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Nonlinear analysis of prestressed concrete structures 
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Abstract. A tendon model that can effectively be used in finite element analyses of prestressed concrete
(PSC) structures with bonded tendons is proposed on the basis of the bond characteristics between a
tendon and its surrounding concrete. Since tensile forces between adjacent cracks are transmitted from a
tendon to concrete by bond forces, the constitutive law of a bonded tendon stiffened by grouting is
different from that of a bare tendon. Accordingly, the apparent yield stress of an embedded tendon is
determined from the bond-slip relationship. The definition of the multi-linear average stress-strain
relationship is then obtained through a linear interpolation of the stress difference at the post-yielding
stage. Unlike in the case of a bonded tendon, on the other hand, a stress increase beyond the effective
prestress in an unbonded tendon is not section-dependent but member-dependent. The tendon stress
unequivocally represents a uniform distribution along the length when the friction loss is excluded. Thus,
using a strain reduction factor, the modified stress-strain curve of an unbonded tendon is derived by
successive iterations. The validity of the proposed two tendon models is verified through correlation
studies between analytical and experimental results for PSC beams and slabs.
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1. Introduction

Prestressed concrete (PSC) is a type of reinforced concrete (RC) in which the steel reinforcement

has been tensioned against the concrete. This tensioning operation results in a self-equilibrating

system of internal stresses which improves the response of the concrete to external loads. While

concrete is strong and ductile in compression, it is weak and brittle in tension, and hence its

response to external loads is improved by applying pre-compression. In addition, PSC offers many

other advantages such as effective deflection control, delay of cracking, activation of an entire

concrete section, lighter weight, and better shear resistance in comparison to RC, and has been

widely adopted in long-span bridges, floor slabs, large storage tanks, slender towers, etc.

A great number of finite element analyses for concrete structures have been performed, and many
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numerical models that can simulate the structural response of PSC structures have been followed

(Kwak and Fillipou 1990, Kwak and Seo 2002). Moreover, general purpose programs which can

analyze the nonlinear behavior of concrete structures have also been developed and popularly used

in practice (ADINA 2002, ABAQUS 2003, DIANA 2002). Especially in the numerical analysis of

PSC structures, additional attention is given to the modeling of prestressing tendons. For bonded

tendons, the deformation field of the tendon is the same as that of concrete on the interface.

Therefore, the analysis of PSC members from the initial stage after prestressing transfer to the

ultimate loading stage, including relaxation of prestress, shrinkage, and creep of concrete, can be

conducted on the basis of the strain compatibility condition and the force equilibrium equation at a

section (Kwak and Seo 2002, Kwak and Son 2004).

Since the post-cracking behavior of concrete structures, in which bonded reinforcements such as

tendons and/or reinforcing steels are embedded, depends on many influencing factors (the tensile

strength of concrete, anchorage length of reinforcements, concrete cover, and steel spacing) that are

deeply related to the bond characteristics between concrete and reinforcements, consideration of the

tension stiffening effect on the basis of the bond-slip mechanism is absolutely necessary to more

exactly evaluate ultimate resisting capacity and load-deformation behavior of concrete structures

(Fib 2000).

A wide body of research has been conducted to consider the tension stiffening effect, and many

numerical models have also been introduced (CEB 1996). Among these models, consideration of

the strain softening branch in the tension region of the stress-strain relation of concrete is one of the

generally adopted approaches (Maekawa, et al. 2003, Kwak and Kim 2001). Recently, modification

of the stress-strain relation of steel has been emphasized, because reaching the yield strength of a

bare bar at a cracked section does not necessarily indicate the complete yielding of steel embedded

at a cracked element. The average steel stress at a cracked element still maintains an elastic stress

rather than the yield strength (Belarbi and Hsu 1994, Kwak and Kim 2004). In spite of these efforts

concentrated on the cracking behavior of RC structures, a numerical model that can simulate the

tension stiffening effect of PSC structures has not been introduced, primarily because of the

different bond characteristics of tendons. Accordingly, to effectively simulate the post-cracking

behavior of PSC structures with bonded tendons, a modified stress-strain curve of tendon is

introduced in this paper on the basis of the bond mechanism between a tendon and concrete, as was

introduced at the reinforcing steel (Fib 2000, Kwak and Kim 2004).

On the other hand, the structural behavior of PSC structures with unbonded tendons is member-

dependent instead of section-dependent, and the stress in unbonded tendons depends on the

deformation of the entire member and is assumed to be uniform at all sections along the span

length. This means that the stress cannot be directly determined from a cross-section analysis with

the conventional strain compatibility condition as in the case of bonded tendons. To determine the

resisting capacity of PSC structures with unbonded internal tendons, accordingly, an exact prediction

of the tendon force must be preceded, and consideration of the slip effect along the tendon sheath as

well as the stress relaxation with time is emphasized.

Moreover, the stress-strain curve of the tendon shows a large difference from that of reinforcing

steel and is usually described by a multi-linear curve in the numerical analysis of PSC structures

(Collins and Mitchell 1991). In advance, a tendon placed in a concrete matrix with an initial profile

is approximated by a series of straight segments maintaining a constant force and sectional area

(Kwak and Seo 2002). The contribution of the tendon to the element stiffness is computed as

though the tendon segment is a steel layer located at a distance calculated by averaging the
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eccentricity of the tendon in the case of the discrete model. Meanwhile, in the case of an embedded

model, the tendon segment is considered as an axial member built into an isoparametric concrete

element such that its displacements are consistent with those of the concrete element (ASCE 1982).

