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Validation of 3D crack propagation in plain concrete. Part II: 
Computational modeling and predictions of the PCT3D test
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Abstract. The discrete crack-concept is applied to study the 3D propagation of tensile-dominated failure
in plain concrete. To this end the Partition of Unity Finite Element Method (PUFEM) is utilized and the
strong discontinuity approach is followed. A consistent linearized implementation of the PUFEM is
combined with a predictor-corrector algorithm to track the crack path, which leads to a robust numerical
description of concrete cracking. The proposed concept is applied to study concrete failure during the
PCT3D test and the predicted numerical results are compared to experimental data. The proposed numerical
concept provides a clear interface for constitutive models and allows an investigation of their impact on
concrete cracking under 3D conditions, which is of significant scientific interests to interpret results from
3D experiments. 

Keywords: concrete cracking; partition of unity finite element method; strong discontinuity; 3D crack-track-
ing; PCT3D test. 

1. Introduction 

The study of failure propagation in concrete structures is of major engineering importance and

under extensive scientific interest during the past three decades. Concrete failure causes a sizeable

nonlinear zone at the fracture front, and hence, classical linear fracture mechanics of sharp cracks is

an inadequate concept to be used (Kesler, et al. 1972). 

Tensile-dominated failure of plain concrete involves progressive micro-cracking, debounding and

other complex irreversible processes of internal damage. The associated strain-softening can

coalesce into a geometrical discontinuity, where damage and other inelastic effects are limited to

zones of small volume, while the main portion of the material deforms purely elastic. The discrete

crack-concept is the approach that reflects this phenomena closest, and hence, it gained wide

popularity for numerical simulations of concrete fracture. Plasticity effects are negligible of tensile-

dominated failure, and under that circumstances, concrete can be considered as a quasi-brittle

material (Ba ant 2002). However, the pronounced strain softening of concrete failure let a

description within polar (local) continuum mechanics fail (Ba ant and Pijaudier-Cabot 1988), and

motivates the application of advanced continuum mechanical theories. 

Constitutive modeling of concrete failure is an active scientific field and numerous constitutive

models for concrete have been proposed in the past. Failure models of concrete are based on
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plasticity theories, fracture theories (fixed crack, rotating crack and multi-non-orthogonal fixed crack

methods), damage theories and formulations which couple these approaches, see (Jefferson 2003a,

b, Feist and Kerber 2004). In particular, the comparative study of 3D constitutive models for

concrete (Pivonka, et al. 2004) highlights diverging results achieved with different models. In addition,

only a limited number of well documented 3D fracture tests (the torsional test (Brokenshire 1996) is

one of the rare examples) are available in the literature to validate 3D constitutive models for concrete.

The present work aims to model 3D crack propagation in plain concrete under mixed mode

situations, where the underlying continuum mechanical framework is introduced in Section 2.1. It is

assumed that the cohesive properties of the material dominate over the frictional one, and hence,

fracture parameters of the opening mode (mode I) quantify concrete cracking. Herein, the model

proposed in Gasser and Holzapfel (2005) is utilized, and its constitutive assumption are discussed in

Section 2.1.3. It needs to be emphasized, that cohesive modeling is a well-established field, and

various cohesive constitutive formulations have been presented in the past, see, amongst many

others, (Needleman 1987, 1990, Tvergaard and Hutchinson 1992, Ortiz and Pandol 1999). In that

context the reader is referred to the seminal work (Ba ant 2002), where limitations of cohesive

models in general are discussed. 

The Partition of Unity Finite Element Method (PUFEM) (Melenk and Babu ka 1996) is the

numerical concept chosen to describe 3D crack propagation in plain concrete; it is briefly reviewed

in Section 2.2. PUFEM provides an effective and robust numerical frame (Wells, et al. 2002, Gasser

and Holzapfel 2005) with several advantages over traditional smeared and discrete approaches, see

(Jirásek 2000, Jirásek and Belytschko 2002, de Borst 2001). In particular, the applied numerical

concept provides a clear interface to integrate cohesive models and its numerical implementation is

discussed in detail in Section 2.2.1. 

A critical task to apply PUFEM is the geometrical representation of the crack surface and tracking its

propagation during concrete failure. To this end different numerical techniques are proposed, where a

classification in local (Moës, et al. 2002), global (Oliver, et al. 2004) and partial domain (Feist and

Hofstetter 2007) crack-tracking algorithms are proposed in the literature. Within this work, the recently

proposed local crack-tracking algorithm (Gasser and Holzapfel 2005) is adopted, which is based on a

predictor-corrector schema to track non-planar 3D cracks; it is briefly reviewed in Section 2.3.

