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Abstract. Three 3D nonlinear finite-element models are developed to study the behavior of concrete
beams and plates with and without external reinforcement by fibre-reinforced plastic (FRP). All three
models are formulated based upon the 3D theory of elasticity. The stress model is modified from the
element developed by Ramtekkar, et al. (2002) to incorporate material nonlinearity in the formulation. Both
transverse stress and displacement components are used as nodal degrees-of-freedom to ensure the
continuity of both stress and displacement components between the elements. The displacement model
uses only displacement components as nodal degrees-of-freedom. The transition model has both stress and
displacement components as nodal degrees-of-freedom on one surface, and only displacement components
as nodal degrees-of-freedom on the opposite surface. The transition model serves as a connector between
the stress and the displacement models. The developed models are validated by comparing the results of
the analyses with an existing experimental result. Parametric studies of the effects of the externally
reinforced FRP on the load capacity of reinforced concrete (RC) beams and concrete plates are performed
to demonstrate the practicality and the efficiency of the proposed models.

Keywords: 3D nonlinear finite element models; mixed-finite element model; 3D theory of elasticity; nonlinear
analysis of RC beams and plates; material nonlinearity; RC beams and plates with and without FRP rein-
forcement. 

1. Introduction

The finite element method has been an important tool in the analysis of both simple concrete

structures, such as RC beams, columns, slabs, etc., and complex concrete structures, such as

offshore walls, deep beams, shear walls, FRP strengthened RC structures, etc. The development of
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large memory capacity computers allows engineers and researchers to perform an analysis using

finite element with significantly improved accuracy of more complex concrete structures with both

material and geometric nonlinearities. A considerable amount of work has been reported in recent

literature on the development and application of finite-element models for RC structures, such as the

use of separate finite elements for concrete and reinforcement (Kwak and Filippou 1997), finite-

element model considering both materials and geometric nonlinearity (Al-Taan and Ezzadeen 1995,

Jiang and Mirza 1997, Nitereka and Neale 1999), and finite element with smeared crack model and/

or smeared reinforcement bar model (Vecchio 1989, Hu and Schnobrich 1990, Abbas, et al. 2004,

and Supaviriyakit, et al. 2004). 

Vecchio (1989) developed a nonlinear finite element model that included a smeared crack

approach to predict the response of RC structures. A secant stiffness approach was used in the

model to incorporate the nonlinear constitutive relation for concrete. Polak and Vecchio (1993)

modified a finite-element model for the analysis of RC shell structures. In their modified model, a

42 degree of freedom heterosis type degenerate isoparametric quadrilateral element was developed

by using a layered-element formulation. Hu and Schnobrich (1990) derived a set of constitutive

equations for an incremental finite element analysis, and developed a nonlinear material model for

cracked RC structures. The model was able to accurately describe a post-cracking behavior of

reinforced concrete. Reinforcement was treated as an equivalent uniaxial layered material placed at

the depth of the centerline of the bar. For concrete nonlinear behavior, Saenz’s stress-strain curve

(Saenz, 1964) was used. The model considered smeared crack representation, rotating crack

approach, tension stiffening, the stress-degrading effect of concrete parallel to the crack direction,

and shear retention of concrete on the crack surface. Al-Taan and Ezzadeen (1995) developed a

numerical procedure based on the finite-element method for geometric and material nonlinear

analysis of RC members. A frame element with a composite layer system was used to model the

structure. For the nonlinear solution, an incremental-iterative technique based on Newton-Raphson’s

method was employed. Displacement degrees-of-freedom were approximated with parabolic

interpolation functions in the axial direction, and cubic interpolation functions in the other

directions. Cerioni and Mingardi (1996) introduced a finite-element model for an analysis of RC

foundation plates. In their analysis, the RC plate was modeled with material nonlinear layered finite

elements. Jiang and Mirza (1997) developed a rational numerical model for a nonlinear analysis of

RC slabs. Material nonlinearities for both concrete and steel were considered. In their model, a RC

slab was first divided into a number of composite elements, and each of the composite elements

was then assembled into a single concrete plate element and a small number of steel beam elements.