The tendon force is also taken into consideration according to the equivalent lateral load concept

(Kwak and Seo 2002).

However, these tendon models do not afford ready consideration of the slip and/or bond-slip along

the tendon length. In order to consider the interaction between the concrete and tendon, accordingly,

a one-dimensional link element, where one end is connected to the tendon node while the other is

connected to the concrete, is generally used (ASCE 1982). In addition, a bond-zone element that

describes the slip behavior of the contact surface between steel and concrete can also be used (Fib

2000). However, the use of a link element or a bond-zone element in the finite element analysis of

PSC structures imposes the following restrictions: (1) the finite element mesh must be arranged in

such a way that the tendon is located along the edge of a concrete element; and (2) a double node is

required to represent the relative slip between the tendon and concrete. In a complex structure,

particularly in three-dimensional models, these requirements lead to a considerable increase in the

number of degrees of freedom, not only because of doubling the number of nodes along the tendons

but also because the mesh has to be refined so that the bars pass along the edges of concrete

elements. The complexity of the mesh definition and the large number of degrees of freedom has

discouraged researchers from including the slip effect in many previous studies.

These difficulties in considering the slip effect especially increase in the nonlinear analysis of

complex large structures with full modeling of the entire structure using commercialized software

such as ADINA (2002), ABAQUS (2003), and DIANA (TNO 2002) because the tendon forces are

determined in these programs through a section analysis on the basis of the a perfect bond

assumption. Nevertheless, the slip effect must be taken into account in PSC structures with

unbonded internal tendons in order to reach to an accurate estimation of the ultimate resisting

capacity of the structure. The resisting capacity of a PSC structure with unbonded tendons is surely

less than that of a structure with bonded tendons (Collins and Mitchell 1991). Therefore, an

improved tendon model, which can consider the slip effect in commercialized software without

using any link element that requires double nodes, is introduced in this paper. Instead of utilizing

double nodes, sequential iteration and correction procedures are introduced to satisfy the member-

dependent properties of the tendon, and the efficiency of the introduced model is verified through a

correlation study between experimental data and numerical results. As DIANA 8.1 is used in the

nonlinear analysis of PSC structures, more details about the solution procedures can be found

elsewhere (TNO 2002).

2. Numerical modeling of tendons

2.1. Bonded tendon

In a cracked cross-section of an RC structure, all tensile forces are balanced by the steel encased

in the concrete matrix only. However, between adjacent cracks, tensile forces are transmitted from

the steel to the surrounding concrete by bond forces. This effect is called the tension stiffening

effect. To verify the bond-slip mechanism, accordingly, many experimental and numerical studies

have been conducted (Fib 2000, Kwak and Fillipou 1990). In early studies, the characterization
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itself of the tension stiffening effect due to the non-negligible contribution of cracked concrete was

the main objective. Recently, following the introduction of nonlinear fracture mechanics in RC

theory (ASCE 1982), more advanced analytical approaches have been conducted (CEB 1996), and

many numerical models that can implement the tension stiffening effect into the stress-strain relation

of concrete have been proposed (Maekawa, et al. 2003, Kwak and Kim 2001).

In addition to the use of an average stress-strain relation of concrete that includes the strain

softening branch in the tension region, modification of the stress-strain relation for steel must also

be accomplished for an accurate assessment of the tension stiffening effect (Kwak and Kim 2004).

Reinforcing steel is usually modeled as a linear elastic, linear strain-hardening material with yield

strength fy . However, when reinforcing bars are surrounded by concrete, the average behavior of the

stress-strain relation is quite different. The most different feature is the lowering of the yield stress

below fy . Even though the steel stress reaches the yield strength of a bare bar at a cracked section,

the average steel stress at a cracked element still maintains an elastic stress less than the yield

strength. This is because the concrete matrix located between cracks is still partially capable of

resisting tensile forces, owing to the bond between the concrete and reinforcement. Determination of

the element stiffness on the basis of the yielding of steel at a cracked section at which a local stress

concentration appears in the steel may cause an overestimation of the structural response at the post-

yielding range.

Accordingly, to trace the cracking behavior of a RC structure up to the ultimate limit state by

using the smeared crack model, in which the local displacement discontinuities at cracks are

distributed over some tributary area within the finite element and the behavior of cracked concrete

is represented by average stress-strain relations, the average stress-strain relation of steel needs to be

defined together with the introduction of the strain softening branch in the stress-strain relation of

concrete. Considering these factors, a few modified average stress-strain relations of steel have been

proposed and are popularly employed in the numerical analysis of RC structures (Belarbi and Hsu

1994, Kwak and Kim 2004). Nevertheless, direct application of these models into the numerical

analysis of PSC structures may not be appropriate because the bond characteristics between tendon

and concrete are different from those between reinforcing steel and concrete. Therefore, the average

stress-strain relation of a bonded tendon is introduced in this paper on the basis of the bond

properties in PSC structures.

The internal tendons incased in a metal sheath are unified with the concrete matrix through

grouting. Since the grout material, which consists of a mixture of cement and water (water/cement

ratio of about 0.5) together with a water-reducing admixture and an expansive agent, has sufficient

strength to bond the tendons to the surrounding concrete, it can be equally considered as concrete

while modeling PSC structures with finite elements. On the other hand, the bond characteristics of

prestressing tendons present numerous differences with the bond characteristics of reinforcing bars.