The underlying work aims to validate the proposed numerical concept of concrete failure, i.e.,

PUFEM combined with the predictor-corrector scheme to track the crack path. To this end the

PCT3D test, an experiment to investigate 3D cracking of plane concrete performed at the University

of Innsbruck, Austria, is numerically investigated. A comprehensive description of the PCT3D test

and its experimental findings are given in the companion paper (Feist and Hofstetter 2007), and in

Section 3 herein, this data is compared to computationally predicted results. In particular, the load-

Crack Mouth Opening Displacement (CMOD) response, the developed 3D crack formation and the

evolution of the strain field are investigated. 

2. Crack propagation model 

Failure of concrete is accompanied by pronounced strain-softening, and hence, its description

within standard polar continuum mechanics fails. The energy at failure is incorrectly predicted to

zero (Ba ant and Pijaudier-Cabot 1988) and this physically meaningless solution is approximated by

the numerical schema applied, which a priori leads to pathologically mesh sensitivity of the numerical
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solution. Advanced theories, e.g., non-local damage models, Cosserat models, rate-dependent models,

gradient-enhanced models can overcome this lack of the standard continuum and define a well

posed Boundary Value Problem (BVP). In this work the discrete crack-concept is followed and the

underlying continuum mechanical basis and its numerical implementation is discussed in the following.

2.1. Continuum mechanical basis 

2.1.1. Kinematics 

It is assumed that Ω0 denotes the reference configuration of a body with an embedded strong

discontinuity , which separates the body into the sub-domains Ω0+ and Ω0−, respectively1. The

motion χ(X) maps Ω0+ and Ω0− into their current configurations, i.e., Ω+ and Ω−, where X denotes

the referential position of a material point. Moreover, the kinematics of the separation are captured

by a discontinuity in the displacement field, i.e., u(X)=uc(X)+ (X)ue(X), where  denotes the

Heaviside function with the value 0 for  and 1 for . Note that the introduced additive

decomposition of u is based on the introduction of the smooth fields uc and ue, which characterize

the compatible and the enhanced displacements, respectively. 

Consequently, the deformation gradient reads 

F(X) = I + Grad uc(X) + Grad ue(X) + δd(X)ue(X) N(Xd), (1)

where the property Grad (X) = δdN(Xd) of the Heaviside function is utilized and δd denotes the

Dirac-delta functional with the value 0 for X  and  for X . In addition, the

material gradient operator is denoted by Grad(•) = (•)/ X, and the unit normal vector N(Xd)

defines the orientation of the discontinuity at an arbitrary (referential) point Xd . 

For reasons that become clear in the following section, it is convenient to consider separate

deformation gradients for the two sub-domains, i.e., a compatible deformation gradient Fc = I +

Graduc (with Fc = Jc > 0), which maps  into , and an enhanced deformation gradient Fe = I

+ Graduc + Gradue (with det Fe = Je > 0), which maps  into . 

A geometrical exact formulation is followed, and hence, a fictitious discontinuity , i.e., the

bijection of  to the current configuration, needs to be introduced. To this end the works

(Varias, et al. 1990, Wells, et al. 2002) are followed, and  is placed in the middle between the

two physical crack surfaces, such that,  is defined by the push forward of  associated with

the average deformation gradient Fd(Xd) = I + Grad uc + ue N/2 (with det Fd = Jd > 0).

Consequently, the mapping transforms the referential point Xd  into the spatial point xd =

FdXd with xd . The related unit normal vector n = NFd
−1/|NFd

−1| onto the fictitious

discontinuity is obtained by a weighted push-forward operation of the covariant vector N. Note that,

although small strain characterizes the bulk material of tensile-dominated concrete failure, large

rotations may be present, which motivates the application of a geometrically exact formulation. 