Kirchhoff thin plate theory was used in the plate element. Kwak and Filippou (1997) introduced a

finite-element model where concrete and reinforcing bars were represented by separate material

models. Concrete was modeled by an eight-node element and the reinforcement was modeled by a

two-node truss element. A bond link element was used to connect the two elements together. Bhatt

and Kader (1998) presented a 2-D parabolic isoparametric quadrilateral finite element based on

tangent stiffening method for predicting the shear strength of RC rectangular beams. Kwak and Kim

(2002) introduced a new finite-element model for beams based on the moment-curvature relations

of RC sections, including the bond-slip and tension softening branch. They used the well-established

Timoshenko beam theory in the analysis. Later, Abbas, et al. (2004) presented a 3-D nonlinear

finite-element model for reinforced concrete structures under impact loading. The reinforcement was

smeared as a two dimensional membrane of an equivalent thickness. The layer was assumed to

resist only the axial stresses in the direction of the reinforcing bars. Recently, Phuvoravan and
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Sotelino (2005) presented a finite element model for a nonlinear analysis of RC slabs that combined

a four-node Kirchhoff shell element for concrete with a two-node Euler beam element for the steel

reinforcing bars. A rigid link was used to connect these two element types. This model can ensure

the exact location of steel reinforcement bars. 

Over the last decade, civil engineers have focused their interest on the use of FRP for its superior

characteristics over steel reinforcement. A large number of experiments on the topic were done in

this time period. Many researchers have also focused on the development of finite-element models

for the analysis of FRP reinforced concrete structures. Shahawy, et al. (1996) used a 2-dimensional

nonlinear finite-element model to analyze beams strengthened with carbon fibre-reinforced plastic

(CFRP). Nitereka and Neale (1999) developed a nonlinear finite-element layered model to predict

the complete load-deformation response of reinforced concrete beams flexurally strengthened by

composite materials. Their model considered both material and geometric nonlinearities. The

numerical results confirmed the effectiveness of using externally bonded fiber reinforced composite

laminates as a viable technique for strengthening concrete beams in flexure. Ferreira, et al. (2001)

presented a finite-element model to analyze RC beams with FRP re-bars. The first order shear

deformation theory was used in the analysis of concrete shells reinforced with internal composite

unidirectional re-bars. The concrete was modeled with smeared crack concepts. A perfect plastic

and a strain-hardening plasticity approach were used to model the compressive behavior of the

concrete. A dual criterion for yielding and crushing in terms of stresses and strains were considered.

For tension in concrete, the influence of the cracked concrete zones on the structural behavior was

considered in their study. Supaviriyakit, et al. (2004) developed a finite-element model to analyze

RC beam strengthened with externally bonded FRP plates. The concrete and reinforcing steel were

modeled together by 8-node 2-D isoparametric plane stress RC elements. The RC element

considered the effect of cracks and reinforcing steel as being smeared over the entire element. The

four-way fixed crack model was used to deal with the cracks in concrete. The FRP plate was

modeled as a 2D elasto-brittle element. Hu, et al. (2004) incorporated the nonlinear constitutive

model for FRP suggested by Hahn and Tsai (1973) to the ABAQUS finite-element program to

study the influences of fibre-orientation, beam length, and reinforcement ratios on the ultimate

strength of RC beams strengthened by FRP. They concluded that the beams strengthened by FRP at

the bottom have higher ultimate strength than the beams strengthened by FRP on the sides.

