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Design optimization of reinforced concrete structures
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Abstract. A novel formulation aiming to achieve optimal design of reinforced concrete (RC) structures
is presented here. Optimal sizing and reinforcing for beam and column members in multi-bay and multi-
story RC structures incorporates optimal stiffness correlation among all structural members and results in
cost savings over typical-practice design solutions. A Nonlinear Programming algorithm searches for a
minimum cost solution that satisfies ACI 2005 code requirements for axial and flexural loads. Material
and labor costs for forming and placing concrete and steel are incorporated as a function of member size
using RS Means 2005 cost data. Successful implementation demonstrates the abilities and performance of
MATLAB’s (The Mathworks, Inc.) Sequential Quadratic Programming algorithm for the design optimization of
RC structures. A number of examples are presented that demonstrate the ability of this formulation to
achieve optimal designs.

Keywords: sequential quadratic programming; cost savings; reinforced concrete; optimal stiffness distri-
bution; optimal member sizing; RS means; nonlinear programming; design optimization.

1. Introduction

This paper presents a novel optimization approach for the design of reinforced concrete (RC)

structures. Optimal sizing and reinforcing for beam and column members in multi-bay and multi-

story RC structures incorporates optimal stiffness correlation among structural members and results

in cost savings over typical state-of-the-practice design solutions. The design procedures for RC

structures that are typically adapted in practice begin by assuming initial stiffness for the structural

skeleton elements. This is necessary to calculate the internal forces of a statically indeterminate

structure. The final member dimensions are then designed to resist the internal forces that are the

result of the assumed stiffness distribution. This creates a situation where the internal forces used

for design may be inconsistent with the internal forces that correspond to the final design

dimensions. The redistribution of forces in statically indeterminate structures at incipient failure,

however, results in the structural performance that is consistent with the design strength of each

member. Although this common practice typically produces safe structural designs, it includes an

inconsistency between the elastic tendencies and the ultimate strength of the structure. In some

cases this can cause unsafe structural performance under overloads (e.g. earthquakes) as well as

unwanted cracking under normal building operations when factored design loads are close to service

loads, (e.g. dead load dominated structures). This inconsistency also implies that such designs are

unnecessarily expensive as they do not optimize the structural resistance and often result in
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members with dimensions and reinforcement decided by minimum code requirements rather than

ultimate strength of allowable deflections. 

Because of its significance in the industry, optimization of concrete structures has been the subject

of multiple earlier studies. Whereas an exhaustive literature review on the subject is outside the

scope of this paper, some notable optimization studies are briefly noted here. For example, Balling

and Yao (1997), and Moharrami and Grierson (1993) employed nonlinear programming (NLP)

techniques for RC frames that search for continuous-valued solutions for beam, column, and shear

wall members, which at the end are rounded to realistic magnitudes. In more recent studies, Lee and

Ahn (2003), and Camp, et al. (2003) implemented Genetic Algorithms (GA) that search for

discrete-valued solutions of beam and column members in RC frames. The search for discrete-

valued solutions in GA is difficult because of the large number of combinations of possible member

dimensions in the design of RC structures. The difficulties in NLP techniques arise from the need to

round continuous-valued solutions to constructible solutions. Also, NLP techniques can be

computationally expensive for large models. 

In general, most studies on optimization of RC structures, whether based on discrete- or

continuous-valued searches, have found success with small RC structures using reduced structural

models and rather simple cost functions. Issues such as the dependence of material and labor costs

on member sizes have been mostly ignored. Also, in an effort to reduce the size of the problems,

simplifying assumptions about the number of distinct member sizes have often been made based on

past practices. While economical solutions in RC structures typically require designs where groups

of structural elements with similar functionality have similar dimensions, the optimal characteristics

and population of these groups should be determined using optimization techniques rather than

predefined restrictions. These issues are addressed, although not exhaustively, in this paper, by

incorporating more realistic costs and relaxed restrictions on member geometries.

This study implements an algorithm that is capable of producing cost-optimum designs of RC

structures based on realistic cost data for materials, forming, and labor, while, at the same time,

meeting all ACI 318-05 code and design performance requirements. The optimization formulation of the

RC structure is developed so that it can be solved using commercial mathematical software such as

MATLAB by Mathworks, Inc. More specifically, a sequential quadratic programming (SQP)

algorithm is employed, which searches for continuous valued optimal solutions, which are rounded

to discrete, constructible design values. Whereas the algorithm is inherently based on continuous

variables, discrete adaptations relating the width and reinforcement of each element are imposed

during the search. 

This optimization formulation is demonstrated with the use of design examples that study the

stiffness distribution effects on optimal span lengths of portal frames, optimal number of supports

for a given span, and optimal sizing in multi-story structures. RS Means Concrete and Masonry

Cost data (2005) are incorporated to capture realistic, member size dependent costs. 

2. Optimization 

2.1. RC structure optimization

The goal of optimization is to find the best solution among a set of candidate solutions using

efficient quantitative methods. In this framework, decision variables represent the quantities to be



Design optimization of reinforced concrete structures 315

determined, and a set of decision variable values constitutes a candidate solution. An objective

function, which is either maximized or minimized, expresses the goal, or performance criterion, in

terms of the decision variables. The set of allowable solutions, and hence, the objective function

value, is restricted by constraints that govern the system. 

