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A direct XFEM formulation for modeling of cohesive 
crack growth in concrete
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Abstract. Applying a direct formulation for the enrichment of the displacement field an extended finite
element (XFEM) scheme for modeling of cohesive crack growth is developed. Only elements cut by the
crack is enriched and the scheme fits within the framework of standard FEM code. The scheme is
implemented for the 3-node constant strain triangle (CST) and the 6-node linear strain triangle (LST).
Modeling of standard concrete test cases such as fracture in the notched three point beam bending test
(TPBT) and in the four point shear beam test (FPSB) illustrates the performance. The XFEM results show
good agreement with results obtained by applying standard interface elements in FEM and with
experimental results. In conjunction with criteria for crack growth local versus nonlocal computation of
the crack growth direction is discussed.

Keywords: extended finite elements-XFEM; fracture mechanics; cohesive crack growth.

1. Introduction

Throughout the last century research has been carried out regarding methods to determine the

ultimate strength of reinforced concrete structures. Today well-documented methods are available

for estimating the ultimate strength of most reinforced concrete (RC) structures and the theory of

rigid plasticity is highly developed (e.g. Nielsen 1999). However, most of these methods require the

use of empirical factors and do not consider phenomena such as size effects and reinforcement

arrangement in a fully consistent way. Regarding RC structures in the serviceability limit state the

predictive capability of existing methods of analysis is limited. Predictions regarding the

development in e.g., stiffness due to cracking, development in crack widths and the deformations at

ultimate loading for RC structures are often based on empiric rules.

A consistent model for modeling of RC structures may be obtained if the model is able to predict

the cracking that takes places long before the ultimate capacity of RC structures is reached.

Cracking influences structural properties and is one of the governing factors in relation to durability

and service life prediction. A consistent approach for modeling of concrete may be based on the

concept of fracture mechanics and the capability to model localized crack growth. Aiming at the

capability to model real size RC structures with complex shapes it would be beneficial if the model

fits within the concept of the finite element method (FEM) and that the method do not require to
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dense FEM meshes.

Concrete belongs to the group of materials that are classified as being quasi-brittle (e.g. Karihaloo

1995) and a suitable model for crack propagation in concrete is the fictitious crack model by

Hillerborg, et al. (1976) that models the crack propagation within the framework of cohesive

cracking (Barenblatt 1962, Dugdale 1960).

Today several commercial FEM codes have interface elements suitable for modeling of discrete

cohesive cracks. The use of interface elements however requires the crack path to be known

beforehand and is therefore less relevant when the aim is to predict crack patterns. Several programs

also have elements for smeared cracking that are based on the concept of a crack band (Ba ant and

Oh 1983) however the smeared approach is not well-suited for modeling of localized crack growth.

Remeshing has been used as a tool when modeling crack growth, (Bouchard, et al. 2000, 2002,

Patzák and Jirásek 2004). Remeshing is however cumbersome hence it requires projection of

variables between different meshes. Three methods: the element free Galerkin method (Belytschko,

et al. 1996), the embedded crack methods (e.g. Jirásek 2000) and the extended finite element

method (XFEM) (Belytschko and Black 1999) allow modeling of crack growth without remeshing.

While the element free Galerkin method deviates in its principal structure from the structure of

commercial FEM codes, embedded cracks and the XFEM fits well in the structure of commercial

FEM codes. The XFEM is however preferable to the concept of embedded cracks hence in the

XFEM the strains are independent in the separated parts of the elements whereas they are partly

coupled in the embedded concept (Jirásek and Belytschko 2000).

In the extended finite element method the displacement field consists of two parts, a continuous

and a discontinuous part. The continuous part is the standard displacement field corresponding to

the situation without any cracks. The discontinuous displacement field is based on local partitions of

unity (Melenk and Babus̆ka 1996) and enables the element to include a discontinuity, in the present

case a cohesive crack.

XFEM has been applied to different problems within the area of fracture mechanics. While it was

first developed for linear elastic fracture mechanics (Belytschko and Black 1999, Moës, et al. 1999,

Stolarska, et al. 2001) it has now been applied to different problems such as cohesive cracking

(Wells and Sluys 2001, Moës and Belytschko 2002, Zi and Belytschko 2003, Mergheim, et al.