To the authors’ knowledge, no researcher has worked on a 3-D finite-element model for nonlinear

analysis of concrete structures using a mixed model approach. In this paper, we present three 3-D

layer-wise 18-node finite-element models for nonlinear analysis of concrete structures with and

without FRP reinforcement. In the first two models, mixed finite-element formulation based on

three-dimensional elasticity theory is employed by approximating displacement components in the

form of nodal displacements and nodal stresses. The first model was originally developed by

Ramtekkar, et al. (2002). In it, both the transverse stress and displacement components are used as

nodal degrees-of-freedom. The model was modified in this study to incorporate material

nonlinearity, smeared crack concept, and smeared reinforcement. In the second model, three nodal

displacement components in the coordinate axis directions and three nodal transverse stress

components are used as degrees-of-freedom on one surface while only three nodal displacement

components in the coordinate axis directions are used as degrees-of-freedom on the opposite

surface. In the third model, three nodal displacement components in the coordinate axis directions

are considered as nodal degrees-of-freedom. Local-global phenomena are introduced by considering

all three models together. For convenience, the first model, the second model, and the third model
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will be referred to as the stress, the transition, and the displacement models, respectively. In order to

reduce the computational time, a less degree of freedom element, i.e., the displacement model, is

used where a compromise in an accuracy of stress calculations is tolerated. A higher degree of

freedom element (i.e. the stress model) is used where a higher degree of accuracy in stress

calculations is required. The transition model serves as a connector between the zone using the

displacement model and that using the stress model. Concrete material nonlinearity is considered

using Saenz’s stress-strain formulation (Saenz 1964) in the finite-element framework. Steel is

considered as a bilinear elasto-plastic material and smeared uniformly over the elements where the

steel reinforcement is located. Only unidirectional stress is considered along the reinforcing bars

direction. The accuracy is verified by comparing the results of the developed models with the

experimental results of an RC beam strengthened with external FRP reinforcement. Numerical

examples are provided to illustrate the applicability, efficiency, and suitability of the models.

2. Finite-element models

Three eighteen-node, three-dimensional finite-element models are formulated in this study. The

Fig. 1 (a) Laminated plate and global reference axes and (b) Geometry of 18-node finite element and local
reference axes



3D nonlinear mixed finite-element analysis of RC beams and plates 139

stress model for nonlinear analysis is formulated and modified from the mixed finite-element model

developed by Ramtekkar, et al. (2002). The transition and the displacement models are modified

from the stress model. In the development of all three finite-element models in this study, an

anisotropic plate consisting of N orthotropic layers shown in Fig. 1(a) is considered. The plate is

discretized into a number of 3-D, 18 node elements shown in Fig. 1(b). Each element lies

completely within a layer and no element crosses the interface between any two successive layers.

The local reference axes are parallel to the global reference axes.

The stress-strain relation for an orthotropic element in ith the layer in a material coordinate system

is expressed as

(1)

where  is the stress vector and  is the strain vector. [C]

is the material constitutive relations. Superscript T denotes matrix transpose. Subscripts 1, 2, and 3

refer to the principal axes of the material. The stress-strain relation for the ith layer in the local

coordinates x, y, and z is expressed as

(2)

Here the stress and the strain vectors with respect to the local coordinates are

(3)

and 

(4)

The material constitutive relations for each material will be elaborated in the next section.

2.1. The stress model

Detail of the formulation of the stress model can be found in Ramtekkar, et al. (2002). Only brief

summary of the formulation will be given here.

The displacement components in the x, y, and z coordinates, u (x, y, z), ν (x, y, z) and w(x, y, z),

respectively, are approximated by quadratic variations in the plane of the plate and a cubic variation

in the transverse direction, and are expressed as

(5)
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where

(6)

(7)

Here u1(x, y, z) = u, u2(x, y, z) = ν, and u3(x, y, z) = w. The generalized coordinates amijk(m=0, 1, 2, 3;

i, j, k = 1, 2, 3) are functions of z. It is noted that the variation of displacement fields is assumed to

be cubic along the z- or the thickness-direction of the element, hence, the transverse stresses τxz, τyz,

and σzz can directly be incorporated as nodal degrees-of-freedom. This ensures parabolic variation of

transverse stresses in the thickness-direction. 

The constitutive relation, Eq. (2), and the strain-displacement relation provide the following

equations 

(8)

where

(9)

The displacement fields u (x, y, z), ν (x, y, z) and w (x, y, z)expressed in Eq. (5), can now be

further expressed in terms of nodal variables by using Eqs. (8) as

(10)
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The shape function matrix [N] is given in Eqn. (A-1) in the Appendix. 