Consider a two dimensional reinforced concrete frame with i members of length Li. Each member

has a rectangular cross section with width bi and depth hi, which is reinforced with compressive and

tensile steel reinforcing bars,  and  respectively (Fig. 1). The set of bi, hi, , and 

constitute the decision variables. The overall cost attributed to concrete materials, reinforcing steel,

formwork, and labor is the objective function. The ACI-318-05 code requirements for safety and

serviceability, as well as other performance requirements set by the owner, constitute the constraints.

The formulation of the problem and the associated notation follow:

Indices:

i : RC structural member; beam or column. 

m : steel reinforcing bar sizes.

Sets:

Columns : set of all members that are columns.

Beams : set of all members that are beams.

Sym : set of pairs of column members that are horizontally symmetrically located on the

same story level. 

Horiz : same as Columns, but activated only when the structure is subjected to horizontal

loading. 

et : set of member types; either Columns or Beams. 

Parameters:

Cconc, mat’l = 121.00 $/m
3 - Material Cost of Concrete

Csteel(et) = 2420 $/metric ton for beam members and 2340 $/metric ton for column members

Li - Length of member i, meters (typically 4 to 10 meters)

d' = 7 cm = Concrete Cover to the centroid of the compressive steel - same as the cover to the

centroid of thee tensile steel.

= 28 MPa - Concrete Compressive Strength

β1 = 0.85 - Reduction Factor  = 28 MPa

Ec = 24,900 MPa - Concrete Modulus of Elasticity

As1 i, As2 i, As1 i, As2 i,

f c
′

f c
′

Fig. 1 Reinforced concrete cross section and resistive forces
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Es = 200,000 MPa - Reinforcing Bar Modulus of Elasticity

fy = 420 MPa - Steel Yield Stress

 = Stress in Tensile Steel ≤ fy
bar_numbering = Metric equivalent bar sizes = [#13, #16, #19, #22, #25]

bar_diamm = Rebar diameters for m = 1:5. i.e., [12.7, 15.9, 19.1, 22.2, 25.4] mm

bar_aream = Rebar areas for m = 1:5. i.e., [129, 199, 284, 387, 510] mm
2

 = 0.01 - Minimum ratio of steel to concrete cross - sectional area in all column members

 = 0.08 - Maximum ratio of steel to concrete cross - sectional area in all column members

 = 0.0033 - Minimum ratio of steel to concrete cross - sectional area in all beam members

Decision Variables:

Primary Variables:

bi - width of member i (cm)

hi - depth of member i (cm)

As1,i - Compressive steel area of member i (cm
2)

As2,i - Tensile steel area of member i (cm
2)

Auxiliary Variables: 

p
i
 - Perimeter of member i, 2*(bi + hi) for columns, and (bi + 2*hi) for beams

Cforming(bi, hi) - Cost of forms in placce ($/SMCA) as a function of cross-sectional area as described in

Fig. 2.1

Cconc, place (bi, hi) - Cost of placing concrete ($/m
3) as a function of corss-sectional area as described in

Fig. 2.2

Pui - Factored Internal Axial Force of member i determined via FEA (kN)

Mui - Factored Internal Moment Force of member i determined via FEA (kN · m)

ci - Distance from most compressive concrete fiber to the neutral axis for member i (cm)

 - Location of the plastic centroid of member i (cm) from the most compressive fiber.

Formulation:

 (1) 

subject to:

(2)

 (3)

(4)

(5)

(6)

(7)

f s
′

ρ min

c

ρ max

c

ρ min

b

xi

C( ): min

pi Li C forming bi hi,( )  +⋅ ⋅

bi hi As1 i, As2 i,⋅–⋅( ) Li Cconc mat'l, Cconc place, bi hi,( )+( )  +⋅ ⋅

As1 i, As2 i,+( ) Li Csteel et( )⋅ ⋅
i 1=

n

∑

bi hi= i∀ Columns∈

bi bj= i j≠( )∀ Sym∈

hi hj= i j≠( )∀ Sym∈

As1 i, As1 j,= i j≠( ) Sym∈∀

As2 i, As2 j,= i j≠( ) Sym∈∀

As1 i, As2 i,= i Horiz∈∀
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(8) 

 (9)

 (10)

 (11)

 (12)

 (13)

 (14)

 (15)

 (16)

 (17)

 (18)

 (19)

(20)

The objective function C, in Eq. (1), describes the cost of a reinforced concrete structure and

includes, in order of appearance, forms in place cost, concrete materials cost, concrete placement

and vibrating including labor and equipment cost, and reinforcement in place using A615 Grade 60

steel including accessories and labor cost. The costs of forming and placing concrete are a function

of the cross-sectional dimensions b and h of the structural elements. These costs are detailed in

Table 1 and in Figs. 2, 3, and 4. As shown in Figs. 2 through 4, linear interpolation between points

is used to calculate cost of forming and the cost of placing concrete. Note that RS Means provides

only the discrete points. The assumption of linear interpolation between these points is made by the

authors due to lack of better estimates. 

