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3D material model for nonlinear basic creep of concrete
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Abstract. A new model predicting the nonlinear basic creep behaviour of concrete structures subjected
to high multi-axial stresses is proposed. It combines a model based on the thermodynamic framework of
the elasto-plastic continuum damage theory for time-independent material behaviour and a rheological
model describing phenomenologically the long-term delayed deformation. Strength increase due to ageing
is regarded. The general 3D solution for the creep theory is derived from a rate-type form of the uniaxial
formulation by the assumption of associated creep flow and a theorem of energy equivalence. The model
is able to reproduce linear primary creep as well as secondary and tertiary creep stages under high compressive
stresses. For concrete in tension a simple viscoelastic formulation is applied. The material law is then
incorporated into a finite element solution procedure for analysis of reinforced concrete structures. Numerical
examples of uniaxial creep tests and concrete members show excellent agreement with experimental
results.
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1. Introduction

The serviceability and long-term performance of concrete structures is strongly influenced by the

time-dependent behaviour of the material. Quasi-brittle, cementitious materials such as concrete

exhibit creep deformations, that can be significantly larger than the time-invariant, instantaneous

ones, due to their viscoelastic properties. The interaction of the evolution of creep strains and

microcracking may cause in addition a considerable reduction of the structural lifetime, which may

even lead to a delayed structural collapse. 

The incorporation of the most important physical influences on the origin of creep into a

numerical prediction model is still a subject of extensive scientific studies. In the past decades,

intense efforts have been made to formulate theories for the approximation of creep strains in

concrete structures. Since early constitutive creep models based on empirical functions and derived

from experimental observations, major success has been made in defining more sophisticated

theories (Ba ant and Wu 1974, Ba ant and Chern 1984). The transition from the definition of

phenomenological models to physically based creep models enabled to take moisture diffusion and

its influence on long-term deformation into account (Ba ant and Najjar 1971 Wittmann and

Roelfstra 1980). This led to a deeply improved understanding of the physical influences on creep.

The developed theories have been further supported by consideration of ageing of the material as a

consequence of cement hydration, characterised by a volume growth of the hydration products

(Ba ant and Prasannan 1989). With these achievements, models have been established to simulate
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close-to-reality a significant decreasing creep evolution with the age of material increasing. With the

work of Ba ant, et al. (1997), which unified the theories of concrete solidification and long-term

creep, the development of linear ageing viscoelastic creep models has become essentially

accomplished. 

However, if ultimate limit state analyses of concrete structures have to be performed, the

interaction between concrete microcracking and nonlinear creep at high compressive stresses seems

to be still one of the most important problems, that have to be examined (van Zijl, de Borst and

Rots 2001). Only a few material models can be found, in which nonlinear basic creep evolution

under high compressive stresses is considered. Frequently used nonlinear material models, that

couple creep and damage evolution, are based on the Solidification Theory or its extension the

Microprestress Solidification Theory (Mazzotti and Savoia 2003, Cervera, et al. 1999, Ozbolt and

Reinhardt 2001). It has been proven, that these models provide a suitable basis for simulation of

nonlinear creep effects. Nevertheless, they consider material nonlinearities by an artificial extension

of the underlying formulation, such as empirical damage or creep acceleration functions. A

combination of arbitrary 3D stress-strain-states with nonlinear, divergent creep strain evolution and

time-invariant elasto-plastic-damage behaviour is not considered in these theories. 

Therefore in this paper a recently proposed time-invariant material model for concrete is extended

to account for long-term nonlinear basic creep to analyse the influence of delayed deformations on

the long-term behaviour and structural safety of reinforced concrete structures. The theoretical

framework of this model is based on the multisurface elasto-plastic continuum damage theory.

Irreversible plastic strains as well as damage, which is phenomenologically seen as a reduction of

the elastic stiffness, is accounted for. Long-term creep evolution is decribed with help of a

rheological model in analogy to well-known viscoelastic theories, but built up of nonlinear spring-

dashpot-systems. This enables not only to simulate primary creep, but also both secondary and

tertiary creep stages, where micro-cracks develop, coalesce and where finally a macro-crack leads to

local material instability. The differential equation for the creep strains gained from the rheological

model is reformulated in a rate-type form to consider the time-dependent ageing of the material.

This contributes to a realistic estimation of the long-term response of concrete structures. This

uniaxial creep model is extended to three-dimensional stress conditions by means of an associative

evolution law just like in well-known plasticity models. The relationship between the general 3D

state and the equivalent uniaxial state is established with help of an energy dissipation assumption.

