

procedures as in a local formulation. 

In the damage mechanics model, the equivalent strain measure  was replaced by its non-local

definition  (Pijaudier-Cabot and Bazant 1987)

 (18)

to evaluate the loading function (Eq. 8) and to calculate the damage threshold parameter κ. In the

elastic range, the material response was local.

The 2D and 3D non-local model was implemented in the commercial finite element code Abaqus

(1998) with the aid of the subroutine UMAT (user constitutive law definition) and UEL (user

element definition) for efficient computations (Bobiń ski and Tejchman 2004). For the solution of

the non-linear equation of motion governing the response of a system of finite elements, the initial

stiffness method was used with a symmetric elastic global stiffness matrix. The calculations with a

full Newton-Raphson method resulted in a poor convergence in the softening regime due to the fact

that the determination of the tangent stiffness matrix within a non-local theory is impossible (due to

difficulties to calculate the derivatives of stresses with respect to non-local deformations). The

following convergence criteria were assumed (Abaqus 1998):
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  and  (19)

where rmax - the largest residual out-of-balance force,  - spatially averaged force over the entire

body, cmax – the largest correction of the displacement between two consecutive iterations and ∆umax
– the largest change of the displacement in the increment. The magnitude of the maximum out-of-

balance force at the end of each calculation step was smaller than 1% of the calculated total force

on the specimen. The calculations with smaller tolerances did not influence the FE-results. The

integration was performed at one integration point of each element (centroid).

To satisfy the consistency condition f = 0, if the Drucker-Prager and Rankine criterion were

separately activated, the trial stress method (linearised expansion of the yield condition about the

trial stress point) using an elastic predictor and a plastic corrector with the return mapping algorithm

(Ortiz and Simo 1986) was applied with the following criterion:

,             i=1, 2 (20)

where σ i

max denotes the maximum yield stress in each increment. In the case of combined tension

and compression (when both criteria were simultaneously activated), the closest point projection

algorithm (Abaqus 1998) was used to satisfy the consistency condition. The lack of smoothness at

the edges between the different yield surfaces did not cause any numerical problems.

The calculations were carried out using a large-displacement analysis available in the Abaqus

finite element code (1998). In this method, the current configuration of the body was taken into

account. The Cauchy stress was taken as the stress measure. The conjugate strain rate was the rate

of deformation. The rotation of the stress and strain tensor was calculated with the Hughes-Winget

method (Hughes and Winget 1980). The non-local averaging was performed in the current

configuration.

4. Bond between concrete and reinforcement

Bond between concrete and reinforcement plays a crucial role in structural behaviour. It embraces

3 major mechanisms: adhesion and friction between concrete and steel surface, and the bearing of

reinforcement ribs against concrete. The calculations were carried out with perfect bond and bond-

slip. In the first case, the same displacements along a contact surface/line between concrete and

reinforcement were assumed. In the case of bond-slip, the analyses were carried out with a relation

between the bond shear stress τb and slip u using two different bond laws according to Dörr (1980)

and den Uijl and Bigaj (1996). To consider bond-slip, an interface with a zero thickness was

assumed along a contact surface/line, where a relationship between the shear traction and slip was

introduced. The bond law by Dörr (1980) neglects softening and assumes a yield plateau (Fig. 2A): 

        if  (21)

         if   (22)

wherein the parameter ft is the tensile strength of concrete and u0 is the displacement at which

perfect slip occurs (uo=0.06 mm). The bond law by Uijl and Bigaj (1996) distinguishes two types of

bond failures, a pull-out failure and splitting failure (Fig. 2B). For the splitting failure, the radial

strains are linearly dependent on the slip, and for the pull-out failure, they are nonlinear dependent.
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If the radial stresses σr are smaller than the maximum slip stressesτ b
max = 5ft , a splitting failure

takes place (τ b
max/σr > 1), otherwise a pull-out failure takes place (τ b

max/σr≤1). A splitting failure is

often caused by an insufficient concrete cover. To investigate the effect of the stiffness of the bond-

slip, the tests were carried out only with the bond relation τb = f(u) by Dörr (1980) by changing the

value of uo. 