The constraints in Eqs. (2) through (7) define relative geometries for members in one of the

specified sets: Columns, Sym, and Horiz. Eq. (8) defines the location of the plastic centroid of

element i as a function of the decision variables. Eq. (9), defines the location of the neutral axis. Eq.

xi

0.85 bi hi f c
′ hi
2
---- As1 i, fy d′ As2 i, fy hi d′–( )⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0.85 bi hi f c
′ As1 i, fy As2 i, fy⋅+⋅ ⋅ ⋅ ⋅ ⋅

------------------------------------------------------------------------------------------------------------- i∀=

ci 0.003
hi d′–

0.003 fy Es⁄+
------------------------------- i∀=

Pui 0.8 φi 0.85f c
′

bi hi As1 i, As2 i,+( )–⋅( ) fy As1 i, As2 i,+( ) i∀⋅+⋅ ⋅ ⋅≤

As1 i, As2 i,≤ i∀

bi hi≤ i∀

hi 5 bi⋅≤ i∀

bi 3 6 8⁄ bar_diamM As2i bar_areaM⁄( ) 2  +⁄⋅+ +≤

As2 i,  bar_areaM⁄( ) 2 1–⁄( ) max 1.0 1.0 bar_diamM⋅,( ) i∀⋅

ρ min i,

b As1 i,

bi hi⋅
-----------

As2 i,

bi hi⋅
-----------+≤ i∀ Beams∈

As2 i,

bi hi⋅
----------- 0.0206

f s
′

fy
----
As1 i,

bi hi⋅
-----------+≤ i Beams∈∀

ρ min i,

c As1 i,

bi hi⋅
-----------

As2 i,

bi hi⋅
-----------+≤ i∀ Columns∈

As1 i,

bi hi⋅
-----------

As2 i,

bi hi⋅
----------- ρmax i,

c
≤+ i∀ Columns∈

Mui φ⁄ ao– a1– Pui φ⁄ a2 Pui φ⁄( )
2

– a3 Pui φ⁄( )
3

a4 Pui φ⁄( )
4

– a5 Pui φ⁄( )
5

0≤––

bi 16 cm i∀≥   hi 16 cm i∀≥   As1 i, 258 mm
2
 i∀≥   As2 i, 258 mm

2
 i,∀≥, , ,

bi 500 cm i∀   hi 500 mm i∀≤   As1 i, 130 000 mm
2
 i∀,≤   As2 i, 130 000 mm

2
 i∀,≤, , ,≤
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(10) ensures that the applied factored axial load Pu is less than φPn for the minimum required

eccentricity, as defined by ACI 318-05 Eq. (10-2). Eq. (11) maintains that the tensile steel area is

greater than the compressive steel area. The intent of this restriction is to facilitate the algorithmic

search. Eqs. (12) and (13) are problem specific restrictions related to the width, bi, and depth, hi, of

all members. Whereas these restrictions are common practice in low seismicity areas, they are by no

means general requirements for all construction. While Eq. (12) ensures that the width is less than

the depth, Eq. (13) prevents the creation of large shear walls and maintains mostly frame action for

the design convenience of this study. Eq. (14) ensures that the tensile steel can be placed in element

i with appropriate spacing and concrete cover as specified by ACI 318-05. In Eq. (14), the subscript

M on bar_diam and bar_area corresponds to the discrete bar area that is closest to and not less than

the continuous value of As2, i. The constraints listed in Eqs. (15) through (18) ensure that the amount

of reinforcing steel is between code specified minimum and maximum values. And finally, Eq. (19)

ensures that the applied axial and bending forces of element i, Pui and Mui , determined with a Finite

Element Analysis (FEA), are within the bounds of the factored P-M interaction diagram which is

Table 1 RS Means 2005 concrete cost data all data in english units “from means concrete & masonry cost data 2005.
Copyright Reed Construction Data, Kingston, MA 781-585-7880; All rights reserved.”

Product Description Total Cost Incl. 
Overhead and Profit

Units

REINFORCING IN PLACE A615 Grade 60, 
including access. Labor

Beams and Girders, #3 to #7 2420 (2200) $/metric ton ($/ton)

Columns, #3 to #7 2340 (2125) $/metric ton ($/ton)

CONCRETE READY MIX Normal weight

4000 psi 121.0 (92.5) $/m3 ($/Yd3)

PLACING CONCRETE and Vibrating, including labor and
equipment. 

Beams, elevated, small beams, pumped.
(small =< 929 cm2 (144 in2))

79.8 (61.0) $/m3 ($/Yd3)

Beams, elevated, large beams, pumped.
(large =>929 cm2 (144 in2))

53.0 (40.5) $/m3 ($/Yd3)

Columns, square or round, 30.5 cm (12") thick, pumped 79.8 (61.0) $/m3 ($/Yd3)

45.7 cm (18") thick, pumped 53.0 (40.5) $/m3 ($/Yd3)

70.0 cm (24") thick, pumped 51.7 (39.5) $/m3 ($/Yd3)

91.4 cm (36") thick, pumped 34.0 (26.0) $/m3 ($/Yd3)

FORMS IN PLACE, BEAMS AND GIRDERS

Interior beam, job-built plywood, 30.5 cm (12") wide, 1 use 41.0 (12.5) $/SMCA* ($/SFCA)

70.0 cm (24") wide, 1 use 35.8 (10.9) $/SMCA ($/SFCA)

Job-built plywood, 20.3 × 20.3 cm (8" × 8") columns, 1 use 41.0 (12.5) $/SMCA ($/SFCA)

30.5 × 30.5 cm (12" × 12") columns, 1 use 37.1 (11.3) $/SMCA ($/SFCA)

40.6 × 40.6 cm (16" × 16") columns, 1 use 36.3 (11.05) $/SMCA ($/SFCA)

70.0 × 70.0 cm (24" × 24") columns, 1 use 36.7 (11.2) $/SMCA ($/SFCA)

91.4 × 91.4 cm (36" × 36") columns, 1 use 34.3 (10.45) $/SMCA ($/SFCA)

*Square Meter Contact Area and Square Foot Contact Area
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modeled as a spline interpolation of five strategically selected (Mn , Pn) pairs. The lower and upper

bounds designate the range of permissible values for the decision variables. The lower bounds on

the width and depth are formulated from the code required minimum amount of steel and the

minimum cover and spacing. Upper bounds decrease the range of feasible solutions by excluding

excessively large members. 