2005) arbitrary branched and intersecting cracks (Daux, et al. 2000) and three dimensional crack

propagation (Sukumar, et al. 2000). Reference is also made to Karihaloo and Xiao (2002) for an

overview of the earlier works regarding the XFEM.

Considering linear elastic fracture mechanics (Belytschko and Black 1999, Moës, et al., 1999,

Stolarska, et al. 2001) nodes in elements fully cut by the discontinuity was enriched by the step

function while the tip element was enriched with an asymptotic field. In cohesive crack models,

cohesive stresses act near the crack tip and it is assumed that no singularity is present at the crack

tip. However, considering partly cracked elements for cohesive crack growth Moës and Belytschko

(2002) enriched the crack tip element with a set of nonsingular branch functions to model the

displacement field around the tip of the discontinuity. Wells and Sluys (2001) considered fully

cracked elements and applied the Heaviside step function as the only enrichment of nodes with a

supporting side cut by the discontinuity. Applying the Heaviside step function as in Wells and Sluys

(2001) the nodal enrichment influences not only the displacement field in the elements cut by the

discontinuity but also in the elements sharing the enriched nodes, i.e., the enrichments typically

have to be dealt with in a band of three elements along the line of the discontinuity.

Zi and Belytschko (2003) proposed an enrichment of the crack tip element for the case of partly
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cracked elements in which the shifted sign function was applied. The application of the shifted sign

function to a 1D example is illustrated in Fig. 1(b). As shown the enrichment only influences

elements cut by the discontinuity. In Mergheim, et al. (2005) a dual node strategy was applied and

the displacement field was not decomposed into a continuous and discontinuous part in the same

way as in the approach by Wells and Sluys (2001) and Zi and Belytschko (2003). However even

though the basis for the shape functions is different the scheme in Mergheim, et al. (2005) is able to

model the same variation in the displacement field as in the scheme by Zi and Belytschko (2003).

The enrichment as applied by Mergheim, et al. (2005) is illustrated in Fig. 1(c). Although the

authors in Mergheim, et al. (2005) distinct their approach from the XFEM it is essentially based on

the same concept.

In the present paper a direct XFEM scheme for modeling of cohesive crack growth is developed

using the Heaviside step function and limiting the discontinuous displacement field to elements cut

by the crack. The XFEM formulation follows the concepts proposed in Asferg, et al. (2004). The

Heaviside step function, H, is applied as the only enrichment of elements cut by the discontinuity

c.f. Fig. 1(a).

Fig. 1 illustrates how a displacement jump of the magnitude of one may be modeled applying the

three different approaches discussed above. For the present approach and the approach by Zi and

Belytschko (2003) the two upper sketches illustrate the continuous displacement fields for node 1

respectively node 2 while sketch 3 and 4 illustrate the discontinuous displacement fields. Regarding

the approach by Mergheim, et al. (2005) the two upper figures illustrate the displacement field for

the two “original” nodes 1 and 2 while Figs. 3 and 4 depict the displacement fields for the dual

nodes 1* and 2*. Finally the lower sketch in each row depicts an example of a displacement field

containing a jump of the magnitude of one. From Fig. 1 it is evident that the difference between the

three approaches is a question about the applied basis for modeling the displacement field.

Compared to the enrichment by the shifted sign function in Zi and Belytschko (2003) and the

enrichment in Mergheim, et al. (2005) the proposed enrichment is more straight forward but

essential the three formulations models the same discontinuous field.

Common for the approaches in Wells and Sluys (2001), Moës and Belytschko (2002), Zi and

Belytschko (2003), Mergheim, et al. (2005) is that they all adopt a nonlocal approach for the

determination of the crack growth direction. A nonlocal approach is required because of the lack of

capability of the tip element to model equal stresses at both sides of the discontinuity which is most

pronounced when CST elements are considered.

The suggested XFEM scheme fits in the context of standard FEM code and it is applied to the 3-

node constant strain triangle elements (CST) and the 6-node linear strain triangle elements (LST).

The performance of the scheme is illustrated by modeling of fracture in concrete benchmark tests

such as the three point beam bending test (TPBT) and the four point shear beam test (FPSB). In the

present work only elements completely cut by a crack have been considered, i.e., the crack extends

element by element and the crack tip will always be located on an element edge.