Numerical examples show, that this creep law is able to directly fit generally known experimental

benchmark tests. 

2. Time-invariant material model 

The total material formulation for concrete is separated into two parts: A time-invariant material

model (short-term model), which predicts the time-invariant mechanical response of the material,

and a constitutive creep law (long-term model), which describes time-dependent nonlinear basic

creep deformations. In this section, only the basic formulations for the short-term model, which are

important for extension onto creep, are presented briefly. A more detailed description can be found

in Krätzig and Pölling (2004) and Bockhold, et al. (2003). The advantage of this material

formulation is that it unifies all major deterioration phenomena of concrete, namely damage and

plasticity, with help of only a few material parameters. 
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The fundamental basis of the presented concept is the stress-based elasto-plastic continuum

damage theory (Govindjee, et al. 1995). This theory represents a convenient framework for the

numerical simulation of the nonlinear material behaviour of ductile-brittle materials such as

concrete, which exhibit residual plastic deformations as well as damage due to micro-cracking. The

basic idea is, that the evolution of damage on the micromechanical level is phenomenologically

considered as the reduction of the macroscopic modulus of elasticity. Therefore the plastic strain

tensor ε pl, the damage compliance tensor of fourth order da and the scalar hardening variable q are

selected as thermodynamical internal variables. The corresponding stress-strain relation reads: 

σ = ( 0 + da)−1 : (ε − ε pl) (1) 

The domain of admissible stresses Ε is defined in the space of associated variables through a

flow/damage potential φ : 

(2)

where α (q) defines the hardening/softening function. If the material is unloaded, irreversible strains

as well as a reduced elastic stiffness can be observed. In order to distinguish plastic from damaging

strains, the total inelastic strain tensor is seperated into a plastic and damaging part with help of the

scalar variable β, where , as originally proposed in Meschke, et al. (1998). Assuming

associated plastic/damaging flow, one may write: 

(3)

In Eq. (3)  represents the consistency parameter, which defines the amount of plastic/damaging

flow, while the derivative  gives the direction of it in stress space. The formulation for the

evolution of the internal variable α(q) is derived from the principle of maximum inelastic

dissipation: 

(4)

With these definitions the fundamental aspects of the time-invariant material formulation are

presented. For the extension with regard to long-term creep deformations the further description is

distinguished between concrete under compressive and under tensile loading. 

2.1. Concrete under compression 

To describe the behaviour of concrete under compression, a yield/damage potential of Drucker-

Prager type is used, which is especially applicable for concrete under dominant biaxial stress states.

It is defined through the first invariant I1 of the stress tensor, the second invariant J2 of the stress

deviator s, a parameter µ, which controls the influence of the hydrostatic stresses on damage or

yield, and the hardening/softening function αc(qc) as follows 

(5)
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where the subscript ‘c’ refers to concrete under compression. The hardening/softening behaviour of

concrete in compression is controlled by defining the function αc(qc) by means of the uniaxial

stress-strain relation given in the Model Code (CEB/FIP 1991): 

. (6) 

The relation is separated into three different branches as graphically shown in Fig. 1(a): A linear-

elastic, a strain hardening and a strain softening branch. The latter is characterised by damage

localization in narrow fracture zones and by formation of macro-cracks. To overcome a mesh

dependence of the solution, the fracture energy concept is adopted here (Ba ant and Oh 1983). It

defines the softening branch in dependence on the fracture energy Gcl and on the characteristic

length leq of the finite element. 

2.2. Concrete under tension 

For concrete under tensile loading it is assumed, that in each of the main stress directions,

characterised by the three eigenvalues of the stress tensor and its corresponding eigenbases, a crack

may develop completely autonomous. For simplicity, plastic strains are in addition neglected (β=1)

and nonlinear hardening is not regarded (see Fig. 1(b)). Tensile failure is described with a damage

potential of Rankine type: 

(7) 

where ξ(i) represents the i-th eigenvalue of ξ=σ−αt, fct defines the tensile strength of concrete and the

subscript ‘t’ refers to concrete under tension. The internal history variable α t denotes the back-stress

tensor. The derivatives of the potential with respect to σ and α t yield the eigenvalue bases of ξ :

. (8)

 

Finally, applying the normality rule 

(9)
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Fig. 1 Uniaxial stress-strain relation used for concrete under (a) compression and (b) tension
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and the anisotropic damage rule from (Govindjee, et al. 1995)

(10)

the evolution laws for the main variables have been derived. The formulation of the kinematic

softening rule is described in detail in Krätzig and Pölling (2004). 