The total potential energy Π of the layer is
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(15)

(16)

The matrix [ B ] is given in Eq. (A-7) in the Appendix.

Minimization of the total potential energy functional, Eq. (14), yields the element property matrix

[ k ]e and the element influence vector { f }e, respectively, as

(17)

(18)

The global equation can be obtained, after the conventional assembly process, in the following form

(19)

Here [ K ], { Q }, and { F } are the global property matrix, the global degree of freedom vector, and

the global influence vector, respectively. 

2.2. Transition model

As mentioned, the transition model is developed as a means to connect the stress and the

displacement models. The nodes on one of the surfaces of the element will therefore contain both

transverse stresses and displacements as degrees-of-freedom, while the nodes on the opposite

surface of the element will only contain displacements as degrees-of-freedom. In order to achieve

the aforementioned requirement, the displacement fields in Eq. (5) are modified to be in the form of
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The shape function matrix [ N ] is given in Eqs. (A-10) and (A-11) in the Appendix.

2.3. Displacement model
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(22)

The nodal degrees-of-freedom vector {qn} in Eq. (21) becomes

(23)

The approximate displacements are expressed in terms of nodal degrees-of-freedom as in Eq. (10).

The shape function matrix [ N ] is given in Eq. (A-10)  in the Appendix.

3. Material constitutive relations

3.1. Concrete

For compression, widely accepted Saenz’s uniaxial stress-strain (σ−ε) relationship (Saenz 1964) is

used in this study. It has the following form:

(24)

where

(25)

Ec is the initial tangent modulus of concrete, ε0 is the strain in concrete at the characteristic compressive

stress, . The modular ratio RE, stress ratio Rf, and strain ratio Rε are defined as, respectively, 
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E0 is a secant modulus of concrete and εf is the strain in concrete at the compressive failure stress,

ff. The tangent modulus of concrete, ΕT, corresponding to a specified strain can be found by taking

derivatives of the Eq. (24) with respect to strain component. This leads to
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Beyond the peak stress point in the strain-softening region, with further straining, the compressive

stress begins to decrease and the equivalent uniaxial tangent modulus becomes negative. In order to

circumvent numerical difficulties associated with a negative tangent modulus, once the ultimate

yield stress  has been reached, ET is set to zero and the concrete behaves like perfectly plastic

material as shown in Fig. 2. This plastic response is allowed to propagate through an incremental
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fashion. 

Tangent modulus Epi(i = 1, 2, 3), along the three principle directions can be calculated from the

Eq. (24) with the use of the three principal strains from the last load step. The three-dimensional

stress and strain can be computed from the following incremental stress-strain relations along the

principal direction: 

(28)

where {σ} and {ε} are stress and strain vectors along the principal directions respectively. The

symmetric constitutive matrix [C c] is

(29)
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Fig. 2 Uniaxial stress-strain curve for concrete
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(30)

In the above equation, σpi (i=1, 2, 3) are the principal stresses. This constitutive matrix along the

principal directions can be transformed to the global direction by applying coordinate transformation.

For tension, initial tangent modulus of concrete Ec is used to find the maximum positive (tensile)

stress until crack. After cracking in the concrete takes place, a smeared model is used to represent

the discontinuous macro crack behavior. This cracked concrete can still carry some tensile stress

perpendicular to the crack, which is termed tension stiffening. In this study, a simple descending

line is used to model this tension stiffening phenomenon as shown in Fig. 2. The default value of

the strain ε* at which the tension stiffening stress reduced to zero is ε*=0.001. In Fig. 2, Ec and Et

are the moduli of elasticity of tensile concrete between zero to fracture strain and from fracture

strain to ε*, respectively. ft is the maximum stress at fracture of concrete, which has corresponding

strain εt.

A crack occurs in concrete when the tensile stress in a principal direction exceeds the tensile

strength, ft, of concrete. For this reason, the constitutive matrix, Eq. (29), needs to be modified.