In section two the enrichment of the displacement field will be introduced and the discontinuous

displacement fields developed and illustrated for CST and LST elements. Section three concerns the

variational formulation while matters of the implementation is discussed in section four. Section five

shows the numerical examples.
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2. Enrichment of displacement field

The displacement field for a cracked element can be formulated as the sum of the continuous and

the discontinuous displacement field as already illustrated in Fig. 1. The continuous displacement

field is defined equally to the displacement field for an uncracked element, i.e., the displacement

Fig. 1 Comparison of different enrichments of the displacement field: (a) Present formulation, (b) Zi and
Belytschko (2003), (c) Mergheim, et al. (2005). For the present formulation and the formulation by Zi
and Belytschko (2003) the two upper figures illustrate the continuous displacement fields and the
following two figures illustrate the discontinuou displacement field. Regarding the formulation by
Mergheim, et al. (2005) the two upper figures illustrate the displacement field for the two “original”
nodes 1 and 2 while figure 3 and 4 depict the displacement fields for the dual nodes 1* and 2*. The
lower figure in each column illustrates how a displacement jump of magnitude one may be modeled
by the different formulations
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field may be written

(1)

where v c and v d are the degree of freedom (dof) vectors while N c and N d are the interpolation

matrices. c refers to continuous and d to discontinuous.

The element discontinuity interpolation matrix, N d, is chosen as suggested in Asferg, et al. (2004).

(2)

where HI (x, y) is the 2D Heaviside step function for node I. The step function HI (x, y) is 0 on the

same side of the discontinuity as node I and 1 on the other side.

Fig. 2 illustrates a discontinuous displacement field for a CST element cut by a crack while Fig. 3

illustrates two of the discontinuous displacement fields for a LST element. The left most subfigure

in each figure shows the crack geometry, coordinates to the start and the endpoints are given in area

coordinates, while the remaining subfigures show individual nodal discontinuous displacement

fields.

From Fig. 2 and Fig. 3 it is seen that the choice of interpolation for the discontinuous

displacement field ensures that the discontinuous contribution to the displacement field vanish at all

element edges not cut by the discontinuity implying the discontinuous displacement field to be

included only in elements cut by the crack.
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Fig. 2 Example of the enrichment of the displacement field for cracked CST element. (a) Crack geometry, (b),
(c), (d) discontinuous displacement field for discontinuity dof’s in node 1, 2 and 3

Fig. 3 Example of the enrichment of the displacement field for cracked LST element. (a) Crack geometry, (b)
and (c) discontinuous displacement field for discontinuity dof’s in node 1 respectively node 6
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Fig. 4 illustrates the enrichment at system level. Only nodes who’s support is cut by the

discontinuity are enriched. The discontinuity dof’s located at the element edge where the crack tip is

located have to be set to zero to ensure that the discontinuity at that edge is zero.

3. Variational formulation

Given a cohesive crack in a structure in a state of plane stress or plane strain described in a

Cartesian coordinate system x,y (cf. Fig. 5), the arc length along the crack is termed s, and n,s is a

curve linear coordinate system, n being normal to the crack face. The positive direction of s is seen

on Fig. 5. The orientation of n determines the positive side of the crack. The stress state in the

crack may be defined by the normal stress σn and the shear stress τns while work-conjugated

generalized strains are the opening of the crack,  and the slip in the crack,

 A small strain / small displacement static theory is used and the material outside the

crack is assumed linear elastic.

Let  denote a jump, then the stress increments d cr across the crack surfaces are related to

the increments in the displacement jump, , i.e., the separation of the crack surfaces through the

tangential material stifiness matrix .

(3)

For the uncracked part of the structure, the stress vector  and the strain vector

 are defined as usual and related through the standard material stiffness

matrix D, specified below for an isotropic material in plane stress.
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Fig. 4 Enrichment at system level for a mesh with
LST elements. Nodes marked with a circle or
a square are enriched. Discontinuity dof's in
nodes marked with a square are set to zero

Fig. 5 Cohesive crack in a two dimensional domain
with f representing both domain load and
boundary load
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(4)

The virtual internal work-per-unit length of the crack  and the virtual internal work-per-unit

area of the uncracked part of the structure  may now be written, δ referring to a virtual quantity

 

(5)

For the entire structure the virtual internal and external work becomes

(6)

where f is the load on the structure.