To define the bond stress-slip relation between a prestressing tendon and grout material, a formula

introduced by Balázs (1992) on the basis of experimental studies is used in this paper.

(1)

where c=2.055 MPa1/2, ψ is a constant defining the upper and lower limits of bond stress and has

the average value of 1.0,   is the compressive strength of the grout material, dp is the diameter of

the tendon, and b in the range of 0 < b < 1 represents the tendon type and has a value of 0.25 in the

case of seven-wire strands. 

fb s( ) ψc f c
′  δ s( )( )b

f c
′ ψc  s dp⁄( )b

==

f c
′
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From the strain distribution along the tendon, the local slip s(x) can be defined as the total

difference in elongations between the tendon and the concrete matrix measured over the length

between a distance x from the separation point between the tendon and the concrete matrix and a

crack force in Fig. 1 bounded by two adjacent cracks; that is, s(x) = x{εs(t)−εc(t)}dt. In advance, on

the basis of the force equilibrium, the following very well-known governing differential equation for

the bond-slip normalized with respect to dp can be obtained (Balázs 1992, Kwak and Song 2002).

(2)

where the normalized slip δ (ξ )=s(ξ )/dp, ξ=x/dp is the normalized length from the crack surface,

n=Ep/Ec, the steel ratio ρp=Ap/Ac, Kp=4(1+nρp)Θ/Ep, Θ=dp

2π/(4Ap), and Ep and Ap are Young’s modulus

and sectional area of the tendon, respectively.

The general solution of Eq. (2) is obtained by applying the boundary condition at the crack face

and at the center of the cracked region like the anchorage region of Balázs (1992). After obtaining

the general solution for the bond-slip, the corresponding bond stress along the steel axis is

successively calculated using the force equilibrium and the compatibility condition at an arbitrary

location. Moreover, the tendon stress at an arbitrary location between two adjacent cracks can be

inferred from the superposition of the bond stress, transformed to the sectional stress by multiplying

4Θ, on the tendon stress σp0 at the center of the cracked region (see Fig. 1).

 

(3)

The stress distribution of a bonded tendon along the length shows a different shape from that of a

reinforcing steel, which is represented by a cosine shape with zero slope at the crack face (Belarbi

and Hsu 1994). In addition, in contrast with the bond characteristics in RC members, which show a

decrease of bond stress with an increase of slip after reaching the maximum bond stress, the bond

stress between tendon and concrete maintains its maximum value up to a larger bond-slip range at

the cracked region. 

Since the value of nρp is in the range of 0~0.1 and b=0.25 for the seven-wire strands, the

variation of B=(8.47~8.74)( 2/Ep)
1/3 MPa is relatively small, and Eq. (3) can be simplified by

using the representative value of B.

(4)

 ∫

δ ″ ξ( ) Kp fb δ ξ ( )( )– 0=

σp ξ( ) σp0 4Θ fb ξ ( ) ξd
0

 ξ

∫+ σp0 4Θ f c
′ δ ξ( )ψc  ξd

0

 ξ

∫+= =

σ= p0 Bξ
1 b+

1 b–
----------

+ σp0

4Θ 1 b–( )
1 b+

---------------------- f c
′ψc  κ 

b ξ
1 b+

1 b–
----------

+=

f c
′

σp ξ ( ) σp0 8.5 f c
′2 Ep⁄3 ξ 5 3⁄

+=

Fig. 1 Behavior of tension member
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On the basis of the bond stress distribution at the cracked region in Fig. 1, the bond stress

difference between the stress at the crack face and the average stress uniformly distributed within

the two adjacent cracks can be calculated by

 (5)

Then, the compressive strength  of the grout material can be assumed to be 24 MPa and

55 MPa in the case of pre-tensioned and post-tensioned concrete members, respectively, because the

concrete and cement paste act as grout materials in each case (Fib 2000). In addition, experimental

data show that the crack space s is in the range of 150 mm~250 mm (Collins and Mitchell 1991). If

the average values of s=200 mm and Ep=200,000 MPa are used, Eq. (5) can be simplified by

(6)

where the nominal diameter of tendon dp and the stress difference σp1−σpa are in mm and MPa,

respectively. 

On the other hand, the bond stress difference calculated by Eq. (5) or Eq. (6) is based on the

assumption that the slip occurs along the entire region from the center of the segment to the crack

face. However, when the slip occurs within a limited range, the stress difference will be smaller

than that calculated by Eq. (6). This means that the upper limit value for the stress difference needs

to be derived. Since the axial force carried by the tendon at the crack face (Apσp1) is equivalent to

the axial force along the length (Apσpa+Acσc), which is comprised of the average tendon force

(Apσpa) and the average concrete tensile force (Acσc), Eq. (7) can be obtained by using the tension

stiffening model of σt =fcr(εcr/ε)0.4, where fcr denotes the tensile strength of the grout material.