After the crack forms, the normal as well as the shear stiffness are reduced. If the failure occurs in

the first principal direction (σp1 exceeds ft ) then the modified constitutive matrix [C c] is 

(31)

The constant η in Eq. (31)  is the reduction factor of the stiffness normal to the tensile failure plane,

and η S is the reduction factor of the shear stiffness in the tensile failure plane.
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(32)

3.2. Reinforcing steel and smeared model

The stress-strain curve of the reinforcing bar is assumed to be bi-linear, that is, linear elastic up to

the steel yield stress ( fy ), with a slope of the modulus of elasticity of steel, . This is followed by

a linear hardening with a slope of the strain hardening modulus, up to the steel ultimate strength

( fu ). The uni-directional constitutive matrix for steel [ Dr ] contains only the  term, which is

equal to either  or , depending on the strain in steel reinforcement. For simplicity, the

constitutive relation for concrete used in the smeared element is assumed to be isotropic elastic and

the constitutive matrix is [ D c ]. The constitutive matrix for the smeared model, considering

contribution of both concrete and reinforcing steel, is obtained from

(33)

Here V R is the ratio of volume of reinforcement to the total volume of smeared element. 

3.3. Fibre-reinforced plastic

The behavior of FRP materials is linear elastic to failure. Ultimate elongation strains are

considerably higher than steel yielding strains. This results in ultimate tensile strengths that are

typically between four to nine times the yield stress of steel. Failure is sudden and brittle with no

load carrying capacity after failure. Mechanical properties of the composites vary to a high degree

depending on the orientation of load with respect to the fiber orientation, and the fiber-to-resin

volume ratio. FRP materials exhibit the highest strength when loaded in the direction of the fibers,

and have only the strength of the resin when loaded perpendicular to the fibers. Generally laminated

FRP sheets are used for external reinforcement. The stress-strain relations of FRP for each layer or

lamina in three dimensions can be obtained from any mechanics of composite materials textbook,

e.g., Gibson (1994). 

4. Numerical results and discussion

In all examples, a reinforced FRP is considered to be perfectly bonded to an RC member. No
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weak interface, de-bonding or delamination is considered in this study. It should be mentioned here

that the stress model, however, can simply be modified to incorporate weak interface and first-ply

failure of the FRP since the transverse stresses are nodal variables (Ramtekkar, et al. 2004,

Rattanawangcharoen 2005, 2006).

4.1. Validation of numerical results

In order to verify the numerical results from the present finite-element models, analysis of a

simply supported reinforced concrete beam strengthened by FRP at the bottom and subjected to

four-point loading, is compared against experimental work done by Shahawy, et al. (1996). The

geometric properties of the beam are presented in Fig. 3. The mesh used for the beam is shown in

Fig. 4. 

The material properties of concrete, reinforcing steel, and FRP reinforcement are, respectively,

(Shahawy, et al. 1996, Hu, et al. 2004).

Fig. 3 Geometry of a simply-supported beam under four-point load test (all dimensions are in mm)

Fig. 4 Finite-element mesh used for a simply-supported beam under four-point load test (all dimensions are in
mm)
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(34)

(35)

(36)

Due to symmetry in the X-direction, only half of the beam was analyzed with a total of 176

elements. Symmetric boundary conditions used are presented in Table 1. 

Fig. 5 illustrates the load-deflection curves of the beam obtained from both experimental testing

and from the presented finite-element models. Here the combined model consists of the stress

model in the outer region, the displacement model in the inner region, and the transition model

connecting the two regions. The stress model predicts the ultimate load and the mid-span deflection

to differ by 3.6% and 3.8% of the experimental results, respectively. The combined model results

differ by 12.3% and 13.0% of the experimental results for the load and the deflection predictions,

respectively. The displacement model predicts the load and the deflection to differ by 5.3% and

14.8% of the experimental results, respectively. Therefore, the stress model, when compared to the

results from the experiment, provides a very accurate prediction of the mid-span deflection and the

ultimate load. It was expected that the combined model would predict both the beam’s maximum