By applying incremental quantities, the incremental stiffness relation, can obtained by:

(7)

where V is the system DOF vector and ∆ refers to an incremental quantity.
Special attention must be paid to the internal work, because the contribution from each element to

the tangential stiffness KT depends on whether the element is cracked or not. The element tangential

stiffness matrix, kT, for a cracked element is found by the following procedure. From Eqs. (l) and

(2) the strain vector in a cracked element, except in the crack itself, is obtained

(8)

where Bc and Bd are the strain distribution matrices corresponding to the interpolation matrix Nc

respectively Nd. 

Due to the displacement field from the first term in Eq. (1) being continuous, the strains in the

crack itself may be written as 

(9)

here, B cr is the strain distribution matrix in the crack, T is the transformation matrix between the

(x, y) and (n, s) coordinate systems, while  and  are the discontinuous interpolation matrices

on the positive and negative sides of the crack respectively.

Applying the strain relations in Eqs. (8) and (9) when formulating the virtual incremental internal

work, kT defined by δW
i=δ vTkT ∆v, where v

T= , is found to be

(10)
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crack is constant and thus only the stiffness contribution from the crack itself is non-linear.

The element nodal forces, q, depend like kT, on the crack opening, and they are determined

analogous to kT. The contribution to q from the crack, q
cr, is found from the stresses in the crack.

The stresses in the crack are related to the displacement jump across the crack according to Eq. (3).

By adding this contribution to the contribution from the part of the element outside the crack, q is

obtained as

(11)

4. Implementation

This section concerns the implementation of the XFEM scheme. First the condition for smooth

crack closure is discussed. Hereafter the integration scheme for the enriched elements is presented.

Then the criteria for the crack propagation are dealt with and finally the choice of the algorithm to

solve the non-linear equations is discussed and the algorithm is given in a schematic form.

4.1. Conditions for smooth crack closure

In order to secure that the cohesive crack closes smoothly it is required that the stress intensity factors

at the crack tip are vanishing (Vandewalle 2000). In Moës and Belytschko (2002) the mode I stress

intensity factor, KI, is evaluated applying a domain integral and when performing the iterations the load

factor is determined such that KI is zero at the crack tip. In the work by Zi and Belytschko (2003) it is

stated that the equilibrium equations have been supplemented by a smooth crack closure condition at

system level. Equivalent to the zero stress intensity factor condition, Zi and Belytschko require the stress

projection in the normal direction of the crack to be equal to the tensile strength at the crack tip.

However, adding an extra equation to be fulfilled at system level makes the structure of the algorithm

different from the structure of most algorithms applied in commercial FEM codes. Investigations using

cohesive interface crack elements by Stang, et al. (2006) show that smooth closure is automatically

achieved in a finite element formulation with a stress criterion when a sufficient mumber of elements

are applied. However, in the case considered in this paper, where the elements are either uncracked or

fully cracked, it is just ensured that the stresses in the element next to the crack-tip element do not

exceed the tensile strength. This approximately ensures smooth crack closure.

4.2. Integration of enriched elements

To ensure correct integration in elements cut by the discontinuity, integration must be performed

independently on each side of the discontinuity. For integration purposes elements cut by the

discontinuity are therefore subdivided into three triangular areas as illustrated in Fig. 6. In the case of

CST elements one point Gauss quadrature is applied to each sub triangle and two integration points

are used on the line of discontinuity. In the case of LST elements three point Gauss quadrature is

applied in each sub triangle and three integration points are used along the line of discontinuity.

In elements not cut by the discontinuity standard Gauss quadrature is applied - one point Gauss

quadrature is applied in the case of CST elements and three point Gauss quadrature is applied for

LST elements.
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4.3. Crack growth

In the present work a discontinuity is introduced in the element, when the principal stress in the

element exceeds the tensile strength of the material. The discontinuity is a straight line through the

element originating from the point where the discontinuity ended in the previous cracked element.

Hereby a continuous discontinuity is assured.