2.1.2. Variational formulation 

This section is included in order to briefly discuss the consequences of the introduced kinematics

on a single-field variational approach; detailed derivations are given in Wells, et al. (2002), Gasser

and Holzapfel (2005). For simplicity, inertia effects are neglect and dead loading is assumed, such

∂Ω0d

X Ω0−∈ X Ω0+∈

  ⊗

  ∉ ∂Ω0d ∞  ∂Ω0d∈
∂ ∂

 ∂Ω0d∈

Ω0− Ω−
Ω0+ Ω+

∂Ωd

∂Ω0d

∂Ωd

∂Ωd ∂Ω0d

  ⊗
 ∂Ω0d∈

 ∂Ωd∈

1For simplicity a single embedded discontinuity is considered, although the proposed concept can be applied
to multiple non-interacting discontinuities as well. 
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that Gradδu : P(F)dV−δΠext(δu) = 0 holds (Ogden 1997, Holzapfel 2000), where P(F) and δu
denote the first Piola-Kirchhoff stress tensor and the admissible variation of the displacement field,

respectively. According to the introduced additive split of the displacement field u, its admissible

variation is defined by δu=δuc + δue. Consequently, straight forward algebraic manipulation and

a push-forward of the above introduced single-field variational principle gives the two spatial

variational statements (Gasser and Holzapfel 2005).

(2)

 
where dv is the infinitesimal volume element defined in the current configuration and ds is the

infinitesimal surface element defined on the discontinuity . Moreover,  and

 denote Cauchy stress tensors and t characterizes the Cauchy traction vector acting

on the fictitious discontinuity . Contributions due to external loading are summarized in terms

of the virtual external potential energies  and , which refer to the domains  and

, respectively. The spatial gradients in Eq. (2) are defined according to gradc(•) = Grad (•)Fc
−1,

grade(•) = Grad (•)Fe
−1 and the operator sym(•) = [(•)+(•)T]/2 furnishes the symmetric part of (•). 

2.1.3. Constitutive formulations 

Constitutive formulations play a fundamental role of reliable numerical simulations of concrete

failure, and under 3D loading conditions no constitutive model enjoys wide acceptance. Models

known from the literature can predict significantly different results under 3D loading conditions,

which has been demonstrated, for the double-edge-notched specimen (DENS) applied to tensile and

shear loadings (Pivonka, et al. 2004). 

Tensile-dominated failure of concrete causes zones of small volume, where accumulation of damage

and other inelastic effects are present, while the main portion of the material deforms purely elastic.

Consequently, a natural modeling assumption is the coupling of an elastic bulk material with an inelastic

cohesive zone. This is a simple way to capture the physical phenomena, and it avoids the introduction

of damage-based softening in the bulk material. However, the proposed approach requires two

constitutive models, i.e., (i) bulk (continuous) and (ii) cohesive (discontinuous) material models,

characterizing the elastic and inelastic properties of concrete. Note that, theoretically spoken, every

continuum constitutive model linked to strong discontinuity kinematics defines a discrete model in a

consistent way (Oliver 2000, Oliver, et al. 2002). Nevertheless, the classical approach is followed

herein, where the cohesive material model is assumed to be independent from the bulk material. From

the practical point of view this decoupling of the continuous and discontinuous constitutive models

gives more flexibility in fitting experimental data.

Bulk material response. It is assumed that the concrete’s bulk (or continuous) response is captured

by a neoHookean material according to the strain-energy function Ψ(C) in the additive decomposed

form (Holzapfel 2000)

(3)

 Ω
0

 

∫
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Ω
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where κ and µ denote the bulk and shear moduli, respectively. Here,  is the first invariant

of the modified right Cauchy-Green tensor , where C = FTF and classically derivations,

e.g., (Holzapfel 2000) lead to the Cauchy stress  and the associated spatial

elasticity tensor C = , where b = FFT denotes the left Cauchy-Green tensor. 

Cohesive material response. The cohesive (or discontinuous) material property is determined by a

number of material-dependent mechanisms such as cohesion at the atomistic scale, bridging ligaments,

interlocking of grains and other inelastic phenomena. In order to capture these mechanisms in a

phenomenological sense, the existence of a cohesive potential with respect to the reference

configuration  of the discontinuity is postulated and the recently proposed transversely isotropic

model (Gasser and Holzapfel 2005) is adopted. The model is based on the theory of invariants

(Spencer 1984) and assumes a cohesive potential of the form , where

ue(Xd) denotes the gap displacement, i.e., the enhanced displacement at the discontinuity. In

addition, transverse isotropy and the state of damage are defined by the structural tensor  and

a single scalar internal variable , respectively. Following (Spencer 1984), the cohesive

potential can be expressed according to , where  are invariants

depending on the symmetric tensors , and . Within this paper the isotropic particularization 

(4)

is applied, where i1=  denotes the first invariant of . Here t0 denotes the cohesive

tensile strength of concrete and the non-negative parameters a and b aim to capture its softening

response under mode I failure. The cohesive potential (4) is able to captures the tensile failure

properties of concrete, as illustrated in Gasser and Holzapfel (2005), where the set (t0, a, b) has

been determined by least square optimization of experimental data given in Reinhardt, et al. (1986).