2.2. Optimization technique for RC structures

Various optimization algorithms can be used depending on the mathematical structure of the

problem. MathWork’s MATLAB is used to apply an SQP optimization algorithm to the described

problem through MATLAB’s intrinsic function “fmincon”, which is designed to solve problems of

the form:

Find a minimum of a constrained nonlinear multivariable function, f(x),

subject to

Fig. 2 Cost of FORMS IN PLACE for columns

Fig. 3 Cost of FORMS IN PLACE for beams
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where x are the decision variables, g(x) and h(x) are constraint functions, f(x) is a nonlinear

objective function that returns a scalar (cost), and Ib and ub are the lower and upper bounds on the

decision variables. All variables in the optimization model must be continuous. 

The SQP method approximates the problem as a quadratic function with linear constraints within each

iteration, in order to determine the search direction and distance to travel (Edgar and Himmelblau 1998).

g x( ) 0;=

h x( ) 0;≤

Ib x ub;≤ ≤

Fig. 4 Cost of PLACING CONCRETE and vibrating, including labor and equipment

Fig. 5 Optimization routine flow chart



Design optimization of reinforced concrete structures 321

The flow chart in Fig. 5 demonstrates the entire optimization procedure from generating initial

decision variable values, xo, to selecting the best locally optimal solution from a set of optimal

solutions found by varying xo. Initial decision variable values are found by solving the described

optimization formulation for each individual element subjected to internal forces of an assumed

stiffness distribution. At least ten different assumed stiffness distributions are utilized; each leads to

a local optimal solution. Comparison of all local optimal solutions, not all of which are different,

provides a reasonable estimation of the global optimum solution. Whereas the initial decision is

based on an element-by-element optimization approach, the final optimization (Eqs. 1-20) is global

and allows all element dimensions to vary simultaneously and independently in order to achieve the

optimal solution. As such, the final design is achieved at an optimal internal stiffness configuration.

This corresponds to the internal force distribution that ultimately results in the most economical

design. 

3. Design requirements

3.1. Cross-section resistive strength

Consider a concrete cross section reinforced as shown in Fig. 1, subjected to axial loading and

bending about the z-axis. The resistive forces of the RC cross-section include the compressive

strength of concrete and the compressive and tensile forces of steel, and are calculated in terms

of the design variables (b, h, As1, i, As2, i), the location of the neutral axis c, and the concrete and

steel material properties. It is assumed that concrete crushes in compression at εc=0.003 and that

the strains associated with axial loading and bending very linearly along the depth of the cross-

section. The bending resistive capacity Mn for a given compressive load Pn is calculated

iteratively by assuming εc=0.003 at the most compressive fiber of the cross-section, and by

varying c until force equilibrium is achieved. The strength reduction factor is calculated based on

Fig. 6 Interaction diagram at failure state
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the strain in the tensile steel. At this state, the resulting moment is evaluated, and the pair (Mn,

Pn) at failure is obtained. The locus of all (Mn , Pn) failure pairs is known as the M-P interaction

diagram for a member (Fig. 6).

3.2. M-P interaction diagram

Safety of any element i requires that the factored pairs of applied bending moment and axial

compression  fall within the M-P interaction diagram. The strength reduction factor,

φ, is evaluated based on the strain of the most tensile reinforcement and is 0.65 for tensile strain less

than 0.002, 0.9 for tensile strains greater than 0.005, and is linearly interpolated between 0.65 and 0.9 for

strains between 0.002 and 0.005, as defined in ACI-318-05, Section 9.3. Finally, an axial compression

cutoff for the cases of small eccentricity was placed equal to  as per

ACI-318-05 Eq. (10-2). Mathematically, if  is a function that describes the interaction

diagram, safety requires that  for all i members. For a given cross-section, the

interaction diagram is typically obtained point-wise by finding numerous combinations (Mn , Pn) that

describe failure. For the purpose of this study, the interaction diagram is modeled as a cubic spline

based on five points (Fig. 6), three of which are the balance failure point , the point of

zero moment, and the point that corresponds to a neutral axis location at the level of the

compressive steel axis. The remaining two points are located either above or below the balance

failure point  depending on whether the applied axial compression load is greater or

smaller than Pnb, respectively. Fig. 6 shows the three fixed points as solid circles and the two

conditional points which are located below or above the balance failure point as open circles and

open triangles, respectively. 

It is assumed that the design for shear loads does not alter the optimal design decision variables

bi, hi, As1, i, and As2, i. This assumption is typically acceptable for long slender elements where the

combinations of flexural and axial loads commonly control the element dimensions. It is also

assumed that the optimal solution is not sensitive to connection detailing. For structures in Seismic

Design Category A, B, and C as classified in the ASCE 7 Standard (SEI/ASCE 7-98) this

assumption is acceptable. 