Concerning the crack growth direction different approaches have been considered. The first and

simplest approach is local and rely only upon the stresses in the element that is located next to the

tip-element (The element to become the next tip-element, element 8 in Fig. 7) for the determination

of the crack growth direction. The discontinuity is grown perpendicular to the principal stress

direction.

Several authors state that the local stresses in the next tip element can not be relied upon for

computation of the crack growth direction and different nonlocal approaches are suggested. In Wells

and Sluys (2001) the principal stress direction in the next tip element is computed from a non-local

stress tensor calculated as a weighted average of stresses using a Gaussian weight function. Stresses

in integration points within a radius of three times the typical element size are taken into account. In

Moës and Belytschko (2002) the maximum hoop stress criterion is applied. The requirement for

considering stresses in more than one element when computing the crack growth direction may

appear when recalling the discontinuous displacement field in a cracked CST tip element c.f. Fig. 7.

Fig. 6 Integration scheme for (a) CST and (b) LST element cut by discontinuity. Crosses marks integration
point in continuum part of elements while crosses in boxes marks integration point on line of
discontinuity for integration of traction forces

Fig. 7 Discontinuous displacement field in CST “tip” element
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Due to the discontinuous degrees of freedom in the nodes located on the crack tip edge being set

equal to zero the crack tip element is not able to model the case, where equal stress are present at

both sides of the discontinuity. This lack of capability to model correct stresses in the tip element

influences the stresses in the next tip element and may call for more elements to be relied on for the

computation of crack growth direction.

When a non-local stress tensor is applied in this work (only for CST elements), average nodal

stresses are computed from element stresses in the elements sharing a given node - c.f. Eq. (12). All

elements are assigned the same weight except previously cracked elements that are disregarded in

the computation of the average nodal stresses due to the above illustrated bad stress field in the

crack tip element. From the average nodal stresses a non-local stress tensor at the crack tip is

interpolated by Eq. (13) and used for the determination of the crack growth direction. In Eq.

(13)  are the area coordinates to the crack tip.

(12)

(13)

Applying LST elements a non local procedure for computation of the crack growth direction is

not necessary. The crack growth direction is computed from the principal stresses at the start point

of the crack in the element.

4.4. Algorithm

To remain within the framework of traditional FEM codes a general procedure, the orthogonal

residual algorithm (Krenk 1995), was adopted for the XFEM scheme to solve the non-linear

equations. The algorithm is summarized in Table 1.

As convergence criterion an energy criterion was applied and the elastic energy in the initial

elastic load step was used as reference energy, Eref. Further it may be noticed that it was chosen to

implement the orthogonal residual algorithm in a Newton-Raphson style where the tangential

stiffness matrix was updated in each iteration to take into account changes in crack opening and

thereby also changes in the contribution from the enriched nodes during the iterations.

5. Numerical examples

To illustrate the capability of the suggested XFEM scheme two fracture mechanical benchmark tests,

the three point beam bending test (TPBT) and the four point shear beam test (FPSB) has been

considered. Results will be given for the TPBT applying CST as well as LST elements while only results

applying LST elements will be given for the FPSB. Applying CST elements for the TPBT specimen

local as well as nonlocal determination of crack growth direction will be considered and discussed. 
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5.1. Three point beam bending test

The geometry of the TPBT specimen considered in this case is in accordance with the RILEM

recommendations (Vandewalle 2000). The geometry is depicted in Fig. 8(a), the cross section of the

beam being a square. For the material parameters standard values for a good quality concrete was

chosen c.f. Table 2. A linear softening law as illustrated in Fig. 8(b) was applied for the normal

stress in the crack. Considering a pure mode I problem the shear stiffness and the mixed mode

stiffness terms for the crack were all set equal to zero, i.e., the tangential material stiffness matrix

for the crack only holds one term different from zero:

(14)D cr
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ft–

∆u n ult,

cr
---------------- 0 

0 0 

=

Table 1 Orthogonal residual algorithm for XFEM
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Fig. 8 (a) Geometry of TPBT specimen. (b) Applied linear softening curve
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5.1.1. Applying CST elements to model TPBT

Modeling the TPBT specimen applying CST elements structured as well as unstructured meshes

were considered. Results will be given for two structured meshes, a 21 by 12 element c.f. Fig. 9(a),

and a 25 by 24 element mesh. For both structured meshes results for local as well as non-local

computation of crack growth direction will be given. The unstructured mesh, c.f. Fig. 9(b) consisted

of 709 elements and results will only be given for the non-local crack growth computation. Note

that for the structured meshes the notch is modeled as a predefined stress free discontinuity while in

the unstructured mesh the notch is defined by the geometry of the mesh.