5. Experiments on beams by Walraven (1978)

A series of tests was carried out for beams with free ends without shear reinforcement (Walraven

1978, Walraven and Lehwalter 1994). The experiments were carried out with 3 different beams with

the same width of b = 200 mm: h = 150 mm, l = 2300 mm (small size beam ‘1’), h = 450 mm,

l = 4100 mm (medium size beam ‘2’) and h = 750 mm, l = 6400 mm (large size beam ‘3’). The

average cube crushing strength of concrete was 34.2-34.8 MPa. In turn, the average cube splitting

strength was 2.49-2.66 MPa. The maximum size of the aggregate in concrete was da = 16 mm. The

concrete cover measured from the bar centre to the concrete surface was 25 mm (beam ‘1’) and 30

mm (beam ‘2’ and ‘3’), respectively. The effective beam height d was: d = 125 mm (beam ‘1’),

d = 420 mm (beam ‘2’) and d = 720 mm (beam ‘3’), respectively. The longitudinal reinforcement

Fig. 2 Selected bond-slip laws between concrete and reinforcement: A) Dörr (1980), B) den Uijl and Bigaj (1996),
a) splitting failure, b) pullout failure (τb – bond stress, u – slip, εr – radial strain)
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consisted of uncurtailed bars of deformed cold-drawn steel (with the yielding strength of 440 MPa

and ratio 0.79-0.83%): 1×φs8 and 2×φs10 (beam ‘1’), 1×φs20 and 2×φs14 (beam ‘2’) and 3×φs22

(beam ‘3’). The beams were incrementally loaded by two symmetric vertical forces at the distance

of 1000 mm at the shear span ratio of a/d = 3 (a – distance between the vertical forces and beam

supports: a = 375 mm (beam ‘1’), a = 1250 mm (beam ‘2’) and a = 2160 mm (beam ‘3’).

In all beams, the shear-tension type of failure was observed. First, vertical cracks appeared at the

beginning of loading. They opened perpendicular first while later an increasing shear displacement

was observed. The arising of an inclined crack led to failure. The ultimate vertical forces were:

V = 29.8 kN (beam ‘1’), V = 70.6 kN (beam ‘2’) and V = 100.8 kN (beam ‘3’), respectively (Figs. 5,

7 and 9). Thus, a pronounced size effect took place since the normalized shear resistance force

Vn = V/bd was decreasing (almost linearly) with increasing effective height d: Vn=1.26 MPa (beam

‘1’), Vn = 0.84 MPa (beam ‘2’) and Vn = 0.79 MPa (beam ‘3’). Due to that, the cracking pattern

developed significantly faster in large beams. 

In the experiments, main (long) and secondary (short) cracks appeared (Figs. 6, 8 and 10). The

average spacing of main and secondary cracks was: 85 mm and 65 mm (small size beam), 180 mm

and 60 mm (medium size beam) and 200 mm and 85 mm (large size beam), respectively.

6. FE-model

The 2D-calculations were performed with 3 reinforced concrete beams without stirrups. 3200-

22500 quadrilateral elements (composed of four diagonally crossed triangles) were used to avoid

volumetric locking (Groen 1997), Fig. 3. The maximum element height, 15 mm, and element width,

23 mm, were not greater there than 3×lc (lc = 10-30 mm) in the region of strain localization in all

beams to achieve mesh-objective results.