3.3. Rounding the continuous solution

Concrete design is ultimately a discrete design problem, where typical element dimensions are

multiples of 50 mm and steel reinforcement consists of a finite number of commonly available

reinforcing bars. Rounding bi and hi to discrete values is incorporated through the use of a

secondary optimization process that finds the optimal reinforcing steel amounts for fixed bi and hi.

Various combinations of rounding bi and hi either up or down to 5 cm multiples are examined to

find the discrete solution with the lowest total cost.

Selecting a discrete number and size of longitudinal reinforcing steel from continuous-valued

solutions is accomplished by finding the discrete number and size that is closest to and not less than

the continuous-valued optimal solution. This is implemented into the optimization model so that the

minimum width bmin that is required to fit the selected reinforcing steel becomes a lower bound that

ensures proper cover and spacing of the longitudinal reinforcing steel. This process begins by

calculating the discrete number of bars that are necessary to provide at least the steel area of the

continuous solution. The minimum width required for proper cover and spacing for each set of

Mui φ⁄ Pui φ⁄,( )

Pu φ⁄ 0.8 0.85f c
′ Ag Ast–( ) fyAst+[ ]=

F Mn Pn,( ) 0=

F Mui φ⁄ Pui φ⁄,( ) 0≤

Mnb Pnb,( )

Mnb Pnb,( )



Design optimization of reinforced concrete structures 323

reinforcing steel bars is calculated. Next, the combined cost of each bar set and the corresponding

minimum required width is evaluated. The required width that is associated with the lowest

combined cost is used as the minimum width requirement.

It is noted that when a discrete solution requires more than five reinforcing bars, the minimum

required width is calculated based on bundles of two bars placed side-by-side. Also, for beam

members, the compression and tensile reinforcements are designed to use the same size bars for

construction convenience, as long as the strength requirements are still met. Finally, stirrups consist

of #13 reinforcing bars. 

4. Design examples

4.1. Optimization design examples

Three examples of optimal design for multi-story and multi-bay reinforced concrete frames are

presented here to demonstrate the method. The first example studies the optimal design of a one-

story portal frame with varying span length. The second example studies the optimal design of a

multi-bay one-story frame with varying number of bays but with a constant over-all girder length of

24 meters. The third example creates optimal designs of multi-story, single-bay RC structures with

and without horizontal seismic forces. 

Designs based on standard approaches are created to compare optimal and typical-practice

designs. While the same cost function used in the optimization formulation is implemented to

calculate the Typical Design Costs, the design dimensions for the Typical Design Costs are based on

a simplified state-of-the-practice design method. This method initially assumes that all columns will

be 25 cm by 25 cm and that the width of all beams is 25 cm. Additionally, for beams the depth is

equal to the width times a factor of one-third the beam length in meters (McCormac 2001). At this

point an internal stiffness distribution has been defined and internal forces can be calculated. The

amount of reinforcement is then designed to meet strength and code requirements for each member.

The width of each beam member, or width and depth of each column member, is increased in

increments of 5 cm if the assumed size of the member is not sufficient to hold the needed steel to

maintain strength requirements. Note that the internal forces are based on the initially assumed

stiffness distribution and not on the design dimensions. 

For all examples presented here, the length of columns is four meters, the compressive strength of

concrete is 28 MPa, the yield stress of steel is 420 MPa, the cover of compressive and tensile

reinforcement is 7 centimeters, the unit weight of steel reinforced concrete is 24 kN/m3, and the

associated materials and construction costs are listed in Table 1. 

4.2. Loading conditions

All frames examined here are loaded by their self weight wG, an additional gravity dead load,

wD = 30 kN/m, and a gravity live load, wL = 30 kN/m.

Seismic horizontal forces, wherever they are applied, are determined using the ASCE 7 (SEI/

ASCE7-98) equivalent lateral load procedure for a structure in Denver, Colorado that is classified as

a substantial public hazard due to occupancy and use, and is founded on site class C soil (SEI/

ASCE7-98). A base shear force V is calculated using gravity loads equal to 1.0(wD) + 0.25wL, and is
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then distributed appropriately to each frame story. Table 2 details the equivalent seismic horizontal

forces for the multi-story design examples. 

The frames that are subjected to gravity loads only are designed for factored loads of 1.2 wG +1.2

wD + 1.6 wL = 1.2 wG + 84 kN/m. The frames that are subjected to gravity and seismic loads are

designed for the worse combination of the following factored load combinations (ACI 318-05):

1.2 wG + 1.2 wD + 1.6 wL = 1.2 wG +84 kN/m 

1.2 wG + 1.2 wD + 1.0 wL + 1.0 E = 1.2 wG + 66 kN/m + 1.0 E

0.9 wG + 0.9 wD + 1.0 E = 0.9 wG + 27 kN/m + 1.0 E

Table 2 Calculated equivalent lateral loads for multi-story, one-bay structures

Number of
 Stories:

Lateral load at:

First floor Second Floor Third Floor Fourth Floor Fifth Floor

(kN) (kN) (kN) (kN) (kN)

One Story 83.23 -- -- -- --

Two Story 54.99 109.98 -- -- --

Three Story 41.24 82.48 123.73 -- --

Four Story 32.99 65.986 98.981 131.97 --

Five Story 27.494 54.99 82.484 109.98 137.47

Fig. 7 Portal frame

Table 3 Optimal portal frame costs for various span lengths

Span Length
 (L)