In order to complete the cohesive description a damage surface = −δ = 0 in the

gap displacement space is defined, and  models the evolution of the internal (damage)

variable δ. Based on the procedure by Coleman and Noll (Coleman and Noll 1963) the referential

cohesive traction reads, T coh =  and for a subsequent finite element implementation, it is

convenient to introduce , which characterize

stiffness measures with respect to changes of the gap displacement and the orientation of the

discontinuity. 

Failure criterion. It is well known that material stability is violated in the Mandel sense (Mandel

1966) if the acoustic tensor Q becomes singular, and hence, acceleration waves cannot propagate

through the solid at finite speed at every direction. This is a necessary but not sufficient condition

for strain localization, and several other conditions are discussed in the literature, such as positive

definitness/singularity of the constitutive operator, strong ellipticity, flutter etc., see, e.g., Bigoni and

Zaccaria (1994). The concept of localization is well-established and extensively documented in the

literature, see, e.g., Rudnicki and Rice (1975), however, its numerical representation may be associated

with high computational costs for the general 3D case. 

For plain concrete, computationally less expensive failure criteria are available as well, in particular,

the Rankine criterion seems to provide sufficient accuracy. Here it is assumed that failure initializes

if the maximum principal Cauchy stress σmax reaches the concrete’s tensile strength t0 and the

orientation n of the failure is determined by the direction of the maximum principal stress. 
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It is known that the coupling of the local Rankine criterion with a local crack-tracking algorithm can lead

to a scattered crack path. Consequently, several techniques are known in the literature to avoid this kind of

instability, e.g., averaging the orientation of the discontinuity (Wells and Sluys 2001) or non-local

evaluation of the Rankine criterion (Gasser and Holzapfel 2005). Note that averaging the stress field can

cause non-physical crack initialization (Simone, et al. 2004), especially at stress (strain) singularities.

Nevertheless, the non-local Rankine criterion, which requires the solution of the eigenvalue problem 

, no summation over i (5)

at a spatial point x, is utilized within this work. Here λi and vi are the eigenvalues and eigenvectors

and the underlying stress  is averaged within the vicinity of x. In particular, 

 is proposed, where  denotes a spherical region with center at X = F−1
x and radius R.

Finally, it is worth noting that a non-local evaluation of the Rankine criterion is not sufficient to

avoid the evolution of an unreasonable cracks in 3D, which is explained (to some extend) in Section

2.3.

2.2. PUFEM 

The variational statements (2) are numerically represented by means of the PUFEM (Melenk and

Babu ka 1996), where the standard (polynomial) interpolation functions are enriched by the

Heaviside function  to achieve good local approximation properties for the underlying problem.

In particular, the displacement field  is interpolated by2 

, (6)

 

where N I are the standard (polynomial) interpolation functions. Here I is an index running between

1 and the total number of element nodes nelem. Interpolation (6) falls into the class of the PUFEM,

where regular and enhanced nodal displacements (degrees of freedom) are denoted by  and ,

respectively. Elaboration on basis of the interpolation (6) and the two spatial variational statements

(2) leads to the linearized algebraic set 

(7)

of equations for a particular finite element e (Gasser and Holzapfel 2006). Here i, i−1 and , 

denote the iteration steps associated with a global iteration procedure, and the increments of the

regular and enhanced nodal displacements, respectively. 

In Eq. (7) the force vectors  and  denote nodal force due to external and internal

loadings, whereas the subscripts  and  denote their association with compatible and

enhanced degrees of freedom, respectively. The stiffness matrices  are

defined due to a consistent linearization of the internal loading vectors with respect to the

compatible and enhanced displacements, details are given in Gasser and Holzapfel (2005). It is

worth noting that, in general, the cohesive traction contributes to  and 
 

(Gasser and

Holzapfel 2003a, 2005) and the element stiffness matrix becomes non-symmetric, such that,
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2Characters indicated by underlines denote the matrix notation of the associated tensor or vector. For example,
u is the matrix representation of vector u. 
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appropriate solution strategies are required. However, for the considered numerical example given in

Section 3, a symmetric solver has been applied and the computation has shown (about) quadratic

convergence, which indicates negligible asymmetry of the element stiffness matrix in this case. 