 (7)

As mentioned before, the critical difference between bare steel bar and embedded steel bar is in the

lowering of yield stress. Even though the yield stress of bare tendon bar is not clearly defined because

the prestressing tendon does not exhibit a yield plateau, it can be assumed to be a stress at a strain of

1% (Devalapura and Tadros 1992). Accordingly, Eq. (7) at yielding of tendon can be represented by

(8)

where σ*
py  is the apparent yield stress considering the bond characteristics of the embedded tendon

bar. This means that the yield stress σpy corresponding to the strain of 0.01 needs to be revised to

σ*
py. From Eqs. (6) and (8), the yielding point σ*

py  of an embedded tendon bar can finally be

calculated by

(9)

To trace the average stress-strain relation of a tendon generally used in a prestressed concrete

structure, the yield stress differences defined in Eq. (9) are calculated and compared in Table 1. The

σp1 σpa– σp
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dp
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⎝ ⎠
⎛ ⎞ dp
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-------- σp ξ( ) ξd
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⎨
⎧
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tensile strength and Young’s modulus of concrete are assumed to be 2.75 MPa and 32,800 MPa,

respectively, and the minimum steel ratio of ρ=0.5% is assumed to maximize the yield stress

difference. The values in parentheses in Table 1 are determined from the upper boundary values

calculated by Eq. (6). As shown in this table, the yield stress differences are gradually governed by

Eq. (6) as the nominal diameter of the tendon increases, because this increase accompanies an

extension of the bond-slip region at the cracked member.

The yield stress difference in Table 1 has a maximum value of 81.1MPa corresponding to about 5%

of the yield strength of the tendon. However, this appears to be relatively small in comparison with that

of mild steel, which shows an approximate 25% difference between the yield strength σy and apparent

yield stress σ*
y (Belarbi and Hsu 1994). The yield stress difference will also be smaller in real PSC

structures where a tendon ratio of more than 0.5% is generally applied. Thus, no remarkable difference

in the stress-strain relations of bare tendon and embedded tendon is expected. Accordingly, only slight

modification of the stress-strain relation for a bare tendon, rather than deriving a new relation, is

sufficient in defining the stress-strain relation of an embedded tendon. Fig.2 shows the modification of

the stress-strain relation. Since the linear elastic range is the same as that of the bare tendon, point A in

Fig. 2, which represents the upper limit for the linear elastic behavior, can be determined easily from the

stress-strain relation of the bare tendon. Point B, representing the apparent yield stress, is then calculated

by Eq. (9), followed by determination of point C from the experimental data. In addition, each range

bounded by two points (range A to B or B to C in Fig. 2) in a curved line connecting three points of A,

B, and C can be simplified with a linear or multi-linear relation.

Table 1 Yield stress differences in tendons

Grouting method
Nominal Diameter of Tendon (dp)

1-strand with 3/8in. 1-strand with 1/2in. 2-strand with 3/8in. 2-strand with 1/2in.

Pre-tensioning
81.1MPa†

(170MPa)
81.1MPa†

(106MPa)
53.7MPa 33.3MPa

Post-tensioning
81.1MPa†

(297MPa)
81.1MPa†

(184MPa)
81.1MPa†

(93.4MPa)
57.9MPa

† : upper bound of (σpy-σ*
py )

Fig. 2 Simplified average stress-strain relation of embedded tendon
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2.2. Unbonded tendon

In contrast with the bonded tendon in which the tension stiffening effect is emphasized, the most

dominant effect in the structural response of PSC structures with unbonded tendons is the slip

behavior along the tendon sheath. Since the stress increase in the tendons due to external loading is

not section-dependent but member-dependent, it cannot be determined from the analysis of a beam

cross-section. Rather, it must be determined from the total deformations of the entire structure in the

elastic as well as the ultimate limit state. In order to consider the slip in the numerical analysis of a

PSC structure with unbonded tendons, accordingly, many analysis methods have been introduced.

Naaman and Alkhairi (1991) proposed a simplified analytical method to determine the strain in a

simple beam with a symmetrical tendon profile and subject to symmetrical load. Wu, et al. (2001)

introduced a friction model that considers friction at the interface of the tendon and concrete using

the spring element, and more general analyses of the slip behavior using the finite element method

have also been proposed. However, most slip models are based on the spring element that connects

the concrete node and the tendon node. As mentioned above, since the spring element in the finite

element analysis imposes many restrictions in use, direct application of this element to a large

complex structure reinforced with unbonded tendons may be impossible. Accordingly, to take into

account the slip effect, an iterative approach is introduced in this paper, instead of taking double

nodes as in the case of the spring element, and the calculated slip effect is implemented into the

Fig. 3 Strain distribution along length and section
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stress-strain relation of the tendon.

First, a PSC structure with unbonded tendons subjected to an external load p is analyzed under the

assumption that the tendons maintain bonding with the concrete. If the strain ε1(x, p) in Fig. 3

represents the obtained strain distribution along the tendon length in a structure with bonded

tendons, then the average strain ε1,ave(p) and the corresponding average stress σ1,ave(p), which are

expected to be produced in the same structure with unbonded tendons, can be calculated by Eq.

(10). 

In addition, the strain value ε1,max(p) in the strain distribution ε1(x, p) may be assumed to be the

strain at a critical section in which the maximum stress occurs, and the corresponding point in the

stress-strain relation of tendon can be defined by Eq. (11).

(10)

 (11)

where f represents the stress-strain relation of a bare tendon and L is the total length of a tendon

between both anchorages.