 Typical 
Design Costs

Optimal Design 
Cost

Cost Savings Over 
Typ. Design Cost

Optimal Cost per 
Foot of Structure

Optimal Cost per 
Foot of Beam

meters Dollars Dollars Percent Dollars Dollars

4 2204.7 1913 13.2 159 478

6 3203.8 2979 7.0 213 497

8 4547 4504.7 0.9 282 563

10 6402.5 6336.8 1.0 352 634

12 8559.1 8407.9 1.8 420 701

14 11629 10702 8.0 486 764

16 14533 13192 9.2 550 825

24 33787 27975 17.2 874 1166
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4.3.1. One-story portal frame with varying span length

Consider a single-story portal frame subjected to gravity factored live and dead loads, wU, totaling

84 kN/m. The structural model is shown in Fig. 7. The height of the structure is 4 meters, and the

span, L, varies in order to study the effect of the span length on the optimal solution. Comparison of

the costs at the specified span lengths is presented in Table 3, while a graphical presentation of the

same data is shown in Fig. 8. The normalized cost per foot is presented in Fig. 9 to demonstrate the

pure cost burden per foot associated with the larger span lengths. It should be noted that every point

in the cost calculation of Figs. 8 and 9, with the exception of the typical design points, represents an

optimal solution for the specific structure. Although the cost increases smoothly as a function of

span length, the associated element cross-sectional dimensions do not follow an equally smooth

change pattern. For spans of length up to 12 meters optimal solutions result in small columns and a

large girder. The girders under such design develop moment diagrams that have small negative end-

moments, large positive mid-span moments, and behave almost as simply supported beams. For

span lengths of 14 m or larger, the pattern changes abruptly to one where columns become

Fig. 8 Optimal costs for varying span lengths in a one-story structure

Fig. 9 Normalized optimal cost for varying span lengths in a one-story structure
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comparable in size to the girder, and are associated to bending moment distributions where the

girders have equal negative and positive moment magnitudes. Fig. 10 illustrates the girder moment

diagrams at the optimal solution values for the 12 and 14 meter span lengths. The characteristics

and performance of the one-story portal frame for the 12 and 14 meter span lengths are presented in

Tables 4 and 5. Pu and Mu are the critical internal forces of each element at the optimal solution and

t is the total computation time in minutes using a Pentium 4 2.20 GHz laptop with a Windows XP

Pro operating system. 

Optimal designs result in cost savings of just under 1% for the 8-meter span to 17% for the 24-

meter span (See Fig. 8 and Table 3). It is very interesting to note that for certain span lengths the

typical design costs are relatively close to the optimal design costs. This demonstrates the regions

where the typical practice assumptions result in efficient structures and where they do not. A beam

length of eight meters for a portal frame with four meter long columns appears to be the most

efficient structure for the typical practice assumptions as it results in a cost closest to the optimal

cost. 

4.3.2. Increasing the number of bays in a constant 24-meter span

In this example, a series of multi-bay one story frames are designed with a total span of 24 meters

(Fig. 11). The frames range from a one bay structure supported by two columns (bay length of 24.0

m) to a twenty-four bay structure supported by 25 equally spaced columns (bay length of 1.0 m). A

factored gravity load of 1.2 wG + 84 kN/m is placed on the entire 24-meter girder. The cost of each

Fig. 10 Girder moments at optimal solution values

Table 4 Portal frame, L = 12 meters, cost = $8408

t = 3.4 minutes b h As1 As2 Pu Mu φ

Element Number cm cm Comp. Tens. kN kN-m

1 30 35 6#25 6#25 575.3 287.3 0.89

2 30 35 6#25 6#25 575.3 287.3 0.89

3 40 105 2#25 9#25 107.7 1438.6 0.90

Table 5 Portal frame, L = 14 meters, cost = $10702

t = 1.7 minutes b h As1 As2 Pu Mu φ

Element Number cm cm Comp. Tens. kN kN-m

1 60 65 4#25 13#25 668.2 1374.3 0.90

2 60 65 4#25 13#25 668.2 1374.3 0.90

3 40 90 2#25 9#25 511.0 1374.3 0.90
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typical and optimal design is presented in Table 6 and is plotted against the number of bays in Fig.

12. This example covers the entire range of  combinations in the interaction diagram.

The inner girders carry virtually no axial load (tension controlled), while the outer girders are

loaded at high eccentricity (tension controlled or transition). The inner columns carry their loads

with very small eccentricity and are controlled by the code cap on axial compression for columns of

small eccentricities. Finally, the outer columns are compression controlled with a significant bending

moment component. 

Note in Fig. 12, the linear relationship between cost values for frames with 21, 22, and 24 bays.

These correspond to solutions where all members are controlled by minimum code requirements for

member dimensions and reinforcing steel: 20 cm by 20 cm members with a total of 4#13

reinforcing steel bars. For 20 bays or less, minimum code requirements gradually stop controlling

the problem, starting with the outer beams. The lowest cost corresponds to seven spans of 3.4

meters each. It is noted again that every design presented in Fig. 12 is optimal for the specific

geometry, i.e., span length. 