2.2.1. Numerical implementation of the cohesive zone model 

The cohesive model Eq. (4) is implemented in a separate material routine, where the gap

displacement  and the spatial normal  of the current iteration step and the damage

variable δ
n

 of last solution step are input data. Here  denotes the l-th integration point at the

discontinuity and the discrete material routine computes the traction and the stiffness quantities, as it

is required to arrange system, Eq. (7) (Gasser and Holzapfel 2005). In addition, the proposed

numerical approach aims to avoid penetration of the subbodies Ω+ and Ω− under compressive

loading of the cohesive zone. Hence, in case that  > 0 holds, a penalty constraint

is added to the cohesive potential, which is similar to penalty constraint formulations in contact mechanics

(Wriggers 2002). Within this work the quadratic penalty potential  is applied,

where k denotes the problem specific penalty parameter. 

Consequently, for a particular state of damage δ
n
, the total surface potential , i.e.,

cohesive and penalty contributions read 

, (8)

 

were  denotes the Macauley bracket. Here  and c
n
 denote the

elastic limit and a scalar stiffness measure of the cohesive zone at the state of damage δ
n
. An

illustration of the cohesive law and the introduced quantities δ
n
, t

n
 and c

n
 is given in Fig. 1, where

the gray and black lines denote elastic and damage loading branches, respectively. 

In order to provide the solution for the current global iteration step, the system (7) is solved,

which gives the enhanced displacement ue, and hence, the damage state of the cohesive zone is

predicted to δ tr = . Based on that prediction the total traction, i.e., cohesive

and penalty contributions reads 

(9)

where the cohesive stiffness is defined by 
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Fig. 1 Elastic and damage loading branches of the cohesive law at a state of damage δ
n
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The associate total stiffness measures, i.e., cohesive and penalty contributions are given to 

(11)

(12)

where 

 
 

(13)

denotes the damage softening parameter of the cohesive zone. A summary of the required

expressions for a finite element implementation of the discrete material model is given in Table

1. Note that Eqs. (9)-(13) are applicable if δ > 0, however, according to Eq. (8)3 the cohesive

stiffness c becomes infinite for the undamaged cohesive zone, i.e., δ = 0. In order to tackle with

that, a ‘quasi-rigid’ cohesive zone is utilized, where its initial (elastic) stiffness is defined by 1/ε,

where ε is machine-dependent small number. In addition, this approach guarantees compatibility

of the stress field of the bulk material and the traction field of the cohesive zone under general

3D circumstances (Gasser and Holzapfel 2005). It is worth noting that a high initial stiffness 1/ε
does not effect the condition of the global stiffness matrix, since the present approach deals with
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Table 1 Implementation guide for the proposed cohesive material model with penalty constraint against
penetration

(1) Assume ue and n of the current iteration step and δ
n
 of the last solution step to be given.

(2) Compute δ tr =

(3) Perturb predicted damage parameter δ tr = MAX(δ tr, t0ε)

(4) Define cohesive stiffness  and damage softening parameter γ
IF (δ tr < δ

n
) THEN

c = t0 exp(−a )/δ
n
, γ = 0

ELSE
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ENDIF

(5) Compute cohesive traction and stiffness

T
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(6) Compute penetration un = ue·n and add penalty contributions
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embedded discontinuities.

2.3. Crack-tracking algorithm

A critical task to employ PUFEM is the geometrical representation of the crack surface and

tracking its propagation. Especially for 3D, the development of crack-tracking algorithms is an

active research area in computational mechanics. Crack-tracking schemas can be classified in local,

global and partial domain algorithms. Local algorithms (Moës, et al. 2002) propagate the crack on

the basis of the local (stress) situation at the crack tip, while global algorithms (Oliver, et al. 2004)

integrate information of the whole BVP. By contrast, the partial domain algorithm (Feist and Hofstetter

2007) requires information only from parts of the BVP. 

The crack-tracking algorithm based on the level set method (LSM) (Osher and Sethina 1988), is a

popular local algorithms and uses signed distance functions to describe discontinuities (Stolarska, et

al. 2001, Moës, et al. 2002). For the 3D case, two advance vectors, which are computed on the

basis of the failure criterion, determine (locally) the advance of the crack. The values of the signed

distance functions are stored at element nodes, which defines the strong discontinuity for the

underlying FEM. On the other hand, a global tracking algorithm, to capture the crack path has been

introduced in Oliver, Huespe, Samaniego and Chaves (2002), Oliver, et al. (2004). The authors

propose the formulation of a linear anisotropic heat-conduction-like problem and its solution (for

example using the FEM) provides all information to describe the discontinuity at the element level.