As reference for the XFEM computations the TPBT specimen was also modeled applying

standard interface elements along a predefined crack path in the commercial code DIANA from

TNO. Two meshes holding 24 respectively 48 elements over the beam height were considered for

the DIANA computation.

Fig. 10 shows the load-deformation-response for the five considered XFEM computations and the

two reference DIANA computations. The deformation is computed as the difference between the

vertical displacement of the center point of the beam and the average vertical displacement of the

mid points of the beam ends. Fig. 11 shows the predicted crack path for the 25 by 24 mesh

applying local or nonlocal computation of the crack growth direction and the predicted crack path

for the unstructured mesh.

Fig. 9 (a) Structured mesh. (b) Unstructured mesh

Table 2 Constitutive parameters

Parameter Value

Young's modulus, Ec 37400MPa

Poisson's ratio, νc 0.2 

Tensile strength, ft 3.5MPa

Fracture energy, Gf 160 N/m 
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From the load-deformation-responses it is seen that the coarse structured mesh over predicts the

load carrying capacity of the TPBT specimen with about 20% while the finer structured mesh

overestimates the load carrying capacity with about 8%. The unstructured mesh predicts the

maximum load carrying capacity well. Concerning the overall reproduction of the load-deformation-

response it is seen that applying the local approach for the crack growth direction only the first part

of the post peak response corresponding to the crack having propagated approximately through 2/3

of the beam hight may be obtained. Applying the non-local approach for determining the crack

Fig. 10 Load-deformation-response for TPBT specimen modelled applying fully cracked CST elements

Fig. 11 Predicted crack path for: (a) 25 by 24 Mesh, local computation of crack growth direction. (b) 25 by
24 Mesh, non-local computation of crack growth direction (c) Unstructured mesh, non-local
computation of crack growth direction
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growth direction almost the full load-deformation response may be obtained - in Fig. 11(b) the

crack has almost reached the top of the beam. The main reason for the bad prediction of the crack

growth direction applying the local approach is the bad reproduction of the stresses in the tip

element discussed in Section 4.3. The difference in stability of the determination of crack growth

direction for the local versus the non-local approach is also evident from Fig. 11 (a) and (b). The

non-local approach smoothes the crack path considerably compared to the local approach. The

unstructured mesh captures the load carrying capacity well but is not able to reproduce the full load

deformation response for the TPBT specimen with the applied non-local computation scheme. The

use of non-local criteria for determination of crack growth direction is however seen as less

appealing due to the required user interaction for determination of interaction radius that e.g.,

depends on the chosen element size and the actual structure considered. Use of a non local criterion

to some extend violates the element local approach of the XFEM where everything is handled

element locally.

5.1.2. Applying LST elements to model TPBT

Considering LST elements results are given for four structured meshes - a 11 by 6, a 15 by 9, the

21 by 12 and the 25 by 24 mesh. Only local computation of crack growth direction is considered.

Fig. 12 compares the load-deformation response from the XFEM LST computations with the

DIANA computation while Fig. 13 depicts the predicted crack patterns for the 21 by 12 and the 25

by 24 mesh.

From the load-deformation response it is seen that applying LST elements the overall behavior is

predicted well by the 21 by 12 and the 25 by 24 mesh while the two coarsest meshes have troubles

capturing the post peak response. Looking at the predicted crack paths it is seen that applying LST

elements and hereby having more active discontinuity dof's, a more smooth crack path is achieved

than for CST elements. However when the crack reaches the top of the beam and only a few

Fig. 12 Load-deformation-response for TPBT specimen modelled applying fully cracked LST elements
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elements remain uncracked the quality of the determined stress near the crack tip becomes low and

hence influence the crack growth direction causing increasing tortuosity of the crack path. The

conclusion is however that applying LST a sufficient accuracy concerning the crack growth

direction is obtained by the local approach.