The following elastic material parameters were assumed for concrete: Ec = 28.9 GPa and υc = 0.20. To

simplify calculations, linear relationships between the compressive σc and hardening (softening)

parameter κ1, and between tensile stress σt versus softening parameter κ2 were assumed (Fig. 4). In

the case of the tensile regime, 2 linear softening curves were assumed with κ2

u=0.003 and κ2

u=0.006

(κ2

u – ultimate value of κ2 associated with a total loss of the load bearing capacity). The internal

friction angle was equal to ϕ = 12° (Eq. 2) and the dilatancy angle ψ = 8°. The compressive

strength was equal to fc = 34.2 MPa. The tensile strength ft was taken from a Gaussian (normal)

distribution around the mean value 2.49 MPa with a standard deviation 0.05 MPa and a cut-off ±0.1

Fig. 3 FE-meshes used for calculations: a) small beam 1, b) medium beam 2, c) large beam 3 (beams are not
proportionally scaled) 
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MPa. To obtain a Gaussian distribution of the concrete strength, a polar form of the so-called Box-

Muller transformation (1958) was used. The fracture energy Gf varied between 0.07 N/mm and 0.80

N/mm. It was calculated as Gf = gf × wc; gf – area under the softening tensile function (e.g. for linear

softening gf = 0.5 × ft × κ2
u) with wc ≈ 3.5 × lc - crack zone width and lc = 5-30 mm (Section 7). A

characteristic length lc was assumed in the range of lc = 5-30 mm. The non-local parameter was

chosen m = 2 on the basis of initial calculations (Bobiński and Tejchman 2004). In the case of the

isotropic damage model, the following parameters were assumed: κ0 = 8.62·10−5, α = 0.96, β = 200

and lc = 10 mm. An elasto-perfect plastic constitutive law by von Mises (Abaqus 1998) was

assumed to model the reinforcement behaviour with Es=210 GPa and σy=440 MPa (σy - yield

stress). The reinforcement was assumed mainly as 2D elements. Thus, the size of these elements

(hr×br) was 5×44 mm2 (beam ‘1’), 8.8×70 mm2 (beam ‘2’) and 11×100 mm2 (beam ‘3’). The width

br was equal to the total perimeter of bars divided by 2 due to the contact from both sides. The

calculations were carried out mainly with bond-slip (Fig. 2). The comparative calculations were also

performed with reinforcement modeled as bar elements and as solid 2D-elements assuming the

Poisson’s ratios as υb=0 and υs=0. The reinforcement bars were fixed at ends.

7. FE-results within elasto-plasticity

7.1. Effect of a characteristic length and fracture energy

Figs. 5, 7 and 9 show the load-displacement curves for a medium, small and large size beam

using the bond-slip law of Fig. 2A for different characteristic lengths (lc = 5-30 mm) and two

different fracture energies of Fig. 4(b) with κ2
u = 0.003 and κ2

u = 0.006 as compared to the

experiments (Section 5). The reinforcement was assumed as 2D-elements. The distribution of the

nonlocal parameter  in the beams is depicted in Figs. 6, 8 and 10 as compared to the experimental

crack distribution at the ultimate load (Walraven 1978).

The calculated load-displacements curves are in a satisfactory agreement with the experimental

ones, in particular for a smaller fracture energy (κ 2
u = 0.003, Gf ≈ 0.13 N/mm) and a smaller

characteristic length (lc = 10 mm). The calculated ultimate vertical forces are always larger by 5-

10% than the experimental ones. The bearing capacity of the beams increases with increasing lc and

κ

Fig. 4 Assumed curves σ
c
 = f(κ1) in compressive and σt = f(κ2) in tensile regime (σc – compressive stress, σt

– tensile stress, κi – hardening-softening parameter)
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fracture energy Gf. The geometry of strain localization is approximately in agreement with

experiments (in particular with respect to main localized zones). There exist vertical and inclined

localized zones, and long and short localized zones. The width of the localized zones is about wc =

(3-4) × lc. In turn, the calculated average spacing s of main (long) zones is approximately s = 120

mm (12 × lc) for a small size beam, s = 190-210 mm ((7-9) × lc) for a medium size beam and s =

190-300 mm ((15-19) × lc) for a large size beam using model with the parameter κ2

u = 0.003. It is s

= 75-100 mm ((10-15) × lc) for a small size beam and s = 160-210 mm ((7-16) × lc) for a medium

size beam when the parameter κ2

u = 0.006 was used. Thus, the spacing of localized zones increases

with increasing characteristic length and beam height and decreasing fracture energy. In contrast to

experiments, the height of localized zones is in FE-analyses slightly smaller and the number of

inclined zones is also smaller.