ε0 0.0025=          εf 0.0035=               f c
′ 41.37 MPa= ff 10.34 MPa=

ft 0.33 f c
′ MPa= Ec 4700 f c

′ MPa= ν 0.1=              η 1.0 10
4–×=

Es 199.9 GPa=

E11 141.3 GPa        = E22 14.5 GPa=

G12 G13 5.86 GPa= = G23 3.52 GPa=

ν12 0.21=

Fig. 5 Load-deflection curves of simply-supported beam under four-point load

Table 1 Boundary conditions used in the analysis of reinforced concrete beam

X = 0 ν = w = 0

X = L/21
u = τxz =0

Y = ± b/2(side surfaces) τxz=0

Z = d/21(top surface) σz = −P(X, Y); τxz = τyz =0

Z = −d/21 (bottom surface) σz = τxz = τyz =0
1
L is the span length, b is the width of the section, and d is the depth of the beam.
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load and deflection more accurately than the displacement model. However, it was found that it

does not give a better prediction of the beam ultimate load, but it does predict the mid-span

deflection more accurately.

For comparison purposes, results from ABAQUS (Hu, et al. 2004) are also presented in the

Figure. The predicted ultimate load was reported to be 0.8% with the predicted maximum mid-span

deflection to be 18.7% in comparison to the experimental measurements. It should be noted that in

their paper a total of 78 eight-node solid elements were used to model ¼ of the RC beam while in

this paper 152 elements are used to model ½ of the RC beam. The nonlinear in-plane shear

behaviour of FRP was considered in their paper but is not included in this model. 

Two advantages of the proposed stress model over the ABAQUS are 1) to obtain a considerable

good result of analysis, only a smear technique is used to model steel reinforcement here instead of

rigorously model reinforcement as an actual configuration and 2) the stress model can easily be

modified to incorporate weak interface and first-ply failure of FRP as mentioned earlier.

4.2. RC beam with varying number of FRP layers

In this example, the effect that the different number of externally reinforced FRP laminas has on

the nonlinear response of a simply supported RC beam is studied. The beam’s geometric and

mechanical properties are given in Fig. 3 and Eqs. (34)-(36), respectively. The ultimate load ratio

(P
u
/P

u0) and the maximum mid-span deflection ratio (δ
u
/δ

u0) of the beam without FRP, and with

between one and ten layers of FRP are presented in Fig. 6. Here P
u
 and P

u0 are the ultimate load of

the beam with and without the FRP reinforcement, respectively, whereas δ
u
 and δ

u0 are the

maximum mid-span deflection of the beam with and without the FRP reinforcement, respectively. It

can be seen that increasing the number of layers of FRP increases the load capacity of the beam and

reduces the beam’s maximum mid-span deflection. The rate increase in the ultimate load is almost

constant with the increase in the number of FRP laminas. A slight increase in the maximum mid-

span deflection is first noticed when the beam is reinforced with one and two layers of FRP. With

more layers of FRP, the maximum mid-span deflection of the beam decreases in an almost linear

Fig. 6 Ultimate load ratio and maximum mid-span deflection ratio of a simply-supported beam with and
without externally reinforced FRP laminates (Solid lines – stress model, Dash lines  combined
model, Dotted lines  displacement model)
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relation with the number of the FRP reinforcement. The prediction of the ultimate load capacity of

the beams is not significantly affected by the use of a different model while the maximum mid-span

deflection prediction is. It should be noted that only up to ten layers of FRP is considered here, and

that the first-ply failure of the FRP and the delamination between the laminas are both not taken

into account in this study.

4.3. RC beam with varying length of FRP reinforcement

The effects of the externally reinforced FRP lengths on the ultimate load and the maximum mid-

span deflection of a simply supported RC beam are examined. The beam’s geometric and material

properties are the same as in the previous example. The beam is reinforced with three layers of

FRP. The length of FRP reinforcement varies from zero to one hundred percent of the beam length,

no reinforcement and full length reinforcement, respectively. The plots of the ultimate load ratio and

the maximum mid-span deflection ratio are in Fig. 7. An increase in the length of the FRP

laminates increases the ultimate load of the beam and slightly reduces the maximum mid-span

deflection of the beam. The increase in the length of FRP beyond 50% of the beam length,

however, does not significantly contribute to the beam bending capacity nor does it affect the

maximum mid-span deflection. The displacement model produces an odd prediction of the

maximum mid-span deflection when the length of FRP is longer than 50% of the beam length. 