Note that all topological issues are addressed by the heat-conduction-like problem, however, it needs

to be solved at least after each mechanical load step, and hence, this approach is associated with

computational effort. In order to avoid that, the partial domain algorithm (Feist and Hofstetter 2007)

processes information within the domain actually or potentially affected by the current crack. 

Herein, the recently proposed two step predictor-corrector schema (Gasser and Holzapfel 2005) is

applied, which is briefly summarized. It is assumed that the failure criterion of the k-th finite element

(which is located at the crack tip) is met and the associated discontinuity needs to be appended to the

existing crack. The orientation of the discontinuity is defined by the failure criterion and the existing

crack defines its location in space, such that a Runge Kutter-like problem exists. However, the straight

forward application of the non-local Rankine criterion in a 3D setting may cause the development of a

geometrically incompatible crack surface, e.g., with non-physical bifurcations. In order to circumvent

these topological difficulties, a two step predictor-corrector schema is proposed, where the predictor

and the corrector steps are based on the non-local Rankine criterion and a surface smoothing strategy,

respectively (Gasser and Holzapfel 2006). In particular, the corrector step draws in non-local

information of the existing crack in order to compute a ‘smooth’3 3D crack surface. This is realized by

fitting a polynomial surface Z(X, Y) locally to the predicted crack surface, i.e., the crack surface

defined by the predictor step. To this end  points on the crack surface (located in the vicinity 

of the k-th finite element) are considered and the coefficients of the polynomial surface are defined by

minimizing the least-square problem 
 

 (14)
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3It need to be emphasized that the proposed geometrical representation of the crack leads to a C−1 continuous
surface and ‘smooth’ has no mathematical meaning. 



76 T. Christian Gasser

where Xi, Yi, Zi denote the components of the considered points on the crack surface. Here,  is

assumed to be a sphere with radius R*. 

Subsequently, the orientation of the discontinuity N in the k-th finite element is adapted

(corrected) to the normal onto the polynomial surface Z(X, Y) (Gasser and Holzapfel 2006). This

leads to a ‘smooth’ prediction of the crack surface and effectively circumvents topological

difficulties, which might arise from the predictor step. 

The proposed crack-tracking algorithm has been implemented in a separate user macro and linked

to the multi-purpose finite element analysis program FEAP (Taylor 2000). The macro is executed

after each mechanical loading step and the user has to specify R* and the degree of the polynomial

surface; the current implementation supports linear and quadratic surfaces as well. 

3. The PCT3D test 

The introduced computational concept, i.e., the PUFEM combined with the predictor-corrector scheme

(Gasser and Holzapfel 2006) to track non-planar 3D cracks, has been employed to predict concrete

failure during the PCT3D test. The computations are performed using the multi-purpose finite element

analysis program FEAP (Taylor 2000) running on a PENTIUM 4 PC with 1.0 Gb RAM. In this section

a detailed description of the numerical model of the PCT3D test is given and the applied solution

strategy are discussed briefly. Finally, the predicted numerical results are presented and compared to

experimental data, which is presented in the companion paper (Feist and Hofstetter 2007). 

3.1. Modeling details

Geometry, boundary conditions and applied loading of the PCT3D test are sketched in Fig. 2 and

detailed information is given in Feist and Hofstetter (2007). The applied unstructured finite element

mesh is generated by the software-package NETGEN (Schöberl 2002) and the mesh is a priori

refined in the region were failure was expected according to the experimental work (Feist and

Hofstetter 2007). For the present computation, the finite element discretization used constant strain

tetrahedral elements and the applied material parameters are listed in Table 2. Here the elastic

parameters κ, µ represent the mean values from concrete tensile tests (Feist and Hofstetter 2007),

while the cohesive strength t0 are estimated from the concrete’s characteristic compressive strength, as

discussed in Feist and Hofstetter (2007). The shape of the cohesive law is determined by a, b, which are

determined from least square optimization (Gasser and Holzapfel 2005) of data based on tensile

tests published in Reinhardt, et al. (1986). According to the applied cohesive parameters the mode I

fracture energy of = 0.106 Nmm−1 (Gasser and Holzapfel 2005) describes the concrete cracking,

which is higher than the values given in Feist and Hofstetter (2007).

Displacement controlled arc-length method (Batoz and Dhatt 1979) is applied to control the

computation, where the increment of the CMOD defines the constraint of the continuation method.

CMOD is defined as the relative displacement between the points A and B along the axis of the

beam, see Fig. 2, and has also been used to control the load in the experiment during the softening

branch (Feist and Hofstetter 2007). 