Damage localization is again considered by means of the fracture energy Gf and the characteristic

length leq of the respective finite element as indicated in Fig. 1(b). 

The time-invariant material model for concrete under compression and tension is unified in the

framework of the multi-surface material theory (de Borst and Gutiérrez 1999, Hofstetter and Mang

1995). It contains only 9 material parameters, which are summarised in Table 1. The key advantage

of this model is, that it combines all major deterioration phenomena of concrete, namely irreversible

plastic strains and stiffness degradation or damage due to micro-cracking. It is furthermore able to

reproduce the cyclic deformation behaviour of the material with help of a minimum number of

well-defined, experimentally identifiable material parameters. The material formulation is therefore

very well applicable for close-to-practice numerical simulations of complex concrete structures

(Petryna and Krätzig 2005). The extension of this model to account for long-term nonlinear creep

will be shown in the following section. 

3. Nonlinear 3D basic creep model 

Concrete under high sustained compressive stresses exhibits creep deformations, that can be

significantly larger than the deformations resulting from time-invariant, instantaneous loadings

(Mazzotti and Savoia 2002). While in the domain of service loads, which can be characterised by

stress levels up to one third of the compressive strength, the assumption of a linear relation between

stresses and creep strains is reasonable, a nonlinear increase of creep strains is observed, if this

domain is exceeded. For stresses above approximately 80% of fc two additional major aspects

emerge, as visualised in Fig. 2: The domain of primary creep, usually observed in low-stress creep

tests, turns over into a domain of secondary creep, which is characterised by constant creep strain

increase. This deformation behaviour is additionally accompanied by evolution and coalescence of

micro-cracks (Meyers, et al. 1969). If the stress level stays constant, or even does not decrease, a

tertiary creep domain is initiated. At this point the creep evolution becomes strongly nonlinear,

leading to divergent deformations due to extensive micro-cracking and finally to local material

failure. This behaviour is counteracted by a gradual increase of the concrete stiffness and strenght as

a result of cement hydration. 
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Table 1 Material parameters of the time-invariant model

fc Compressive strength Ec Young’s modulus 

fct Tensile strength νc Poisson’s ratio 

εc Crushing strain Gf Fracture energy 

Gc1 
Crushing energy b Damage parameter 

µ Biaxial failure parameter 
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A general 3D constitutive creep model is presented in the following part of this paper, which is

able to reproduce numerically not only nonlinear creep deformations of concrete under sustained

high loads but also long-term evolution of damage and its coupling with instantaneous, short-term

deteriorations. The creep model is based on a rate-type formulation and takes time-dependent ageing

into account. Through the coupling with the previously presented time-invariant elasto-plastic

continuum damage model, the material description represents general constitutive law, that is able to

reproduce nonlinear creep as well as stress relaxation responses originating from arbitrary un- and

reloading cycles. 

The extension of the presented time-invariant model for long-term nonlinear creep deformations is

performed by using a rheological chain, as presented in Fig. 3. This chain represents the mechanical

interpretation of the general 3D materials response on a given sudden or sustained loading. The

short-term model is defined through the individual fractions of initial elastic strains ε el, damage

strains ε da and plastic strains ε pl. The long-term behaviour is governed using a series of spring-

dashpot chains (creep chains), in analogy to the classical theory of viscoelasticity (Tschoegl 1989).

According to this and assuming small strain measures, the (linearised) strain tensor can be

decomposed into a time-invariant and a time-dependent part 

ε = ε el + ε da + ε pl + ε cr  (11) 

Fig. 2 Qualitative creep behaviour of concrete under low and high stresses

Fig. 3 Rheological model combining short-and long-term strains
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where cr defines the creep strain tensor. Since the rheological chain represents an uniaxial analogy

to the general 3D case, a transformation rule from uni-to multi-axial stress and strain states has to

be found. In accordance with classical plasticity theories (Simo and Hughes 1998, Simo, et al.