The FE-results for a small, medium and large size beam with reinforcement ratio ρ = 0.75%, lc =

10 mm, κ2

u = 0.003 and reinforcement assumed as a 1D bar element are given in Figs. 11 and 12.

In this case, the agreement with experimental results is even better. The calculated normalized

ultimate shear are: Vn = 1.29 MPa (small size beam), Vn = 0.90 MPa (medium size beam) and Vn =

0.61 MPa (large size beam) (Fig. 11). The experimental values are Vn = 1.26 MPa (small size

Fig. 5 Load-displacement curves for a medium size beam (h = 450 mm, bond-slip of Fig. 2A), ρ = 0.75%, a/d = 3)
(P – vertical resultant force, u – vertical displacement, experiment by Walraven (1978): A) κ u

2 = 0.003,
B) κ u

2  
= 0.006, a) l

c 
= 10 mm, b) l

c 
= 20 mm, c) l

c 
= 30 mm
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beam), V
n
 = 0.84 MPa (medium size beam) and V

n
 = 0.63 MPa (large size beam), respectively.

Thus, the ultimate forces differ only by 5% for all beams. Thus, the size effect is satisfactorily

reproduced in the FE-analysis. The spacing average of main localized zones (l
c 

= 10 mm, κ2

u =

0.003): s = 70 mm (7×l
c
) (small size beam), s = 170 mm (17 × l

c
) (medium size beam) and s = 190

mm (19×l
c
) for a large size beam is also close to the experimental outcomes equal to 85 mm (small

size beam), 160 mm (medium size beam) and 200 mm (large size beam), respectively. In the case

of a large size beam, the spacing of all localized (main and secondary) zones, 90 mm (19×l
c
), is

also in a good accordance with the experiment (85 mm). 

The calculated spacing of fracture process zones s was also compared with the average crack

spacing according to CEB-FIP Model Code (1991):

Fig. 6 Distribution of the non-local softening parameter κ2 in a medium size beam at vertical displacement of
u = 8.5 mm (h = 450 mm, bond-slip of Fig. 2A), ρ = 0.75%, a/d = 3) compared to experiments by
Walraven (1978) (C): A) κ u

2  
= 0.003, B) κ u

2  
= 0.006, a) l

c 
= 10 mm, b) l

c 
= 20 mm, c) l

c 
= 30 mm
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Fig. 7 Load-displacement curves for a small size beam (h = 150 mm, bond-slip of Fig. 2A, ρ = 0.75%, a/d =
3) (P – vertical resultant force, u – vertical displacement, ‘e’ – experiment by Walraven (1978): A) κ u

2

=  0.003, B) κ u

2 = 0.006, a) l
c
 = 5 mm, b) l

c
 = 10 mm

Fig. 8 Distribution of the non-local softening parameter κ2 in a small size beam at vertical displacement of u
= 8.5 mm (h = 150 mm, bond-slip of Fig. 2A), ρ = 0.75%, a/d = 3) compared to experiments by
Walraven (1978) (C): A) κ u

2  = 0.003, B) κ u

2  
= 0.006, a) l

c 
= 5 mm, b) l

c
 = 10 mm, c) l

c 
= 20 mm, C)

experiment



Simulations of spacing of localized zones in reinforced concrete beams 391

 (small size beam) (23)

    (medium size beam) (24)

 (large size beam) (25)

and the formula by Lorrain, et al. (1998):

    (small size beam) (26)

