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1. Introduction 
 

In cold regions, concrete infrastructure (e.g., roads, 

bridges) are typically exposed to aggressive service 

conditions due to harsh climates, particularly when 

combined with de-icing salts. The damage disintegrates the 

hydrated cement paste to various levels based on the 

prevailing exposure conditions and key mixture design 

parameters of concrete (Ghazy and Bassuoni 2017a). 

Studies on the extent of damage typically classified the 

problem into physical and chemical natures (Cody et al. 

1996, Litvan 1976). Physical damage can occur due to a 

number of processes such as high degree of saturation, 

crystallization of salt in concrete pores and thermal 

mismatches during freeze/thaw cycles, while the chemical 

effects include detrimental reactions between the de-icers 

and the cement paste or aggravation of expansive aggregate 

reactions (i.e., alkali-aggregate reactions) (Ghazy and 

Bassuoni 2017a, Heisig et al. 2016, Wang et al. 2006). 

While enormous efforts have been expended in 

laboratory and field studies on the physical and chemical 

mechanisms of damage of concrete, only a few computer-

based models have been developed to assist engineers in the 

prediction of the service life of concrete exposed to harsh 

environments (e.g., freezing-thawing (F/T) cycles, wetting-

drying (W/D) cycles) combined with de-icing salts (Tamimi  
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et al. 2008). In particular, modeling the transport properties 

of concrete has received much attention, to indicate the ease 

of saturation of concrete and in turn its vulnerability to 

damage (Tamimi et al. 2008, Johannesson et al. 2003). 

Despite the significant improvements and sophistication of 

computer models for the transport processes in concrete, it 

is still challenging to predict the behavior of concrete 

exposed to aggressive environments including chemical and 

physical parameters based only on transport properties. This 

is due to simplified assumptions in these models such as the 

saturated condition of concrete and overlooking the effect 

of environmental conditions (temperature, relative 

humidity) existing in the field (Marchand et al. 2009, 

Tamimi et al. 2008, Johannesson et al. 2003). In addition, 

excluding the chemical interactions in these ions transport 

models, especially in the presence of de-icing salts, does not 

reflect the behavior of cementitious materials because the 

damage process of concrete is dynamically complex due to 

the dissolution of existing phases (e.g., calcium hydroxide 

(CH) and calcium silicate hydrate (C-S-H)) and formation 

of new products (e.g., Kuzel’s salts, Friedel’s salt, ettringite, 

gypsum and oxychloride phases), which alter the 

characteristics of the cementitious paste (Ghazy and 

Bassuoni 2017a). Recently, multi-ionic modeling 

approaches have been developed to provide more reliable 

service-life predictions of the complicated interactions 

between ions and hydrated cement paste (Marchand et al. 

2009). However, these approaches may not be easily 

applicable by transportation agencies as a result of long 

computational time and/or the complex nature of input data 

required (i.e., diffusion coefficient, permeability, porosity, 

moisture isotherm, thermal conductivity and heat capacity, 

and hydrated cement paste and pore solution compositions). 
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For these complex durability issues, which involves 

physical and chemical interactions, artificial intelligent 

techniques, such as neural networks (NNs), fuzzy inference 

systems (FIS), adaptive neuro-fuzzy inference systems 

(ANFIS), have been promisingly applied in concrete 

research. Using a well-defined experimental database 

(input-output), artificial intelligence can be an efficient tool 

in modeling complex durability issues such as chloride-

induced corrosion, alkali aggregate reaction, carbonation 

depth and sulfate attack of concrete (Cho et al. 2016, 

Tabatabaei et al. 2014, Boğa et al. 2013, Balasubramaniam 

et al. 2012, Bianchini and Bandini 2010, Bassuoni and 

Nehdi 2008, Hu and Tang 2006). ANNs are information-

processing algorithms, which are composed of a number of 

interconnected processing elements analogous to neurons 

resulting in high learning capabilities (Haykin 1999). 

Comparatively, FIS allows a stochastic data-driven 

modeling approach, which uses IF-THEN rules and logical 

operators to establish qualitative relationships among the 

variables in the model (Ross 2004). Therefore, ANFIS is a 

hybrid system incorporating the learning abilities of ANNs 

and semantic knowledge representation and inference 

capabilities of FIS that have the ability to self-modify their 

membership functions to achieve a desired performance 

(Ross 2004, Brown and Harris 1994). It can model the 

qualitative aspects of human knowledge and reasoning 

processes without employing precise quantitative analyses. 