1988) the assumption of associated plastic flow is extended here to account for creep strains. The

underlying assumption is, that creep and plastic strains can be regarded as completely equivalent,

since they originate from the same load in different time scales. This leads to the following

evolution equation (Pfister and Stangenberg 2005): 

(12)

where cr defines the creep consistency parameter. The evolution law is derived from the assumption of

equivalence of uniaxial and 3D energy dissipation. It is proposed, that the energy dissipated by a

given stress state and by the appendant strain increment is equal to that energy, which is dissipated

by an equivalent uniaxial stress, that is derived from the 3D stress state with help of the flow

potential, and the accordant uniaxial creep strain increment. The corresponding mathematical relation

reads: 

(13)

A given stress tensor σ is accordingly transformed into the equivalent uniaxial stress σ eq(σ).

Substituting Eq. (12) into Eq. (13) yields the evolution law for the creep consistency parameter: 

(14)

where cr is the unixial creep rate derived from the mechanical model. Finally, with the creep

consistency parameter known, the increment of the creep strain tensor is calculated with help of Eq.

(12). 

The transformation rule Eq. (14) represents a very convenient and applicable way to conclude

from a simple uniaxial stress state to a more complicated multi-axial one. The creep model has to

be validated therefore only at uniaxial creep tests. Once this has been done, it can be applied to the

numerical simulation of arbitrary complex concrete structures. 

For concrete under compression and under tension a different creep behaviour can be observed.

Under compressive loadings, as mentioned before, a strong nonlinear increase of delayed strains up

to material failure can be detected. However, if the material is loaded under sustained tensile

stresses, the relation between stresses and creep strains can be regarded as linear viscoelastic

(Karihaloo and Santhikumar 1998). Therefore the following formulation is used for concrete under

compression only. For concrete under tension, a simple viscoelastic model is used, which is not

discussed more closely in this paper. 

The creep strains for concrete under compression are calculated from the rheological chain

indicated in Fig. 3. The key idea is, that the implied material response of the uniaxial spring and

dashpot due to an imposed stress is directly verified by experimental observations. The obtained

results for the creep strains show good agreement with experimental data. They are gained without

need of extensive curve fitting procedures or artificial extensions. 

As pointed out before, the stress-strain relation of concrete under a sustained load is limited by

the long-term compressive strength fc,T 0.8fc. Therefore it is assumed, that the spring of the
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rheological chain is controlled by a nonlinear stress-strain relation taken from the Model Code

(CEB/FIP 1991) now restricted by fc,T : 

. (15)

Fig. 4 illustrates the stress-strain relation of the spring. To pay attention to ageing of concrete, all

material parameters in this relation are time-dependent. Irreversible plastic creep strains ε cr,pl are

considered by introducing an additional plastic slip element, which is controlled by the stress-

equivalent internal variable α cr. If the plastic flow condition φ cr =  is violated, plastic/

damaging flow takes place and the internal variable is set to α cr = | σs |. Otherwise the spring is

unloaded. In this case linear unloading is assumed, where, in analogy to the time-invariant material

model, a scalar variable b decomposes inelastic creep strains into plastic and damaging ones: 

.  (16)

Following the work of Meschke (1998), as a result of strength and stiffness increase additional

temporal irreversible creep strains ε cr,t occur. Under the assumption, that the modulus of elasticity

Ec(t) is a finite, nonzero value, which approaches for t → ∞ the value , the rate of ε cr,t can be

calculated as

. (17)

The dashpot of the creep chain in Fig. 3 is governed through a linear relation between the stresses

σ d and the creep strain rates cr, depending on the viscosity η of the material. In this paper, the

viscosity is modified in that way, that the special time-dependent deformation behaviour of concrete

can be suitably reproduced. The first modification accounts for the special shape of creep curves. It

can be deduced from experimental observations, that the viscosity η of concrete may be defined as
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Fig. 4 Stress-strain relation of the spring of the creep model
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a variable, which increases monotonically with time. Hence, if t0 is the age of the material at

loading, for (t − t0) → 0 the viscosity also tends to zero. 

The second modification incorporates the stress-dependency of η. It follows from experimental

observations of concrete specimen under high sustained loads, that not only the magnitude of creep

strains of a higher loaded specimen is larger, than that of a lower loaded one, also the creep strains

develop faster. This phenomenon, which can be interpreted physically as a process of material

consolidation, is considered here by using a stress-dependent formulation for η. 