       (medium size beam) (27)

s
2

3
---

φ
s

3.6ρ
----------× 2

3
---

9

3.6 0.0075×
---------------------------- 223  mm=×= =

s
2

3
---

φ
s

3.6ρ
----------× 2

3
---

16

3.6 0.0075×
---------------------------- 395  mm=×= =

s
2

3
---

φ
s

3.6ρ
----------× 2

3
---

22

3.6 0.0075×
---------------------------- 543  mm=×= =

s 1.5c 0.1
φ

s

ρ
----+ 1.5 20.5 0.1

9

0.0075
---------------- 150 mm=+×= =

s 1.5c 0.1
φ

s

ρ
----+ 1.5 22.0 0.1

16

0.0075
---------------- 246 mm=+×= =

Fig. 9 Load-displacement curves for a larsge size beam (h = 750 mm, bond-slip of Fig. 2A, ρ = 0.75%, a/d =
3, κ u

2  
= 0.003) (P – vertical resultant force, u – vertical displacement, experiment by Walraven (1978):

a) l
c
 = 10 mm, b) l

c
 = 20 mm, c) experiment

Fig. 10 Distribution of the non-local softening parameter κ2 in a large size beam at vertical displacement of u
= 8.5 mm (h = 750 mm, bond-slip of Fig. 2A), ρ = 0.75%, a/d = 3, κ u

2  = 0.003) compared to
experiments by Walraven (1978): a) l

c 
= 10 mm, b) l

c
 = 20 mm, c) experiment
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     (large size beam) (28)

wherein φ
s
 = 9 mm, φ

s
 = 16 mm and φ

s
 = 22 mm are the mean reinforcing bar diameters in a small,

medium and large beam, ρ = 0.75% denotes the reinforcement ratio and c denotes the concrete

cover. The calculated and experimental spacing of localized zones is significantly smaller than these

obtained with different analytical formulas. The effect of a characteristic length and fracture energy

s 1.5c 0.1
φ

s

ρ
----+ 1.5 19 0.1

22

0.0075
---------------- 322 mm=+×= =

Fig. 11 Load-displacement curves (a/d = 3, ρ = 0.75%, κ u

2 = 0.003, l
c 

= 10 mm, bond-slip, reinforcement as
1D element): a) small beam, b) medium beam, c) large beam
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on the spacing of localized zones is similar as in the calculations of by Pamin and de Borst (1998)

for a medium size beam using a second gradient-enhanced crack model with a Rankine failure

surface approximated by a circular function in the tension-tension regime under plane stress

conditions. The geometry of localized zones is also similar.

7.2. Effect of tensile strength fc

The calculations were carried out with a different tensile strength ft using a linear softening curve

‘a’ of Fig. 2b (bond-slip of Fig. 2A, a/d = 3, medium beam, lc = 20 mm, κ 2

u  = 0.003, ρ = 0.75%,

reinforcement as 2D elements). The tensile strength was ft = 2.49 MPa, ft = 2.66 MPa and ft = 2.90

MPa, respectively. An increase of the tensile strength causes a linear increase of the ultimate shear

force; from V = 75.5 kN ( ft = 2.49 MPa) and V = 77.5 kN ( ft = 2.66 MPa) up to V = 80.0 kN ( ft =

2.9 MPa). Such linear dependency is in accordance with experiments (Kani 1966).

7.3. Effect of reinforcement ratio ρ

The effect of the reinforcement ratio in a medium beam for lc = 20 mm (using the bond-slip law

of Fig. 2A and curve ‘b’ of Fig. 4b) was investigated for ρ = 1.5% and ρ = 2.0%. The spacing of

localized zones decreases with increasing ρ (s = 190 mm for ρ = 0.75%, s = 160 mm for ρ = 1.5%

and s = 140 mm for ρ = 2.0%). The crack width is always the same (3-4) × lc.

The calculations were also performed with the Poisson’s ratios: υs = 0 (ρ = 0.75%) and υc = 0

and υs = 0 (ρ = 1.50%). In the first case, the ultimate shear resistance was smaller by 5% (from 70

kN down to 67 kN) and in the second case was reduced by 10% (from 119.2 kN down to 110.1

kN). The spacing of localized zones was unaffected.