As shown in Eqs. (10) and (11), both values of the average strain ε1,ave(p) and the maximum strain

ε1,max( p) change with the magnitude of the applied load p, which directly affects the tendon force in

the prestressing steel. This means that the modified stress-strain relation of embedded tendons, as

shown in Fig. 4, is not uniquely defined, but rather it changes in accordance with the applied

external load p and the tendon layout along the length in a PSC structure. Accordingly, it is

reasonable to construct the modified stress-strain relation of the tendon on the basis of the stress and

strain at the critical section, where these represent the maximum values, because all the structural

responses from the uncracked elastic to the ultimate limit states are dominantly affected by the

structural behavior at this section. Unlike the bonded tendon, which presents the same strain

distribution along the length as that of the concrete, the unbonded tendon presents a uniform strain

distribution. Therefore, the tendon stress σ1,max( p) corresponding to the maximum strain of ε1,max( p)

needs to be revised to the average stress σ1,ave( p), because the non-uniform strain distribution with

the maximum value of ε1,max( p) is averaged in the case of an unbonded tendon. That is, as shown in

Fig. 4, point A in a bare tendon is moved to point B in an unbonded internal tendon to implement

the slip behavior of the tendon. The same modification procedures are repeated for a few different

ε1 ave, p( ) 1

L
--- ε1 x p,( ) xd

 0

 L

∫  σ1 ave, p( ) f ε1 ave, p( )( )=,=

ε1 max, p( ) max ε1 x p,( )[ ]   σ1 max, p( ) f ε1 max, p( )( )=,=

Fig. 4 Modified stress-strain relation of a tendon
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load levels to obtain a completely modified stress-strain relation of the tendon defined for the entire

stress range.

On the other hand, when a PSC structure with unbonded tendons experiences the crushing failure

of concrete before yielding of the tendon, the modified stress-strain relation of the unbonded tendon

is only defined up to the strain of the tendon corresponding to the failure of the structure. The

following relation is then assumed to be extended to the ultimate state with the same modulus of

elasticity determined at the modified stress-strain relation just before the failure of the structure.

Finally, the modified stress-strain relation of g1 (continuous line in Fig. 4) can be re-defined as 

(12)

where f is the stress-strain relation of a bare tendon (discontinuous line in Fig. 4), and pi, where

Apσpe≤pi≤Apσpu, is the tendon force between the two boundary values of the effective tendon force

and the ultimate tendon force.

On the basis of the modified stress-strain relation g1, a second finite element analysis of the same

structure is conducted. Even though the slip effect in the unbonded tendon is indirectly taken into

account in the results obtained from the re-analysis, the obtained results must be checked in terms

of whether they effectively represent the unbonded characteristics of the tendons. When the results

do not reach convergence, re-analyses are repeated on the basis of the revised stress-strain relation,

as was the case for the first iteration (see Eq. 13), until the convergence check is satisfied. These

steps are presented in greater detail in the flow diagram of Fig. 5.

(13)

Since the maximum tendon stress σj,max( pi) experienced at the critical section at each iteration (1 ≤ j

≤ n) is adjusted to the average value reflecting the characteristics of the unbonded tendon, the

convergence can be checked by comparing the two stress components of the maximum tendon stress

σj,max( pi) obtained from the finite element analysis and the average tendon stress σj,ave( pi) corresponding

to the average strain from Eq. (10). In this paper, the convergence criterion employed is

(14)

where TOLER is the specified tolerance and a tolerance of 1%~5% gives a satisfactory convergence.

The slip phenomenon in an unbonded tendon is considered on the basis of the strain compatibility

condition modified through implementation of the iteration procedure. By introducing the iteration

procedure and extending it to the total strain condition upon the basic concept for the strain

reduction coefficient proposed by Naaman and Alkhairi (1991), which defines the ratio of the

average concrete strain increment in the unbonded tendon to the strain increment in the equivalent

g1

1– σ1 ave, pi( )( ) f
  1– σ1 max,  pi( )( )=

g2

1– σ2 ave,  pi( )( ) f
 1– σ2 max,  pi( )( )=

g3

1– σ3 ave,  pi( )( ) f
 1– σ3 max,  pi( )( )=

 

gn

1– σn ave,  pi( )( ) f
 1– σn max,  pi( )( )=

…

σj max, pi( ) σj ave, pi( )–( )2

i

∑

σj ave, pi( )( )2

i

∑

--------------------------------------------------------------- TOLER≤
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bonded tendon at the section of maximum moment in a PSC beam, definition of a modified stress-

strain relation for an unbonded tendon becomes possible. In particular, the derivation procedure on

the basis of the strain compatibility condition makes it possible to consider the slip behavior

indirectly even in the case of modeling an unbonded tendon with embedded and/or distributed steel

models. In advance, since any limitation in numerical modeling of a structure to consider the

relative slip behavior is not required, the introduced numerical model can effectively be used in the

analysis of large complex PSC structures with unbonded tendons using commercialized large

programs such as ADINA (2002), ABAQUS (2003), or DIANA (TNO 2002), regardless of the

structural type and loading history.