With these assumptions the viscosity of the dashpot is defined in the following form: 

 (18)

where the subscript ‘0’ refers to the age of the material at loading and  represents the retardation

time, defining the velocity of stress exhaustion inside the dashpot. The equivalent stress σ eq(σ) is

determined form the Drucker-Prager potential as 

. (19)
 

Then the relation between stresses and strain rates inside the dashpot is defined through 

. (20) 

The relations for the stresses in Eq. (15) and Eq. (20) obviously violate the second law of

thermodynamics, due to the fact, that they incorporate ageing constituents (Ba ant and Chern 1984).

To overcome the ill-posedness of the mathematical problem the stresses are expanded into a Taylor-

series of first order in time. Therefore in accordance to Ba ant’s exponential algorithm (Ba ant and

Wu 1974), it is assumed, that the stress varies linearly over a given time interval [tn; tn+1], where tn+1

= tn + ∆t and ∆t represents the incremental time step: 

σn+1 = σn + ∆t . (21) 

Under the assumption that fc, Ec and εc are constant during a sufficiently small time-increment and

that the tangent modulus CT is approximately equal to that of the last time step and in analogy to

the stress formulation of the dashpot the stress rate of the spring reads 

. (22)
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(24)

with

. (25)

Defining stress equilibrium at the rheological chain gives the differential equation for nonlinear

basic creep of ageing concrete: 

(26)

which has to be solved regarding the creep strain . This can be done with well-known implicit

time integration procedures, e.g., with the NEWMARK-scheme (Newmark 1959). This delivers the

unknown values ε cr, cr and cr at tn+1. 

In the case of unloading (φ cr < 0), the spring follows a linear-elastic stress path. Then also the

temporal irreversible and the plastic creep strains as well as the scalar creep-damage variabel d cr

have to be known. These are calculated as follows: With the Backward-Euler-integration 

(27)
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new creep strain increment leads to an unbalancing of the internal stress-strain equilibrium

condition, an alternating iterative updating algorithm of stresses, plastic and creep strains is used. It

is based on the classical stress-based multi-surface return mapping algorithm. For details see e.g.,

Simo, et al. (1988), Ortiz and Martin (1989), Simo and Hughes (1998). 

4. Numerical examples 

The following numerical examples are presented to illustrate the accuracy of the proposed

combined elasto-plastic continuum damage model for concrete under short-and long-term loading.

At first some features of the model with regard to nonlinearities and age of the concrete are

discussed. After that a series of creep tests is simulated numerically to underline the model qualities

on material point level. Finally, creep buckling of a reinforced concrete column is analysed. 

4.1. Model features 

The qualitative prediction behaviour of the creep model and the influence of the time-dependent

ageing of the concrete on the long-term deformation is analysed in Fig. 5. The numerical simulation

is carried out with three creep chains with retardation times of = 1·103 , 1·104 and = 1·105

and time step sizes of ∆t = 0.01[d]. Ageing of concrete is considered by means of a time-dependent

function for the compressive strength in accordance to (Nechvatal 1996): 

(33) 

while for the modulus of elasticity Ec and the crushing strain εc of the creep chain the following

relations originally proposed by Nechvatal (1996) and de Schutter and Taerwe (1996) are used: 

(34) 
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Fig. 5 Analysis of the influence of ageing on concrete creep
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From Fig. 5 it can be seen, that the developed model is generally able to simulate nonlinear basic

creep. A non-proportional increase of creep strains under rising stresses as well as secondary and

tertiary creep domains under stresses above the creep resistance fc,T is predicted. In Fig. 5(a) the

sensitivity of creep with respect to cement hydration in combination with the stress level is

analysed. It can be seen, that after approximately 100 days of sustained loading differences in the

calculated creep curves of the ageing and non-ageing material dramatically increase. The magnitude

of differences strongly depends on the load level. Under high stresses, the numerical simulations

yield a completely different solution, if ageing of the material is neglected. 

The role of time-dependent material parameters is also analysed in Fig. 5(b), which shows

calculated creep curves depending on the age t0 of the material at loading. Again, a big difference

between the predicted curves is given for high loads. In the domain of service loads stress and

strength variation with time seems to be less important, while at high stresses the age of the

concrete defines, whether the material fails or not. 

4.2. Creep experiments 

We now analyse the prediction quality of the developed long-term material model by means of

experimental results taken from Roll (1964) and Nechvatal (1996). The numerical simulation is

carried with the material parameters given in Table 2. The number of creep chains as well as the

retardation times of each chain have been found by validation at the creep test with the lowest

applied stress. The numerical simulation at higher stresses is then performed with the same

Table 2 Material parameters used for creep simulations on material point level

fc,28 [MN/m2] 1 [d] 2 [d] 3 [d] 4 [d] 5 [d]

Roll (1964) 42.0 5·102 1·103 5· 103
 1·104

 5·104
 

Nechvatal (1996) 35.6 1·102 1·104 1·105
 – – 

Fig. 6 Calculated creep strains at different load levels ( ) in comparison to experimental results obtained by
Roll (1964) ( ■ )
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parameters without any further adaption. 