This framework makes ANFIS modeling more systematic 

and less reliant on expert knowledge. 
Hu and Tang (2006) successfully applied ANFIS to 

evaluate the effect of composition of fly ash on suppressing 
the expansion of concrete due alkali aggregate reaction. 
Also, Bassuoni and Nehdi (2008) developed ANFIS models 
to predict the behavior of a wide range of self-consolidating 
concrete mixtures under various sodium sulfate exposure 
regimes. They showed that the sensitivity analyses for such 
approach had good agreement with experimental results and 
microstructural analysis. Bianchini and Bandini (2010) 
applied ANFIS to predict the performance of pavements 
using the parameters routinely collected by transportation 
agencies (e.g., the development of distresses on the 
pavement surface by a rolling wheel deflectometer) to 
characterize the condition of an existing pavement. Also, 
Balasubramaniam et al. (2012) established an ANFIS model 
to estimate the performance characteristics of reinforced 
high-strength concrete beams subjected to different levels 
of corrosion damage. They concluded that ANFIS can be an 
alternative approach for the evaluation of degradation as 
both training and testing data errors were within reasonably 
small limits (RMSE≤13.7%). An ANFIS model had been 
successfully used for the evaluation of chloride ions 
permeability in concrete containing blast furnace slag, 
calcium nitrite-based corrosion inhibitors, and a 
combination of these components with 92.2% accuracy 
(Boğa et al. 2013). Recently, Cho et al. (2016) also 
proposed ANFIS to estimate the carbonation depth of 
reinforced concrete members, in which deterioration was 
reflected based on data obtained from field inspections of 
nine buildings. They stated that the proposed ANFIS 
algorithm closely estimated the carbonation depths and 
provided relatively good accuracy compared to the 
carbonation depth estimation methods of the Korea 

Concrete Institute and the Japan Society of Civil Engineers. 
Based on the promising use of this approach in modeling 
complex durability issues of concrete, the present study 
aims at predicting the time of failure (TF) for a variable 
range of concrete mixtures made with different types of 
cement without or with supplementary cementitious 
materials (SCMs: fly ash and nanosilica) under various 
exposure regimes combined with the most widely used 
chloride-based de-icing salts (individual and combined) 
using ANFIS. The ANFIS model was developed, trained, 
and tested using experimental data from a comprehensive 
testing program conducted at the University of Manitoba. 
Full details on the experimental part of this program are 
beyond the scope of the current study and can be found 
elsewhere (Ghazy and Bassuoni 2018a, 2018b, Ghazy and 
Bassuoni 2017a). In the prequalification stage of a 
construction project, this model can effectively assist in 
selecting optimum mixtures proposed for a specified 
exposure.  

 

 

2. Experimental program 
 

2.1 Materials 
 

The cements used in the experimental program of this 

study were general use cement (GU) and Portland limestone 

cement (PLC), which meet CSA A3001 (CSA 2013) 

specifications; twelve mixtures were prepared, most of 

which contained SCMs including Type F (low lime) fly ash 

(designated as F) conforming to CSA A3001 and nanosilica 

sol (designated as S), as a replacement of the total binder. 

To achieve a constant workability level (slump of 50 to 75 

mm) for all mixtures, a high-range water reducing 

admixture, based on polycarboxylic acid and complying 

with ASTM C494 (2016) Type F, was used at dosages in 

the range of 50 to 400 ml/100 kg of the binder. In addition, 

an air-entraining admixture was used to obtain a fresh air 

content of 6±1%. Locally available natural gravel (max. 