4.4. Concrete plate with different lamina scheme of FRP layers

Fibre-orientation angle plays an important role in the increase of the plate strength. This is due to

FRP having high strength in the fibre-direction, and low strength in the direction perpendicular to

the fibres. To maximize the FRP reinforcement strength, balanced laminate is commonly used. In

this example, the effects of a fibre-orientation angle on the ultimate load and on the maximum mid-

span deflection of a simply supported on all sides 1000×1000×100 mm concrete plate with external

Fig. 7 Ultimate load ratio and maximum mid-span deflection ratio of a simply-supported beam with externally
reinforced FRP laminates having different lengths (Solid lines – stress model, Dash lines  combined
model, Dotted lines  displacement model)
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FRP reinforcement on the bottom surface and subjected to a uniformly distributed load on the top

are examined. The concrete and FRP properties are, respectively,

(37)

(38)

Due to the bi-axial symmetric property of the problem, only a quarter of the plate is analyzed. The

boundary conditions of the plate are given in Table 2. Sixteen-ply  FRP,

where the fibre-orientation angle β is measured from the longitudinal axis of the plate, is

considered. Each ply is 0.17 mm thick. Fig. 8 demonstrates the effects of fibre-orientation angles on

the plate’s ultimate capacity ratio and the plate’s maximum mid-span deflection ratio. Here, the P
u0

and δ
u0 are the ultimate load capacity and the maximum deflection at the middle of the cross-ply

plate with  FRP reinforcement, respectively. The two models, the stress

model and the combined model, show that an increase in a fibre-orientation angle increases the

ε0 0.002=     εf 0.003=            f c
′ 46.1 MPa= ff 41.5 MPa=

ft 3.9 MPa= Ec 43090 MPa= ν 0.1=            η 1.0 10
4–×=

E11 138 GPa        =             E22 14.5 GPa= ν12 0.21=

G12 G13 5.86=  GPa         = G23 3.52 GPa=

β[ ]4 β–[ ]4⁄ β[ ]4 β–[ ]4⁄⁄

0
o[ ]4 90

o[ ]4⁄ 0
o[ ]4⁄ 90

o[ ]4⁄

Table 2 Boundary conditions used in the analysis of the concrete plate

X = 0 ν = w =0

X = a/21
u = τxz = 0

Y = 0 u = w = 0

Y = b/21 (side surface) ν = τyz = 0

Z = t/21 (top surface) σz = −P(X, Y); τxz = τyz =0

Z = −t/21 (bottom surface) σz = τxz = τyz =0
1
a is the length in the X-direction, b is the width in the Y-direction, and t is the thickness of the plate.

Fig. 8 Ultimate load ratio and maximum deflection ratio of a simply-supported plate with externally reinforced FRP
laminates having different fibre-orientation angles of (Solid lines – stress model, Dash lines 
combined model, Dotted lines  displacement model)
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ultimate load capacity of the plate and simultaneously reduces the maximum deflection at the

middle of the plate. The displacement model, however, produces questionable results, those being

that the ultimate load capacity and the maximum deflection at the middle of the plate both increase

with an increase in the fibre-orientation angle. It should be noted here that, due to symmetry, when

β is greater than 45o, load-deflection curves of the plate are the same as those when β is less than

45o. The maximum ultimate load is obtained when the fibre-orientation angle reaches 45o. This was

expected because of the symmetric property of the problem. 