In addition to the slip phenomenon in an unbonded tendon, additional prestressing losses such as

friction losses, anchorage slip, and relaxation with time are developed even though the short-term

losses occurred at the jacking stage represent relatively small values in the case of unbonded

internal tendons and are assumed to be constant after anchorage. Moreover, the tendon force

variation by these prestressing losses seems to be very small in comparison with the tendon force

Fig. 5 Flow diagram for construction of modified stress-strain relation of a tendon
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change along the length due to the slip behavior in an unbonded tendon and becomes negligibly

small as the applied lateral load increases. Nevertheless, when required, additional consideration for

these prestressing losses can be achieved according to the method adopted in classical approaches

(Collins and Mitchell 1991) after determining the average stress along the length with the

introduced numerical approach. More details related to the numerical implementation of prestressing

losses can be found elsewhere (Collins and Mitchell 1991).

3. Solution algorithm

Every nonlinear analysis algorithm consists of four basic steps: the formation of the current stiffness

matrix, the solution of the equilibrium equations for the displacement increments, the state

determination of all elements in the model, and the convergence check. Ultimately, since construction

of the global stiffness matrix and determination of the deformation state of the structure are initiated

from the definition of the stress-strain relation of each material, introduction of an accurate stress-strain

relation that takes into account many influencing factors is important in simulating the nonlinear

behavior of PSC structures. In this regard, the tendon models introduced in this paper can be

effectively used. To analyze PSC structures, the DIANA 8.1 general purpose finite element program

(TNO 2002) is used, and the other material models including that for concrete are defined according to

the CEB-FIP MC90 (1990). In advance, the nonlinear solution scheme selected in this paper uses the

tangent stiffness matrix at the beginning of the load step in combination with a constant stiffness

matrix during the subsequent correction phase, that is, the incremental-iterative method.

The criterion for measuring the convergence of the iterative solution is based on the accuracy of

satisfying the global equilibrium equations or on the accuracy of determining the total

displacements. The accuracy of satisfying the global equilibrium equations is controlled by the

magnitude of the unbalanced nodal forces. The accuracy of the node displacements depends on the

magnitude of the additional displacement increment after each iteration. The latter convergence

criterion is used in this study. This can be expressed as 

(15)

where the summation extends over all degrees of freedom j, dj is the displacement of degree of

freedom j, Δd i
j is the corresponding increment after iteration i, and TOLER is the specified

tolerance.

In the nonlinear analysis of a RC structure the load step size must be small enough so that

unrealistic “numerical cracking” does not take place. These spurious cracks can artificially alter the

load transfer path within the structure and result in incorrect modes of failure. Crisfield (1982) has

shown that such numerical disturbance of the load transfer path after initiation of cracking can give

rise to alternative equilibrium states and thereby lead to false ultimate strength predictions. In order

to avoid such problems after crack initiation the load is increased in steps of 2.5%~5.0% of the

ultimate load of the member.

The failure load is assumed to occur at a load level for which a large number of iterations is

Δd j
i( )2

j
∑

d j
i( )2

j

∑

-------------------------- TOLER≤
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required for convergence. This means that very large strain increments take place during this step

and that equilibrium cannot be satisfied under the applied loads. Obviously the maximum number of

iterations depends on the problem and the specified tolerance, but a maximum of 30 iterations

seems adequate for a tolerance of 1%. This is the limit in the number of iterations selected in this

study.

4. Applications

4.1. PSC beams

To verify the proposed analytical model, two two-span continuous PSC beams with bonded

internal tendons are investigated. These beams, A and B, are tested by Lin (1955) to determine the

cracking behavior and ultimate strength of PSC beams. The geometry and cross section dimensions

of the adopted beams are presented in Fig. 6, and the material properties of concrete reinforcing bar

and tendon are summarized in Table 2. The other material properties not mentioned in this paper are

determined in accordance with the CEB-FIP MC90 (1990). The prestressing tendon has a

concordant profile in this specimen and consists of a straight part, which extends from the end of

the beam to the point where the concentrated load is applied, and a curved part over the center

support. Moreover, beam B is reinforced with mild reinforcing bars while beam A is not reinforced.

 
Table 2 Properties of two-span continuous PSC beams

Beam
Concrete Reinforcing bar Tendon

 [MPa] ft [MPa] As [mm2] fy [MPa] Ap [mm2] fpe [MPa] fpu [MPa]

A
B

41.30
41.30

5.516
5.516

-
306.6

-
313.7

621.3
621.3

979.1
979.1

1,765
1,765

f
c

′

Fig. 6 Configuration of two-span continuous PSC beam (unit: mm)
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The concrete was modeled by eight-node serendipity plane stress elements with a 3×3 Gauss

integration and the tendon and reinforcements were modeled by an embedded two-node truss

element. The number of elements used through the depth and the length of the member are 4 and

150, respectively. Since the plastic hinge length lp calculated by the simple equation proposed by

Sawyer (1964) is determined as 20 cm, the specimen is modeled along the entire span with an

element of l=10 cm to obtain an analytical result which is free from the mesh-dependency.

The correlation between the measured load P to the mid-span deflection curves of the two beams

and the analytical results is shown in Fig. 7. As shown in this figure, the numerical results obtained

by using the modified stress-strain relation of tendon according to the introduced numerical

approach and also by considering the tension stiffening effect in concrete give very good

agreements with experimental results throughout the entire loading history. On the other hand, the

inclusion of only tension stiffening effect produces a slightly overestimation of the ultimate resisting

capacity, but the exclusion of tension stiffening effect underestimate the ultimate resisting capacity

and gives a soft cracking behavior. It is clear from the comparison of these numerical results with

the experimental data that the consideration of tension stiffening effect together with the

modification of stress-strain relation of tendon yields a very satisfactory agreement for the structural

stiffness and ultimate capacity.