5.2. Four point shear beam

The four point shear beam serves to illustrate the capability of the suggested XFEM scheme to

model curved cracks. The geometry of the four point shear beam (FPSB) - or the “double-edge

notched specimen subjected to four point shear” is equivalent to the one investigated experimentally

by Carpinteri, et al. (1992). In Carpinteri, et al. (1992) it is concluded that the FPSB may be

modeled considering only mode I fracture, i.e. the shear stiffness in the crack may be ignored. The

FPSB specimen was also analyzed by XFEM in Moës and Belytschko (2002). To maintain the basis

for comparing the obtained results, fracture of the FPSB was also in the present case modeled

considering only mode I fracture. The geometry of the test setup is shown in Fig. 14, while

Fig. 13 Predicted crack path for LST computations of TPBT: (a) 21 by 12 Mesh. (b) 25 by 24 Mesh

Fig. 14 Geometry of four point shear beam, all measures in mm
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constitutive parameters are given in Table 3. As for the TPBT specimen a linear softening curve

(Fig. 8(b)) was applied.

A fairly coarse structured LST mesh, depicted in Fig. 15, consisting of 1222 elements and 2549

nodes was considered for the XFEM computation.

Fig. 15 depicts the computed crack path. The predicted crack path is in good agrement with the

experimental findings in Carpinteri, et al. (1992). In Fig. 16 the computed load-deflection response

is compared to the experimental load-deflection response obtained by Carpinteri, et al. (1992) and

to the XFEM load-deflection response computed by Moës and Belytschko (2002). It is seen that the

obtained results correlates well with the experimental results whereas some derivations are found

when comparing to the results by Moës and Belytschko (2002).

Table 3 Constitutive parameters FPSB

Parameter Value

Ec 28000 MPa

oc  0.1

ft 2.4 MPa

Gf 145 N/m 

Fig. 15 Predicted crack path for FPSB specimen

Fig. 16 Comparison of load-displacement response for FPSB obtained by present XFEM model, XFEM
results by Moës and Belytschko (2002) and by experiments Carpinteri, et al. (1992). Loading zone
1 refers to the loading zone to the right in Fig. 14, while loading zone 2 refers to the left.
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6. Conclusions

A direct enrichment of the displacement field has been implemented into an extended finite

element scheme for modeling cohesive crack growth in concrete without remeshing. The XFEM

scheme fits directly in the framework of standard finite element schemes. The XFEM scheme has

been implemented for the three node constant strain triangle element (CST) and the linear strain six

node triangle element (LST). Considering the CST element it was necessary to implement a

nonlocal computation of crack growth direction to obtain good prediction of the crack path while

for the LST element the crack path computation could be based on element local computations.

Considering three point bending and four point shear, the efficiency of the suggested scheme was

illustrated and it was found that even for relatively coarse meshes the scheme produces good

results.

References

Asferg, J. L., Poulsen, P. N. and Nielsen, L. O. (2004), “Modeling of cohesive crack applying XFEM”, 5th
International PhD Symposium in Civil Engineering, Walraven, J., Blaauwendraad, J., Scarpas, T. and
Snijder, B. (Eds.), pages 1261-1269.

Barenblatt, G. I. (1962), “The mathematical theory of equilibrium of cracks in brittle fracture”, Advances in
Applied Mech., 7, 55-129. 

Ba ant, Z. P. and Oh, B. H. (1983), “Crack band theory for fracture of concrete”, Mater. Struct., RILEM,
16(93), 155-177. 

Belytschko, T. and Black, T. (1999), “Elastic crack growth in finite elements with minimal remeshing”, Int. J.
Numer. Methods Eng., 45(5), 601-620. 

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P. (1996), “Meshless methods: an overiew and
recent developments”, Comput. Methods Appl. Mech. Eng., 139, 3-47. 

Bouchard, P. O., Bay, F. and Chastel, Y. (2002), “Numerical modelling of crack propagation: automatic
remeshing and comparison of different criteria”, Comput. Methods Appl. Mech. Eng., 192, 3887-3908. 