A comparison of calculated and experimental creep strains in Fig. 6 and Fig. 7 shows a satisfying

agreement for low, medium and high stresses. Not only the final creep value is well predicted in the

numerical simulation, also the evolution of creep strains in time is reproduced accurately. The

developed material theory is obviously able to model long-term creep of concrete quantitively and

qualitatively close-to-reality. 

4.3. RC column under sustained loading 

Finally, the material model is used in the context of the nonlinear finite element method to study

the lifetime performance of an eccentrically loaded reinforced concrete column under sustained

loading in comparison to experimental results. For the numerical simulation a 3D continuum-based

finite shell element is used (Krätzig and Jun 2003). The element formulation is based on multi-layer

kinematics as shown in Fig. 8. Steel reinforcement is modelled as uniaxial layer with smeared

material properties and elasto-plastic material behaviour, which takes isotropic and kinematic

hardening into account. 

Fig. 9 provides the geometry and the load arrangement of the column and the material parameters

used in the numerical simulation. The column is discretised with 12 finite elements. To study the

short-and long-term performance of the structure several load scenarios are carried out according to

an experimental program of three identical columns documented in Espion (1993). In Fig. 10 the

numerical solution is compared to the experimental data. The first column has been initially loaded

up until failure. From Fig. 10 (left) it can bee seen, that the maximum load P = 444 [kN] is suitably

approximated in the simulation. The column fails due to buckling as a result of progressive tensile

cracking and stiffness reduction. The second column is loaded initially up to P = 250 [kN]. The

load is kept constant for 200 days and afterwards again increased until structural failure. For creep

Fig. 7 Calculated creep strains at different load levels ( ) in comparison to experimental results obtained by
(Nechvatal 1996) ( ■ )
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simulation four creep chains with retardation times of  = 1 · 102 , 5 · 102, = 1 · 103 and  = 1 ·

104 [d] are used. The calculated load-deflection curve in Fig. 10 (left) shows good agreement with

the experimental data. Obviously, the creep deformations lead to a reduced maximum carrying

capacity. The maximum load is reduced to 345 [kN], which is 78% of the initial value. The lifetime

performance under creep deformation is analysed by means of a third experiment. For this, the

column is subjected to a sustained load of P = 280 [kN], which is only 12% higher than the

previous creep load. Fig. 10 (right) gives the corresponding time-deflection curves for both, creep

experiments and numerical simulation. Now the higher loaded column is subjected to a time-

dependent stability failure due to progressive creep deformations. The reason for this is the

interaction between geometrical and physical nonlinearities. The creep strains lead to a new

Fig. 8 3D continuum-based shell element with multi-layer kinematics

Fig. 9 Geometry of the RC column and material parameters used for the numerical analysis



3D material model for nonlinear basic creep of concrete 115

deformation state with changed stresses and progressive micro-cracking. If a critical load factor is

exceeded the deformations increase until equilibrium between internal and external forces is lost. A

good agreement between the numerical and the experimental solution can be observed. 

This example shows, that creep deformations may lead to a reduced carrying capacity and to a

reduced lifetime of reinforced concrete structures. In some cases it may even lead to time-dependent

stability failure. This structural behaviour can be well reproduced with help of the presented

material model.

5. Conclusions

This paper proposes a new 3D material model to simulate the lifetime behaviour of reinforced

concrete structures under nonlinear basic creep deformations. It consists of a time-invariant material

model for concrete, which is based on the elasto-plastic continuum damage theory, and a time-

dependent rheological model, which incorporates explicitly the nonlinear relations between stresses

and creep strains and stresses and creep strain rates. Ageing of the material is considered with help

of time-dependent material parameters. The material model is able to cover the whole range of

creep strains from low to high stress levels. The interaction between geometrical and physical

nonlinearities in reinforced conrete structures is analysed in the framework of the finite element

method with help of a 3D continuum-based shell element. Numerical examples underline the

efficiency of the proposed model and emphasise the effect of creep on the lifetime performance of a

column under eccentrical loading. 
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