7.4. Effect of shear span ratio a/d

The effect of the shear span ratio a/d in the range of a/d = 2-3.5 on the distribution of localized

zones is shown in Fig. 13 for a medium beam using a bond-slip of Fig. 2A (ρ = 0.75%, lc = 20

mm, κ2

u = 0.003, reinforcement as 2D elements).

The ultimate shear resistance force V obviously decreases with increasing distance of vertical

forces from the supports a/d (from V = 95.1 kN for a/d = 2, V = 75.5 kN for a/d = 3 down to V =

Fig. 12 Distribution of the non-local softening parameter κ2 (a/d = 3, ρ = 0.75%, κ u

2 = 0.003, l
c 

= 10 mm,
bond-slip, reinforcement as 1D element) in: a) small beam, b) medium beam, c) large beam
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60 kN for a/d = 3.5). The dependence is parabolic which is in good agreement with experiments

(Kani 1966) and calculations (Jia, et al. 2006)

The width of localized zones was about w = (3-4) × l
c
. The spacing of localized zones slightly

increases with increasing a/d (from s = 170 mm with a/d = 2, s = 190 mm with a/d = 3-3.5). 

Fig. 13 Distribution of the non-local softening parameter κ2 in a medium size beam at vertical displacement
of u = 8.5 mm (bond-slip of Fig. 2A)), l

c 
= 20 mm, ρ = 0.75%, κ u

2  = 0.003) for different ratios a/d:
a) a/d = 2, b) a/d = 3, c) a/d = 3.5

Fig. 14 Distribution of the non-local softening parameter κ2 in a medium size beam at vertical displacement
of u = 8.5 mm (bond-slip of Fig. 2A)), l

c 
= 20 mm, ρ = 0.75%, κ u

2 = 0.003): a) u
o
 = 0.06 mm, b) u

o

= 0.12 mm, c) u
o 

= 0.24 mm
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7.5. Effect of bond-slip

The type of the bond law (Figs. 2A and 2B) insignificantly influences the load-displacement

diagram and width and spacing of localized zones. Since the bond traction values are far from the

limiting value (the softening part of the bond law has not been reached), the cracking process is

influenced by the initial bond stiffness only. The effect of the stiffness of bond-slip of Fig. 2A (in

the range of u
o 

= 0.06-0.24 mm) on the distribution of localized zones is shown in Fig. 14 for a

medium size beam (ρ = 0.75%, l
c
 = 20 mm, κ2

u = 0.003, bond-slip law of Fig. 2A).

The spacing of localized zones increases with decreasing initial bond stiffness; from s=190 mm

(12 × l
c
) for u

o 
= 0.06 mm, s = 340 mm (17 × l

c
) for u

o 
= 0.12 mm up to s = 480 mm (24 × l

c
) for

u
o
 = 0.24 mm. In turn, the width of localized zones decreases with decreasing initial bond stiffness

from 3.5 × l
c
 (u

o 
= 0.06 mm) down to 3 × l

c
 (u

o
 = 0.12-0.24 mm).

Figs. 15 and 16 demonstrate the results with perfect bond (medium beam, (ρ = 0.75%, l
c
 = 20-30

mm, κ2
u = 0.003). The ultimate vertical force V is larger for perfect bond by 5%. The crack spacing

Fig. 15 Load-displacement curves for a medium size beam (a/d = 3, ρ = 0.75%, κ u

2 = 0.003, l
c 

= 20 mm): a)
perfect bond, b) bond-slip

Fig. 16 Distribution of the non-local softening parameter κ2 in a medium size beam at vertical displacement
of u = 8.5 mm (perfect bond, a/d = 3, ρ = 0.75%, κ u

2  
= 0.003, l

c 
= 20 mm)
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of localized zones is slightly smaller for perfect bond (s = 180 mm). Their width is similar.