Bouchard, P. O., Bay, F., Chastel, Y. and Tovena, I. (2000), “Crack propagation modelling using an advanced
remeshing technique”, Comput. Methods Appl. Mech. Eng., 189, 723- 742. 

Carpinteri, A., Valente, S., Ferrara, G. and Melchiorri, G. (1992), “Is mode II fracture energy a real material
property?”, Comput. Struct., 48(3), 397-413.

Daux, C., Moës, N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), “Arbitrary branched and intersecting
cracks with the extended finite element method”, Int. J. Numer. Methods Eng., 48, 1741-1760. 

Dugdale, D. S. (1960), “Yielding of steel sheets containing slits”, J. Mech. Phys. Solids, 8, 100-104.
Hillerborg, A., Modéer, M. and Peterson, P.-E (1976), “Analysis of crack formation and crack growth in concrete
by means of fracture mechanics and finite elements”, Cement Concrete Res., 6, 773-782. 

Jirásek, M. (2000), “Comparative study on finite elements with embedded discontinuities”, Comput. Methods
Appl. Mech. Eng., 188, 307-330. 

Jirásek, M. and Belytschko, T. (2002), “Computational resolution of strong discontinuities”, in: H. Mang, F.
Rammerstorfer, J. Eberhardsteiner (Eds.), Proceedings of Fifth World Congress on Computational Mechanics,
WCCM V, Vienna University of Technology, Austria.

Karihaloo, B. L. (1995), Fracture Mechanics and Structural Concrete. Longman Scientific and Technial. 
Karihaloo, B. L. and Xiao, Q. Z. (2002), “Modelling of stationary and growing cracks in FE framework without
remeshing: a state-of-the-art review”, Comput. Struct., 81, 119-129.

Krenk, S. (1995), “An orthogonal residual procedure for nonlinear finite element equations”, Int. J. Numer.
Methods Eng., 38, 823-839.

Melenk, J. M. and Babu ka, I. (1996), “The partition of unity finite element method: basic theory and
application”, Comput. Methods Appl. Mech. Eng., 139, 289-314. 

 

 



100 J. L. Asferg, P. N. Poulsen and L. O. Nielsen

Mergheim, J., Kuhl, E. and Steinmann, P. (2005) “A finite element method for the computational modeling of
cohesive cracks”, Int. J. Numer. Methods Eng., 63, 276-289. 

Moës, N. and Belytschko, T. (2002), “Extended finite element method for cohesive crack growth”, Eng. Fract.
Mech., 69, 813-833. 

Moës, N., Dolbow, J. and Belytschko, T. (1999), “A finite element method for crack growth without remeshing”,
Int. J. Numer. Methods Eng., 46, 131-150.

Nielsen, M. P. (1999), Limit Analysis and Concrete Plasticity. CRC Press, second editon.
Patzák, B. and Jirásek, M. (2004), “Adaptive resolution of localized damage in quasi-brittle materials”, J. Eng.
Mech., 130, 720-732. 

Stang, H., Olesen, J. F., Poulsen, P. N. and Dick-Nielsen, L. (2006), “Application of the cohesive crack in
cementitious materials modelling”, In Meschke, G. de Borst, R. Mang, H. and Bicanic, N., Editors,
Computational Modeling of Concrete Structures, 443-449, Taylor & Francis.

Stolarska, M., Chopp, D. L, Moës, N. and Belytschko, T. (2001), “Modeling crack growth by level sets in the
extended finite element method”, Int. J. Numer. Methods Eng., 51, 943-960. 

Sukumar, N., Moës, N., Moran, B. and Belytschko, T. (2000), “Extended finite element method for three
dimensional crack modeling”, Int. J. Numer. Methods Eng., 48, 1549-1570. 

Vandewalle, L. (2000), “Test and design methods for steel fiber reinforced concret. Recommendations for
bending test”, Mater. Struct., 33, 3-5.

Wells, G. and Sluys, L. (2001), “A new method for modeling of cohesive cracks using finite elements”, Int. J.
Numer. Methods Eng., 50(12), 2667-2682.

Zi, G. and Belytschko, T. (2003), “New crack-tip elements for XFEM and applications to cohesive cracks”, Int.
J. Numer. Methods Eng., 57, 2221-2240.

NB