Mu φ⁄ Pu φ⁄,( )

Fig. 11 Frame of length 24 m with n bays

Table 6 Optimal cost for increasing number of bays in a 24 meter span

Number of Bays Typical Design Cost ($) Optimal Design Cost ($) Cost Savings (%)

1 -- 27975 --

2 -- 14743 --

3 11432 10789 5.6

4 10226 9072 11.3

5 -- 8443 --

6 9692.1 8161 15.8

7 10048 8117 19.2

8 -- 8312 --

9 10875 8378 23.0

10 -- 8773 --

12 -- 9464 --

16 -- 10852 --

20 -- 12682 --

21 -- 13050 --

22 -- 13536 --

24 -- 14508 --
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In all cases with 20 bays and less, the model is such that beams increase in size to keep the

columns as small as possible. Only the two-span and the one-span frames have columns with cross-

sectional dimensions larger than 25 cm. In all multi-span structures, the outermost beams carry

larger load and, in most cases, the inner beams are close to minimum values. 

Substantial costs savings over typical design is demonstrated for multi-bay structures. Note in Fig.

12 that after reaching the lowest typical design cost of approximately $9700 for the six-bay

structure, the costs increase linearly with each additional bay. The linear increase indicates that

minimum dimensions have been reached for the typical design assumptions. Thus, each additional

bay increases the total cost by the cost of one column and one beam. 

4.3.3. Multi-story design examples

The designs presented in this section address three groups of multi-story, single bay frames. The

first group consists of frames that have a span length of 4 m, one to six stories and are subjected to

Fig. 13 Multi-story single-bay structures

Fig. 12 Increasing number of bays in a 24 meter span
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gravity loads only. The second group is similar to the first group. However, the frames have a span

length of 10 m. The third group consists of frames that have a span length of 10 m, one to five

stories, and are subjected to gravity and seismic loads. 

Fig. 13 displays the one, two, and three story frames subjected to gravity and seismic forces.

Element numbering and loading for the four-, five- and six-story structures follows the same pattern

as in the frames presented in Fig. 13. The magnitudes of the seismic forces at each floor are listed

in Table 2. 

4.3.3.1. Multi-story - vertical load only 

Given the effects of girder length on the optimal design patterns of portal frames, short-span and

long-span, (4m and 10 m respectively) multistory frame designs are examined here. The optimal

costs of multi-story frames subjected to gravity loads only are presented in Fig. 14, where circular

marks represent the long span frames and rectangular marks represent the short span frames. Note

that the long-span results are presented in two groups: open circles for the frames that have an odd

number of stories (1, 3, or 5), and solid circles for the frames that have an even number of stories

(2, 4, or 6). No such distinction is necessary for the short span frames.

In general, it can be seen from Fig. 14 that the cost increases linearly with the number of stories

for both the long- and short-span frames. The linear relation between the number of stories and cost

is almost exact in the case of short-span frames. On the other hand, a closer examination of the

long-span frames (see data points and their least-square-fit lines) indicates that the odd-story frames

are slightly more expensive than the even-story frames.

The practical significance of this observation is not clear. Nevertheless, from the theoretical

standpoint, this is an interesting, and rather unexpected finding that merits further analysis and

explanation. Let us consider the n-story frame of Fig. 15. Note that the end-rotational tendencies of

each girder are resisted by one column above and one column below at each end, with the

Fig. 14 Increasing cost of multiple story structures subject to vertical loading only
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exception of the roof girder, where only one column below the girder provides the rotational

resistance at each end of the girder. To assist each of the long girders carry their large moments in a

cost-effective way, columns tend to be stiff in order to restrict rotation and develop sufficient

negative end moment, which in turn reduces the mid-span positive moment. Thus, considering the

n-story frame of Fig. 15, the columns Cn underneath the top girder Gn, tend to be stiff. The bottom-

ends of these columns (Cn) also provide large rotational resistance to the next girder Gn-1. As a

result, the next set of columns Cn-1 does not need to be as stiff. This is indicated in Fig. 15 by the

label “soft” next to columns Cn-1. Since the bottom-end of these columns do not provide sufficient

rotational stiffness to the next girder Gn-2, the next set of columns Cn-2 must be stiff (see label in

Fig. 15). Thus, an alternating pattern of stiff-soft columns is created. In frames of even number of

stories, this pattern results in an equal number of stiff and soft sets of columns. On the other hand,

in frames of odd number of stories, the same pattern results in one extra story of stiff columns.

Thus, the odd-story frames are relatively more expensive than the even-story frames. It should be

pointed out however, that a soft column at a lower story tends to be stiffer than a soft column at a

higher story, since it carries larger axial load. Tables 7 and 8 detail the optimal solution results for

the four- and five-story frame without lateral loads. 

For short-span structures, creation of stiff columns to help distribute the moment more efficiently

in the girder is not cost effective, given that girders and columns have a similar length, which

makes two small columns and one large girder less expensive. Thus in the case of short-span

frames, the stiff-soft pattern described earlier is not efficient, and there is no distinction between

Fig. 15 Column stiffness tendencies for Long-Span multistory frames under gravity loads
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odd- and even-story frames. 

The structural tendencies described above were also observed in the one-story portal frame

discussed in section 4.2.1. It was found there that smaller span frames favored small end moments

(small columns-larger girder), while the larger span frames were more economical when larger end

moments were developed (large columns-smaller girder). In the one story example of section 4.2.1

the transition between “small” and “large” span occurred between 12 m and 14 m. In the multistory

frames of this section the transition occurred at less than 10 m, due to the different end conditions

of the girders.