Unlike a beam where the plastic deformation is widely distributed, the plastic deformation in beams A

and B subjected to two concentrated load (see Fig. 6), is concentrated at the center support with narrow

width, where the occurrence of plastic rotation is initiated and concentrated. This range is called the

plastic hinge length. Various empirical expressions have been proposed by investigators for the

equivalent length of the plastic hinge lp (Park and Paulay 1975). Since the structure is modeled with

finite elements whose displacement field is defined by the average deformation of nodes, the ultimate

capacity can be overestimated if the plastic hinge length is not precisely taken into consideration.

Fig. 7 Comparison of test results and analytical predictions for two-span continuous beam
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In order to study the effect of finite element mesh size on the analytical results, accordingly, three

different meshes with l=10 cm, l=43 cm, and l=130 cm for the region between the loading point and

the center support are investigated. As shown in Fig. 8, the exclusion of plastic hinge length when

the element size is greater than the expected plastic hinge length (lp is about 20 cm in this example

structure) may yield an overestimated ultimate load. On the other hand, the numerical results when

the element size was 5 cm was exactly the same with those of l=10 cm. Accordingly, three effects

of the tension stiffening, modification of stress-strain relation of tendon and plastic hinge length

must be considered to reach to a very satisfactory agreement of the model with reality.

In advance, three simply supported PSC beams are also investigated with the same objective of

establishing the capacity of the introduced numerical model. The beams, tested by Tao and Du

(1985), are specimens A-1 and A-3 with unbonded internal tendons and specimen D-3 with bonded

internal tendons. The material properties and geometries of the three test specimens are summarized

in Table 3 and Fig. 9, respectively. In advance, the other material properties not mentioned in this

paper are determined in accordance with the CEB-FIP MC90 (1990). The same elements with those

used in the previous two-span continuous PSC beams were used in modeling the structure, and the

number of elements used through the depth and the length of the member are 4 and 26,

respectively. Since the concentrated loads are applied at the one-third points of these structures, no

additional consideration for the plastic hinge length is required in determining the finite element

mesh size (Kwak and Kim 2002) because the plastic deformation is uniformly distributed within the

two loading points. 

Fig. 10(a) compares the analytical results with the measured load-displacement response of beam

D-3, and very satisfactory agreement between analysis and experiment is observed. The analytical

results by Chern, et al. (1992) are also shown Fig. 10(a). Since Chern, et al. used the stress-strain

relation of a bare tendon without any modification, the ultimate resisting capacity of the structure

was slightly overestimated and the yielding load, after which a large plastic deformation occurs, was

not effectively estimated. The comparison of analytical predictions demonstrates the significance of

Fig. 8 Mesh size effect in beam A
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the modification of the stress-strain relation of the tendon.

To identify the relative contribution of the tension stiffening effect, two different analyses are also

performed for this beam. From Fig. 10(b), it is clear that disregarding the tension-stiffening effect

yields a slight softer response. These results indicates that the tension-stiffening effect needs to be

considered for more accurate prediction of nonlinear responses of PSC structures with bonded

Table 3 Properties of simply supported PSC beams

Beam
Concrete Reinforced steel Tendon

 [MPa] As [mm2] fy [MPa] Ap [mm2] fpe [MPa] fpy [MPa] fpu [MPa]

A-1
A-3
D-3

30.6
30.6
35.6

58.8
156.8
156.8

960
820
879

157
236
236

267
430
430

1,465
1,465
1,360

1,790
1,790
1,660

f
c

′

Fig. 9 Configuration of PSC beam (unit: mm)

Fig. 10 Numerical results of beam D-3
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internal tendons, even though the tension stiffening effect induced from the bond mechanism

between tendons and surrounding concrete is not relatively dominant.

On the other hand, unlike the case of bonded tendons, analyses of PSC structures with unbonded

tendons require the modification of the stress-strain relation of tendon in order to take into account

the slip effect. According to the iteration procedure (see Fig. 5), the average stress-strain relation is

calculated, and Fig. 12 shows the modified relations for beams A-1 and A-3. Since the difference

between the first modification and the second modification was extremely small only two iterations

were sufficient at both beam specimens. From Fig. 11 it is inferred that the slip effect will be

relatively large in beam A-3 and exclusion of the slip effect will lead to overestimation of the

ultimate resisting capacity of PSC structures with unbonded tendons.

The analytical response of beams A-1 and A-3 are compared with the experimental measurements

of Tao and Du (1985) and the analytical solutions obtained by Chern, et al. (1992) in Fig. 12(a) and

Fig. 13(a) respectively. With the effects of tension stiffening and slip, the analyses show excellent

agreement with the experimental results, but the exclusion of the slip effect (the numerical results

by Chern, et al. 1992) leads to overestimation of the ultimate resisting capacity of the PSC beams

and relatively stiff behavior after yielding of tendons. 

To identify the relative contribution of each effect, four different analyses are performed for these

specimens, and the obtained results can be compared in Fig. 12(b) and Fig. 13(b). In contrast with

Solution A, which considers both the effects of tension stiffening and slip, Solutions B and D,

which exclude the slip effect, produce stiffer responses regardless of consideration of the tension

stiffening effect. Moreover, the contribution of slip to the load-displacement responses of the

specimens increases with the load. 