In order to defines the failure criterion of the i-th finite element according to Eq. (5), the Cauchy

stress is averaged within the (referential) sphere (Xc), where Xc denotes the referential center of

the i-th finite element. For the present computation the radius of the sphere is taken to be R =

Ω0

*

f

I

Ω0
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3.0 , where Vi denotes the referential element volume. The average Cauchy stress is computed

according to , where the index j runs over all finite elements with (referential)

centers in (Xc). Here,  and  denotes the Cauchy stress of the j-th finite element and its

referential volume, respectively. The orientation N of the discontinuity to be embedded in the i-th

finite element is characterized by the non-local Rankine criterion and subsequently modified

according to the proposed smoothing technique (corrector step), where a linear polynomial surface

Z(X, Y) has been applied. The corrector step considers points on the referential crack surface within

the sphere Ω*(Xc) of radius R*=2.0  and center Xc. 

3.2. Predicted results 

The computation used 232 load steps to reach CMOD=0.8 mm, and within each load step 5

iterations are performed to propagate the crack. Here the failure criterion is checked, and, if required,

the crack is propagated, i.e., further discontinuities are embedded. If the crack propagated during the

nested loop the global system needed to be solved again. A symmetric direct solver based on

triangular decomposition of the system stiffness matrix has been applied. It needs to be emphasized

that although the system stiffness matrix is not symmetric, as mentioned in Section 2.2 and discussed

in Gasser and Holzapfel (2003b), the problem exhibited (about) quadratic convergence at the solution

point. Obviously, non-symmetric contributions of the system stiffness matrix are negligible for the

Vi
3

σ = Σjσ j
e
V j

e( )/ΣjV j
e

Ω0 σ j
e

V j
e

Vi
3

Fig. 2 Geometry, boundary conditions and loading conditions of the PCT3D test (Feist and Hofstetter 2007).
CMOD is defined as the relative displacement of A and B along the axes of the beam. (All dimensions
are in millimeter). 

Table 2 Bulk and cohesive material parameters applied

Bulk modulus κ 20.23·103 MPa
   Bulk material response

Shear modulus µ 15.63·103 MPa

Cohesive tensile strength t0 3.05 MPa

   Cohesive material responseCohesive parameter a 11.32 mm−1

Cohesive parameter b 0.674
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present problem, which might indicate that the constraint against penetration remains inactive during

the computation. 

3.2.1. Stress field 

Fig. 3 shows the deformed configurations (displacements are scaled by a factor 500) and the

maximum principal Cauchy stress at the opening displacement CMOD=0.07 mm. It indicates the

evolution of a 3D crack and illustrates stress concentrations at the crack-tip, however, the stresses

are bounded according to the underlying cohesive tensile strength t0, which is in clear contradiction

to stress singularities at sharp crack-tips. Hence, a mesh refinement at the crack-tip would not

essentially change the computed results. 

3.2.2. Crack formation 

Fig. 4 shows the predicted crack with respect to the reference configuration at opening displacements

CMOD=0.02, 0.06, 0.8 mm. The figure nicely illustrates, that the 3D stress state of the PCT3D test

causes a double curved crack, similar to experimental observations, see, Feist and Hofstetter (2007). In

order to discuss that in more details, the computed crack formations at the front, rear and back faces

are compared to experimental data in Fig. 5. Here the dark line and the four gray lines denote the

computed and the experimental results, respectively. A comparison with respect to the bottom face

is skipped herein, because the computed crack at CMOD=0.8 mm has not separated the specimen

completely, i.e., the crack reaches only partly the bottom face. Fig. 5 illustrates that the computed

crack correlates nicely with the experimentally observed fracture formations. However, the

experimental cracks have a higher curvature at the front face and the crack orientation at the

beginning differs significantly at the front and top faces as well. 

For the present computation, the crack has been initialized at the corner of the notch at the top

face and its propagation is defined by the crack-tracking algorithm. However, it can be seen in Fig.

4 that the predicted crack does not follow the notch completely, but develops partly beside it. A

possible explanation for that can be found in the relatively coarse finite element mesh at the notch

and probably mesh renement might force the crack to follow the edge of the notch. 

Fig. 3 Maximum principal Cauchy stress on top of the current configuration at the opening displacement
CMOD=0.07 mm (displacements are scaled by a factor 500). 
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3.2.3. Load-CMOD response 

A comparison between the computed and the experimentally measured load F with respect to

CMOD is presented in Fig. 6, where experimental data (according to 4 PCT3D tests (Feist and

Hofstetter 2007)) and the results of the present numerical analysis are shown by the grey and black

solid lines, respectively. While the computation captures the softening region nicely, an

overestimation of the limit load, compared to the average of the experimental data, is predicted.