size of 9.5 mm) was used as a coarse aggregate; its specific 

gravity and absorption were 2.65 and 2%, respectively. The 

fine aggregate was well-graded river sand with a specific 

gravity, absorption, and fineness modulus of 2.53, 1.5% and 

2.9, respectively. The water-to-binder ratio (w/b) and total 

binder content for all mixtures were kept constant at 0.40 

and 400 kg/m
3
, respectively. Single binder (control) 

mixtures were prepared from 100% GU cement, 

representing typical concrete pavements in North America, 

or PLC. Fly ash was used to prepare blended binders with 

GU and PLC cements without or with nanosilica, at dosages 

of 20% and 30% by the total binder content (i.e., 80 and 

120 kg/m
3
, respectively). Finally, the nanosilica was added 

at a single dosage of 6% by the total binder content (i.e., 

solid content of 24 kg/m
3
), as a replacement of the cement 

component in the binder, to prepare binary (comprising GU 

or PLC and nanosilica) and ternary binders (comprising GU 

or PLC cements, fly ash and nanosilica). This dosage of 

nanosilica sol was found to advantageously affect the fresh 

and hardened properties of cementitious materials (Ghazy et 

al. 2016, Said et al. 2012). Table 1 shows the mixture 

design proportions of the concrete tested in this program.  
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Table 1 Proportions of mixtures per cubic meter of concrete 

Mixture 

ID. 

Cement 

(kg/m
3
) 

Fly Ash 

(kg/m
3
) 

Nanosilica 

(kg/m
3
) 

Water
a
 

(kg/m
3
) 

Coarse 

Aggregate 

(kg/m
3
) 

Fine 

Aggregat

e (kg/m
3
) 

GU group 

GU 400 -- -- 160 1096 590 

GUF20 320 80 -- 160 1077 580 

GUF30 280 120 -- 160 1068 575 

GUS 376 -- 48 136 1091 587 

GUF20S 296 80 48 136 1072 577 

GUF30S 256 120 48 136 1063 573 

PLC group 

PLC 400 -- -- 160 1096 590 

PLCF20 320 80 -- 160 1077 580 

PLCF30 280 120 -- 160 1068 575 

PLCS 376 -- 48 136 1091 587 

PLCF20S 296 80 48 136 1072 577 

PLCF30S 256 120 48 136 1063 573 

a
Adjusted amount of water considering the water content of 

nanosilica (aqueous solution with 50% solid content of 

SiO2)  

       

 

Sodium chloride (NaCl), dihydrate form of calcium 

chloride (CaCl2·2H2O) and hexahydrate form of magnesium 

chloride (MgCl2·6H2O) with purity of 99, 96 and 96%, 

respectively were used to prepare the salt solutions. In 

addition, combined salts (MgCl2·6H2O and CaCl2·2H2O) 

were applied to simulate anti-icing and de-icing strategies. 

Different concentrations were used in these studies, as 

shown in Table 2. These concentrations had been selected 

to maintain similar ionic concentration of chloride (Clˉ) 

ions in each solution for each state.  

 

2.2 Experimental procedures 
 

Constituent materials were mixed in a mechanical mixer 

and cast in prismatic molds (50×50×285 mm) to prepare 

triplicates for each mixture. Also, four replicates cylinders 

(100×200 mm) were prepared in order to evaluate the 

penetrability of the concrete specimens according to ASTM 

C1202 (2012). The specimens were demoulded after 24 h 

and then cured up to 28 days at standard conditions 

(22±2°C and 98% RH) according to ASTM C192 (2016). 

Recent studies have shown that the addition of nanosilica in 

concrete, even in mixtures containing 30% fly ash, 

accelerates the rate of hydration and microstructural 

development to a level comparable to concrete prepared 

from single binders containing 100% ordinary cement 

(Ghazy et al. 2016, Said et al. 2012). Hence, the curing 

period was kept constant to provide a uniform basis of 

comparison among all mixtures.  

To evaluate the durability of the tested mixtures to the 

chloride-based de-icing salts (individual and combined) 

when combined with different environmental conditions, 

four exposure regimes were adopted: 

• Exposure I is a continuous immersion exposure in 

which prismatic specimens were fully immersed in the 

high concentration solutions (Table 2) of various de-

icing salts at 5°C up to 540 days. The solutions were 

Table 2 Concentration of de-icing salt solutions 

 Moderate Concentration High Concentration 

Type of 

Salt 

Salt 

Concentr

ation 

Mass 

(%) 

Chloride 

Concentr

ation 

(mol/l) 

Chloride 

Concentr

ationa 

(ppm) 

Salt 

Concentr

ation 

Mass 

(%) 

Chloride 

Concentr

ation 

(mol/l) 

Chloride 

Concentr

ationa 

(ppm) 

NaCl 14.2 2.83 100,630 23.3 4.52 160,071 

MgCl2 11.9 2.82 100,735 19.1 4.52 160,069 

CaCl2 13.6 2.81 100,731 21.9 4.51 160,067 

MgCl2+

CaCl2 
5.9+6.8 2.82 100,733 9.6+10.9 4.52 160,073 

a
The ionic concentration of Clˉ ions in each solution was 

verified by ion chromatography according to ASTM D 

4327 (2011).  