Table 7 Four-story, single bay long span structure, vertical load only

t = 17.7 minutes b h As1 As2 Pu Mu φ

Element Number cm cm Comp. Tens. kN kN-m

1 40 40 4#16 4#16 1834.2 91.3 0.65

2 40 40 4#16 4#16 1834.2 91.3 0.65

3 55 55 2#22 14#22 -291.7 739.7 0.90

4 60 60 4#19 5#25 1371.4 656.9 0.90

5 60 60 4#19 5#25 1371.4 656.9 0.90

6 30 75 2#25 6#25 299.6 707.7 0.90

7 30 30 4#13 4#13 919.6 55.9 0.65

8 30 30 4#13 4#13 919.6 55.9 0.65

9 55 55 2#22 14#22 -316.3 727.0 0.90

10 55 55 2#19 14#19 456.8 701.0 0.90

11 55 55 2#19 14#19 456.8 701.0 0.90

12 40 65 2#19 12#19 343.0 701.0 0.90

Table 8 Five-story, single bay long span structure, vertical load only

t = 18.5 minutes b h As1 As2 Pu Mu φ

Element Number cm cm Comp. Tens. kN kN-m

1 50 55 2#25 5#25 2374.0 431.5 0.65

2 50 55 2#25 5#25 2374.0 431.5 0.65

3 35 70 2#25 7#25 32.7 701.2 0.90

4 40 40 11#16 11#16 1914.4 269.7 0.65

5 40 40 11#16 11#16 1914.4 269.7 0.65

6 50 55 2#22 13#22 -116.1 735.2 0.90

7 50 50 5#22 15#13 1447.7 491.8 0.89

8 50 50 5#22 15#13 1447.7 491.8 0.89

9 50 55 2#22 12#22 117.6 737.9 0.90

10 40 40 3#19 10#19 985.0 264.0 0.65

11 40 40 3#19 10#19 985.0 264.0 0.65

12 45 60 2#22 11#22 -105.2 714.4 0.90

13 45 45 5#19 6#25 519.0 480.5 0.67

14 45 45 5#19 6#25 519.0 480.5 0.67

15 65 95 2#22 6#22 232.7 817.1 0.90
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Fig. 16 illustrates the same optimal costs for the long-span structures along with typical design

costs. The typical design assumptions resulted in efficient stiffness distributions for the one-story

structure. The two-through six-story structures showed cost savings of 11.6%, 3.0%, 9.4%, 6.9%,

and 6.2%, respectively. 

4.3.3.2. Multi-story frames with lateral loads

The long-span multi-story frames of the previous section are designed here for gravity and seismic

loads, as described in Table 2. Following ACI 318-05 requirements, both heavy (66 kN/m) and light

(27 kN/m) gravity loads are considered as calculated in the Section 4.2, on Loading Conditions. The

increased stiffness requirements due to the lateral loads eliminate the stiff-soft patterns observed in

the gravity-only examples of the previous section. The cost of each optimized design is presented in

Fig. 17, along with the costs of the gravity only frame designs to indicate the cost increase due to

lateral loading. It can be seen that the seismic loads do not cause significant cost burdens for frames

Fig. 16 Comparison of optimal and typical design costs in multiple story structures subject to vertical loading
only

Fig. 17 Increasing cost of multiple story structures subject to horizontal loading
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with three stories or less, but they become fairly costly for taller structures. This observation is site

dependent, and can be different for seismic loads that correspond to a different site. 

5. Conclusions

This paper presents a novel approach for optimal sizing and reinforcing multi-bay and multi-story

RC structures incorporating optimal stiffness correlation among structural members. This study

incorporates realistic materials, forming, and labor costs that are based on member dimensions, and

implements a structural model with distinct design variables for each member. The resulting optimal

designs show costs savings of up to 23% over a typical design method. Comparison between

optimal costs and typical design method costs demonstrates instances where typical design

assumptions resulted in efficient structures and where they did not. The formulation, including the

structural FEA, the ACI-318-05 member sizing and the cost evaluation, was programmed in

MATLAB (Mathworks, Inc.) and was solved to obtain the minimum cost design using the SQP

algorithm implemented in MATLAB’s intrinsic optimization function fmincon. 

A number of fairly simple structural optimization problems were solved to demonstrate the use of

the method to achieve optimal designs, as well as to identify characteristics of optimal geometric

spacing for these structures. 

It was found that optimal portal frame designs follow different patterns for small and large bay

lengths. More specifically it was found that short-span portal frames are optimized with girders that

are stiff compared to the columns, thus ensuring girder simple supported action, while long-span

portal frames are optimized with girders that are approximately as stiff as the columns, thus splitting

the overall girder moment to approximately equal negative and positive parts.

It was also found that girders that are supported by multiple supports, as in the case of multi-bay

frames, have an optimal span length, below which the design becomes uneconomical because some

members are controlled by code imposed minimum sizes, and above which the design also becomes

uneconomical as the member sizes tend to become excessive. 

Finally it was found that optimal design multi-story frames present similar characteristics to one-

story portal frames where short-bay designs are optimal with girders that are stiff compared to the

columns, and long-span designs are optimal with girders that are approximately as stiff as the

columns. For gravity dominated long-span multi-story frames, optimal designs tend to have

alternating stiff and soft columns. It is not however clear that this pattern exists in optimal designs

of multi-bay multistory frames, considering that the interior columns typically do not carry

significant moments due to gravity. Finally, the alternating stiff/soft column pattern was not

observed when the horizontal seismic loads had a significant influence on the design. 
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