4.5. Externally FRP reinforced concrete plate with different aspect ratios

The effects of the plate aspect (a/b) ratio on the response of a simply supported on all sides FRP

reinforced steel-free concrete rectangular plate subjected to a uniformly distributed load are

investigated. The geometry of the plate is a(1000)×b(1000)×100 mm. The material properties of

concrete and FRP are given in Eqns. (37) and (38), respectively. The plate is reinforced on the

bottom surface with three layers [0o/90o/0o] FRP. The boundary conditions of the plate are given in

Table 2. Fig. 9 illustrates the plate’s ultimate capacity ratio and the plate’s maximum deflection

ratio, both of which were calculated using all three models. The reference ultimate load P
u0 and the

reference maximum deflection δ
u0 are the values of the plate with a/b=1. An increase in the aspect

ratio increases the plate’s capacity and decreases the plate’s maximum deflection. This is expected

because the support conditions are all simple supports. When the width of the plate is smaller in

comparison to the length, the middle layer of FRP oriented in the width direction helps transferring

the load to the width sides. All three models predict the same behaviour and the results are almost

identical, with the exception of the plate having large aspect ratios where the stress model provides

higher prediction of the plate’s capacity.

Fig. 9 Ultimate load ratio and maximum deflection ratio of a simply-supported plate with externally
reinforced FRP laminates having different aspect ratios (Solid lines – stress model, Dash lines 
combined model, Dotted lines  displacement model)
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5. Conclusions

Three 3D nonlinear finite-element models, namely the stress model, the transition model, and the

displacement model, were developed to study the behavior of concrete beams and plates with and

without external reinforcement of FRP. The stress model uses both transverse stress and

displacement components as nodal degrees-of-freedom. The transition model has both stress and

displacement components as nodal degrees-of-freedom on one surface, and only displacement

components as nodal degrees-of-freedom on the opposite surface. The displacement model uses

only displacement components as nodal degrees-of-freedom. The stress model consumes more

computational time in the analysis than the displacement model. The displacement model provides

less accurate results in stress calculation than the stress model does. The transition model is used to

connect the stress and the displacement models, and the resulting model is a combined model. To

analyse a beam or plate having a general configuration, the combined model may be used with the

stress model in a restricted geometric portion and the displacement model in a general geometric

portion. The results of the analysis show that the stress model provides an excellent prediction of

the behaviour of an RC beam. Both the displacement and the combined models give higher load

capacity and lower maximum displacement. Compared to the displacement model, the combined

model does not provide a better prediction of the beam’s ultimate load. However, it predicts the

mid-span deflection more accurately. All the developed models are used in the study of the

nonlinear behaviour of RC beams and concrete plates, with and without external FRP reinforcement. The

analyses show that 
● An increase in the FRP layers almost linearly increases the load capacity of the RC beams and

decreases the maximum mid-span deflection of the beams. This occurs at a higher rate when

fewer FRP layers are used and at a lower rate when a larger number of FRP layers are used.
● An increase in the length of FRP reinforcement increases the load capacity of the RC beams and

decreases the maximum mid-span deflection of the beams. These effects, however, diminish

when the length of FRP reinforcement is greater than 50% of the beam’s length.
● The laminating scheme plays an important role in the behaviour of concrete plates. For square

plates, it is found that, for sixteen layers of externally reinforced FRP, the fibre-orientation of

[+45o]4/[− 45o]4/[+45o]4/[− 45o]4 provides the highest load capacity and the least maximum

deflection of the plates. 
● For rectangular concrete plates having different width-to-length ratios with 0o/90o/0o FRP

reinforcement, an increase in the plate aspect ratio increases the plate capacity and reduces the

plate maximum deflection. 
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Appendix 

The shape function matrix in [N] Eq. (10) is given by

(A-1)

(A-2)
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(A-8)

Here

(A-9)

The shape function matrix [ N ] for a transition element is given by Eq. (A-1) where
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(A-11)

when n=4, 5, 6, 10, 11, 12, 16, 17, 18. i, j, p are q defined in Eqs. (A-3) and (A-4). Here

(A-12)

The shape function matrix [ N ] for a displacement model is given by Eq. (A-1) where  is

defined in Eq. (A-10)  for all n. 
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