Comparison of Fig. 10 with Fig. 12 and Fig. 13 leads to the following conclusions. First, the

influence of both effects is more dominant in PSC structures with unbonded tendons. Second,

exclusion of the tension stiffening effect may lead to underestimation of the ultimate resisting

capacity whereas exclusion of the slip effect leads to overestimation. Finally, the numerical analyses

of PSC structures with unbonded tendons using commercialized software, composed on the basis of

a perfect bond assumption, may lead to incorrect nonlinear responses of structures if additional

consideration for the slip effect is not taken into account.

Fig. 11 Modified stress-strain relationship of unbonded tendons
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Fig. 12 Numerical results of beam A-1

Fig. 13 Numerical results of beam A-3
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4.2. PSC slabs

Tension stiffening has a significant effect in the analysis of RC slabs. In order to investigate the

validity of the proposed tendon model together with an assessment of the necessity for consideration

of the tension stiffening effect, two three-span continuous slabs tested by Burns, et al. (1978) are

used in the correlation studies. The geometry and cross-section dimensions of the adopted slabs are

presented in Fig. 14 and the material properties are summarized in Table 4. The unbonded internal

tendons are placed along the total span and mild steels are reinforced at the maximum positive and

negative moment regions to prevent abrupt failure and to reserve additional ductility of the

structure. 

The two slabs are identical except for the loading condition. The first slab, A108, is subjected to a

gradually increased live load on the first and third spans under application of a self-weight of

wD=3304 Pa and an additional live load of wL=1317 Pa on the center span, while the second slab,

A109, is subjected to a gradually increased live load on the first and second spans under application

of a self-weight of wD=3304 Pa and an additional live load of wL=1317 Pa on the third span. A

commercialized program, DIANA 8.1 (2002), is used, after defining the stress-strain relations of

tendon and concrete on the basis of the introduced tendon model and the strain softening branch of

the concrete. Eight-node laminate shell elements are used for the finite element idealization of the

slab and 60 elements with 8 imaginary concrete layers through the thickness of the slab are used in

the analysis.

Fig. 15(a) and Fig. 16(a) comparing the analytical load-deflection relation at point B with the

Fig. 14 Geometry of PSC slabs

Table 4 Material properties used in slabs

Concrete Reinforced steel Tendon

 [MPa] As [mm2] fy [MPa] Ap [mm2] fpe [MPa] fpu [MPa]

32.4 28.3 448 31.68 976 1,655

f
c

′
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measured experimental data, show that the inclusion of both effects (tension stiffening and slip)

yields satisfactory agreement of the model with reality. As shown in these figures, the specimen

Fig. 15 Numerical results of slab A108

Fig. 16 Numerical results of slab A109
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cracking behavior may be significantly affected by the loading history. Further, the numerical

analyses may have some limitations in tracing the cracking behavior depending on the loading

history in shallow bending members, which are dominantly affected by the tension stiffening effect.

On the other hand, the live load of wL=7 kPa closely approximates the ultimate load of the

specimens.

In advance, Fig. 15(b) and Fig. 16(b) show that tension stiffening affects the nonlinear behavior of

the slab much more than slip, and ignoring the tension stiffening effect clearly leads to

underestimation of the ultimate resisting capacity of PSC slabs. Conversely, ignoring the slip effect

leads to overestimation of the ultimate resisting capacity of the slabs. The present finding that slip is

an important factor in multi-span continuous slabs also agrees with the results of simply supported

beams, where the slip behavior along the single curvature is clearly explained. The difference in

numerical results between considering and not considering the tension stiffening or slip effect is

enlarged with an increase in the applied load.

5. Conclusions

Modified stress-strain relationships of tendon are proposed for the nonlinear finite element

analysis of PSC structures with bonded and/or unbonded tendons. The proposed tendon models

make it possible to analyze PSC structures using commercialized software such as ADINA,

ABAQUS, and DIANA, which are based on a perfect bond assumption. The proposed models do

not require a double node to simulate tension stiffening or the slip effect developed at the interface

of two adjacent materials of concrete and tendon, and as such they can effectively be used in

modeling a large three-dimensional PSC structure. The introduced tendon models have been verified

through a comparison of experimental data and numerical results. 

Representative PSC beams and slabs were analyzed with the purpose of investigating the relative

effects of slip and tension stiffening, and the following conclusions were obtained: (1) the tension

stiffening and slip effects are more dominant in a PSC structure with unbonded tendons; (2)

ignoring the tension stiffening effect clearly leads to underestimation of the stiffness and ultimate

resisting capacity of PSC structures, in contrast with the case of slip effect, and accordingly

consistent numerical results for PSC structures can only be obtained when both effects are included

in the numerical model; (3) the change in the structural responses according to the use of the

modified tendon model in the beam D-3 with bonded tendons is not as large as was found in RC

structures with embedded reinforcing steel. This means that the stress-strain relation of a bare

tendon can be directly used without any modification for the prediction of the ultimate resisting

capacity of a PSC structure reinforced with more than 1.0% steel ration; (4) however, modification

of the stress-strain relation of an unbonded tendon must be preceded if no additional slip model is

taken into account in the numerical modeling of a PSC structure, regardless of the steel ration,

because the slip effect, representing member-dependent behavior, is dominant.
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