However, the load-CMOD response of one individual test (denoted by PCT3D/1 in Feist and

Hofstetter (2007)) is closely captured by the numerical model, and interestingly enough, even the

crack formation of this individual test fits best. 

It is worth noting that a similar overestimation of the limit load has also been reported for several

numerical studies in concrete mechanics, see amongst many others, e.g., for the Nooru-Mohamded

test (de Borst 1997, Pivonka, et al. 2004, Gasser and Holzapfel 2006). Note that the applied

numerical approach is free of stress-locking, and hence, the underlying cohesive law might be

responsible for the overestimation of the limit load. It is possible that other than mode I properties

define the cohesive properties at the limit load condition. At CMOD > 0.6 mm the computed load

has the tendency to increase, which is non-physical and can be explained by the applied failure

criterion in combination with the coarse finite element mesh. During the end of the crack

propagation the remaining ‘non-cracked’ concrete is exposed to bending with the associated high

stress gradient. This situation together with the coarse mesh (defining a large averaging volume

(X)) might require an increasing load F in order to activate the non-local Rankine criterion. Ω0

Fig. 4 Evolution of double curved crack with respect to the reference configuration. Three particular opening
displacements are considered, i.e., CMOD=0.02, 0.06, 0.80 mm.

Fig. 5 Numerically predicted and experimentally observed crack formation at the front, rear and top faces. The
dark solid line denotes the computed result and gray lines are experimental observed cracks of 4 PCT3D
tests (Feist and Hofstetter, submitted). 
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3.2.4. Strain field 

The strains measured by the strain gauges SG1-SG6 in Feist and Hofstetter (2007) nicely

illustrates the 3D nature of the PCT3D test, see the discussion in Feist and Hofstetter (2007). The

associated predicted strains at locations denoted by SG1-SG6 are shown in Fig. 7. In particular, the

evolution of the strain in a fiber with referential direction along the beam’s axis are plotted. A

comparison of Fig. 7 with the data given in Feist and Hofstetter (2007) indicates qualitative agreement

with the associated experimental study, however, significant quantitative mismatch is present.

4. Summary and conclusions 

The discrete crack-concept is applied to model tensile-dominated failure during the PCT3D test of

plain concrete. Hence, irreversible processes of internal damage are assumed to be localized at zones of

small volume, which are mechanically characterized by a cohesive constitutive law. The strong

discontinuity approach is applied and a variationally consistent PUFEM implementation is followed.

The onset of concrete fracture is determined by a non-local Rankine criterion and a predictor-corrector

schema is applied to track the crack path. This approach effectively avoids arising geometrical

difficulties and allows to handle arbitrary shaped non-interacting 3D cracks. The proposed concept led

to a robust numerical description of concrete cracking during the PCT3D test and the computational

predictions are compare to experimental findings. In particular, the load-CMOD response, the crack

formation and the strain field are compared to experimental data of the PCT3D test. Although the

employed constitutive models, i.e., neoHookean model for the bulk material and a three-parameter

model for the cohesive zone, are very simple, good agreement between computation and the experiment

are found. However, some overestimation of the predicted peak-load and quantitative disagreement of

the predicted strain field has been observed. Apart from that, the softening branch, i.e., the decay of the

Fig. 6 Comparison of the load F-CMOD response for
the PCT3D test. The black line denotes results
from the present computation, and the grey
lines represent experimental data of 4 PCT3D
tests (Feist and Hofstetter 2007). 

Fig. 7 Predicted strain at locations of the strain gauges
SG1-SG6 in Feist and Hofstetter (2007). The
results represent the strain in a ber with
referential direction along the beam’s axis.
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load with respect to CMOD is captured nicely by the proposed model. In addition, the comparison of

the predicted 3D crack with the experimental formations showed good agreement. 

Constitutive relations are fundamental to the solution of problems in continuum mechanics, e.g.,

to investigate concrete cracking. The developed numerical concept provides a clear interface for

constitutive models, and hence, it allows to implement more complex cohesive models for concrete

in order to investigate their impact on concrete failure. Constitutive models for concrete cracking

can be investigated under 3D loading conditions, which is of significant scientific interests to

interpret results from 3D experiments in order to progress in that important field of solid mechanics.
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