8. FE-results within damage mechanics

Fig. 17 shows the load-displacement curves for a medium, small and large size beam using the

bond-slip law of Fig. 2A for a characteristic lengths of l
c 

= 10 mm as compared to the experiments

Fig. 17 Load-displacement curves (a/d = 3, ρ = 0.75%, l
c 
= 10 mm, bond-slip, reinforcement as 2D elements):

a) small beam, b) medium beam, c) large beam (damage mechanics)
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Fig. 18 Distribution of the non-local softening parameter (a/d = 3, ρ = 0.75%, l
c
 = 10 mm, bond-slip,

reinforcement as 2D elements) in: a) small beam, b) medium beam, c) large beam (damage
mechanics) (beams are not proportionally scaled) 

Table 1 Description of FE-simulations

Simulation 
no.

Beam 
size

Shear span
ratio a/d

Constitutive
model

Softening
parameter κ

u

Characteristic 
length l

c 
[mm]

Bond 
model

1a

m 3 ep 0.003

10

2D bs1b 20

1c 30

2a

m 3 ep 0.006

10

2D bs2b 20

2c 30

3a
s 3 ep 0.003

5
2D bs

3b 10

4a
s 3 ep 0.006

5
2D bs

4b 10

5a
l 3 ep 0.003

10
2D bs

5b 20

6a s

3 ep 0.003 10 1D bs6b m

6c l

7a

m

2

ep 0.003 20 2D bs7b 3

7c 3.5

8a

m 3 ep 0.003 20

2D bs
(u

o
=0.06 mm)

8b
2D bs

(u
o
=0.12 mm)

8c
2D bs

(u
o
=0.24 mm)
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Table 1 Continued

Simulation 
no.

Beam 
size

Shear span
ratio a/d

Constitutive
model

Softening
parameter κ

u

Characteristic 
length l

c 
[mm]

Bond 
model

9a
m 3 ep 0.003 20

2D bs

9b 2D pb

10a s

3 d - 10 2D bs10b m

10c l

*‘s’- small size beam, ‘m’ –medium size beam, ‘l’ – large size beam
‘ep’ – elasto-plastic model, ‘d’ – damage model
‘bs’ – bond-slip, ‘pb’ – perfect bond

Table 2 Data summary of experiments (failure forces and spacing of long cracks), FE-results (corresponding
failure forces and spacing of localized zones) and analytical formulae (crack spacing)

No. Failure vertical 
force

(experiments)
[kN]

Spacing of 
long cracks

(experiments)
[mm ]

Vertical force 
from FEM

[kN]

Spacing of 
localized ones

from FEM
[mm]

Crack spacing
by CEB-FIP 

Model (1990)
[mm]

Crack spacing
by Lorrain et al. 

(1998) 
[mm]

1a

70.6 180

70.1

190-210 395 2461b 75.5

1c 80.6

2a

70.6 180

75.0

160-210 395 2462b 101.3

2c 110.0

3a
29.8 85

32.2
120 223 150

3b 33.1

4a
29.8 85

34.1
75-100 223 150

4b 33.8

5a
100.8 200

87.9
190-300 543 322

5b 90.8

6a 29.8 85 28.1 70 223 150

6b 70.6 180 76.0 170 395 246

6c 100.8 200 83.4 190 543 322

7a -

180

95.1

170-190 395 2467b 70.6 70.6

7c - 60.0

8a

70.6 180 -

190

395 2468b 340

8c 480

9a
70.6 180

75.5
180 395 246

9b 81.3

10a 29.8 85 30.1 100 223 150

10b 70.6 180 72.3 160 395 246

10c 100.8 200 95.0 240 543 322
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(Section 5). The reinforcement was assumed as 2D-elements. The distribution of the nonlocal

parameter  (Eq. 18) in the beams is depicted in Fig. 18.

The evolution of the vertical force is similar as in the experiment (Fig. 17). The agreement with

experiments is even better than within elasto-plasticity since the calculated ultimate vertical forces

differ only by 3% from the experimental ones. The calculated normalized ultimate shear forces are:

V
n 

= 1.20 MPa (small size beam), V
n 

= 0.86 MPa (medium size beam) and V
n 

= 0.64 (large size

beam) respectively.