 

 

renewed every two weeks to keep a continual supply of 

de-icing salts, thus providing aggravated damage 

conditions. 

• Exposure II is a wetting/drying (W/D) exposure in 

which prismatic concrete specimens were subjected to 

wetting in the high concentration solutions (Table 2) 

followed by drying. A W/D cycle (five days) consisted 

of full immersion of specimens for two days in the de-

icing salt solutions at a temperature of 5°C, followed by 

drying at 23±2°C and 55±5% RH for two days and an 

additional day at 40±2°C and 30±5% RH in an 

environmental chamber. This cyclic exposure might 

mimic the consecutive built up of Clˉ ions within 

concrete surface from winter and wet spring conditions 

followed by drying periods during summer. The 

solutions were also renewed every two weeks and this 

exposure continued for 540 days (108 cycles). 

• Exposure III is a freezing/thawing (F/T) exposure 

according to the general procedures of ASTM C666 test 

procedure A, expect that de-icing solutions were used 

instead of water and the frequency of F/T cycles per day 

was less to allow chemical reactions, if any. The 

duration of one F/T cycle was 12 hours: freezing at 

−18±1°C for 7 h and thawing at 4±1°C for 3.5 h, and 45 

min. to ramp to the minimum freezing temperature or 

the maximum thawing temperature. Moderate and high 

concentrations (Table 2) were used in this exposure to 

cover two different states (solution with and without ice) 

according to the phase diagrams for these salts (Kelting 

2010). The solutions were renewed every two weeks and 

the exposure continued for 540 days (1080 cycles). 

• Exposure IV is a combination of W/D followed by F/T 

procedures to mimic the field performance of concrete 

pavements (successive spring/summer and winter 

seasons, respectively). A spring/summer season was 

simulated by 6 W/D cycles similar to exposure III, while 

a winter season was composed of 30 successive F/T 

cycles similar to exposure IV with moderate 

concentration solutions. This regime of exposure has 

been applied for 540 days (i.e., 12 spring/summer 

alternating with 12 winter seasons).  

Before any exposure, the initial physico-mechanical 

properties of the intact specimens were measured. For all 

651



 

Ahmed Ghazy and Mohamed. T. Bassuoni 

 

specimens, the initial mass, length (ASTM C 157 (2014)) 

and dynamic modulus of elasticity, Ed (ASTM C 215 

(2014)) were recorded. Specimens were removed from the 

solutions at specified time intervals (every 2 weeks), and 

the free expansion of prisms was immediately measured. 

Subsequently, debris, if any, were removed by a nylon 

brush, and the specimens were left to dry under 23±2°C and 

50% RH for 30 min before visual inspection and 

measurement of mass and fundamental transverse 

frequency. Relative to the initial values, the changes in 

mass, length and dynamic modulus of elasticity (REd) 

versus time of exposure were calculated. 

In order to evaluate the physical resistance 
(penetrability) of the concrete specimens, the rapid chloride 
permeability test (RCPT) was performed according to 
ASTM C1202 (2012). To alleviate the effects of electrolysis 
bias and temperatures on the trends, the penetration depth of 

chloride ions/front into concrete, which better correlates to 
the physical characteristics of the pore structure, was 
determined (Bassuoni and Nehdi 2006). Following the 
RCPT, the discs were axially split and sprayed with 0.1 M 
silver nitrate solution which forms a white precipitate of 
silver chloride, to measure the average physical penetration 

depth of chloride ions. The average depth was determined at 
five different locations along the diameter of each half 
specimen. This depth is considered to be an indication of 
the ease of ingress of external fluids, and thus the continuity 
of microstructure.  