The calculated average spacing of main localized zones s is approximately s = 100 mm (10 × l
c
)

for a small size beam, s = 160 mm (16 × l
c
) for a medium size beam and s = 240 mm (24 × l

c
) for

a large size beam (Fig. 18). Thus, the spacing of localized zones is similar for a medium size beam

and larger in the case of a small and large size beam as compared to elasto-plastic solutions. 

The summarized description of FE-simulations is given in Table 1. Table 2 compares the

experimental results with respect to failure forces and spacing of main cracks with corresponding

calculated forces and calculated spacing of localized zones and analytical formulae for the crack

spacing. In turn, Fig. 19 demonstrates a comparison between the calculated and experimental size effect.

9. Conclusions

The FE-simulations have shown that the isotropic elasto-plastic and damage continuum crack

models with non-local softening are able to capture localized zones in a reinforced concrete beams

without shear reinforcement. The FE-analyses revealed the following points:

• in spite of the simplicity of the used models, the calculated normalized material strength and spacing

of main localized zones are in a satisfactory agreement with experiments. The evolution of load-

displacement curves is also similar. The differences concern the length and shape of localized zones,

• the FE-results are similar within two different continuum crack models, although a slightly

better agreement with experiments was achieved with a damage model, 

• the beam strength increases mainly with increasing reinforcement ratio, characteristic length,

tensile strength, fracture energy and decreasing beam size and shear span ratio. It is not affected by

the type of the bond-slip,

ε

Fig. 19 Calculated size effect in reinforced concrete beams from FE-analyses as compared to experiments by
Walraven (1978) (V

n
 - normalized shear resistance force, d - effective height, a) - elasto-plastic

model, b) damage model)
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• the calculated ultimate forces differ by about 5% as compared to experimental ones when l
c =

10 mm. To a achieve a better agreement, the characteristic length and fracture energy should be

smaller (lc<10 mm, Gf < 0.10 N/mm). However this will be connected to a larger computation time

since the size of the finite element has to be reduced with a respect to a smaller characteristic length

(to obtain mesh-independent results),

• the calculated size effect is realistically captured, the bearing capacity of beams increases with

decreasing beam size, 

• the calculated width of primary localized zones increases strongly with increasing characteristic

length lc. The width is about (3-4) × lc,

• the calculated spacing of primary localized zones increases with increasing characteristic length

lc, tensile softening modulus and decreasing fracture energy, reinforcement ratio and initial bond

stiffness. It is not affected by the type of the bond-slip. The spacing changes from (7-10) × lc (small

size beam) and (16-17) × lc (medium size beam) up to (19-24) × lc (large size beam). In the case of

main pronounced cracks, it is in a good agreement with experiments and is smaller than this given

by different analytical formulas,

• the reinforcement can be modeled as 2D and 1D elements.

The numerical calculations of strain localization with a non-local continuum model will be

continued. The 3D calculations will be carried out with reinforced concrete beams with shear

reinforcement (Walraven and Lehwalter 1994) where a strong size effect was also observed. In a

compressive regime, a more advanced elasto-plastic model by Menetrey and Willam (1995) will be

used. A hardening elasto-plastic model will be combined with a damage model with non-local

softening (Bobiński and Tejchman 2006) to capture the stiffness degradation during strain localization.

Anisotropy will be included (Gatuingt 2006). To describe a statistical size effect, a spatially correlated

distribution of the tensile strength will be assumed (Tejchman and Górski 2007) where choice of the

representative samples will be governed by a Latin hypercube sampling method. In addition,

laboratory tests will be performed wherein the width of the fracture process zone will be measured in

beams using a DIC technique (Kozicki and Tejchman 2007b). Afterwards, a continuum model will be

connected with a discontinuous crack type model (Simone and Sluys 2004).
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