 

 

3. ANFIS model 
 

3.1 Database 
 

The database for training and testing the model 

developed herein comprised 480 data points from 12 

mixtures (Table 1) that were exposed to four de-icing salt 

solutions with different concentrations under four exposure 

regimes (full immersion at 5°C, W/D, F/T, and cyclic W/D 

alternating with F/T). The experimental results revealed that 

the resistance of concrete exposed to these environments 

combined with de-icing salts is a function of physical 

penetrability (magnitude of intruding chloride), aluminate 

content in cement and content of portlandite available for 

chemical reactions in the hydrated paste. Also, the 

interground limestone content in PLC contributed to 

improving the resistance of concrete to de-icing salts due to 

synergistic physical and chemical actions of limestone in 

the matrix. Therefore, the model and database had input 

variables to cover both physical and chemical parameters: 

penetration depth of chloride ions, interground limestone 

content, aluminate content (C3A), and portlandite content at 

28 days (before exposure), as well as the type and 

concentration of the de-icing salt and code of environmental 

exposure. The latter code was arbitrarily assigned with 

numbers from 1 to 4 to designate the sequence of 

experiments (Table 3), and it does not implicate the weight 

or aggression level of a specific exposure. The TF was the 

determined experimental parameter in the database and 

hence the predicted output of the model. Currently, there is 

no failure limit for evaluating the resistance of concrete 

Table 3 Coding of exposure regimes  

Description of Exposure Designated Code 

Full immersion at 5°C I 

Wetting/Drying (W/D) II 

Freezing/Thawing (F/T) III 

Cyclic W/D alternating with F/T IV 
                         

Table 4 Range of training and testing the time of failure 

(TF)  

Training Data Testing Data 

Min. Max. Avg. Min. Max. Avg. 

45 540 463 45 540 446 

 

 

exposed to de-icing salts under different environmental 

conditions. Therefore, in this paper, the TF was determined 

based on an increase in expansion beyond 0.25%, 

considerable mass loss (more than 20%), decline in REd 

below 60%, and/or breakage of specimens by transverse 

macro-cracks as each of these criteria were observed to 

present complete disintegration or failure of the specimens. 

345 data points of the data set were randomly assigned to 

the training set, while the remaining (135) data points was 

employed for testing the model’s performance. The 

properties of the training and testing data for the model are 

listed in Table 4. The average expansion, mass loss, and 

REd (failure limits) for the minimum TF (45 days; Table 4) 

were 2.8%, 25%, and 45%, respectively, while these limits 

were 0.02%, 0.05%, and 98% for the maximum TF (540 

days). 

 
3.2 Approach for developing the ANFIS model 
 

3.2.1 Clustering 
The ANFIS model was developed in MATLAB 

environment (2016). Subtractive fuzzy clustering was 

generated to establish rule-based relationships among the 

input and output parameters. The data was divided into 

clusters to generate the fuzzy inference system. Subtractive 

clustering was used to initialize the ANFIS model instead of 

grid partitioning due to the large number of input 

parameters that might have led to an excessive number of 

rules which makes the calculations of the ANFIS network 

extremely slow and perhaps without convergence of the 

global error. Clustering methods convert a universe of data 

into homogenous groups classified according to cluster 

centers from which the distance of data points is computed 

(Brown and Harris 1994). This method considers that each 

data point can act as a candidate for the center of clusters; 

thus, a density measure,     at data point    is defined as 

   ∑    ( 
‖     ‖

 

(
  
 
)
 )

 
                   (1) 

where,   is a collection of   data points {  ,   ,   , ….., 

  } in an M-dimensional space,    is the radius of cluster, 

and (   and   ) are data vectors in the data space including 

both input and output dimensions. A data point will have a 

high-density value if it has many neighboring data points. In  
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contrast, data points outside the    contribute only slightly 

to the density measure. 

After the density measure of each data point had been 

calculated, the data point with the highest density measure 

was selected as the first cluster center. Then, the density 

measure for the next cluster center had been revised as 

follows 

             ( 
‖      ‖

 

(
  
 
)
 )          (2) 

where,    is a positive constant that is relatively greater 

than the     by the squash factor (η), which is a positive 

constant greater than 1 to avoid closely spaced cluster 

centers. Once the density calculation for each data point 

was revised, the next cluster center was selected and so on. 

This process was repeated until a sufficient number of 

cluster centers had been generated. The acceptance of a 

cluster center based on the density value was determined 

according to an acceptance threshold (ε) and rejection 

threshold (έ). The process continued until all possible 

clusters in the input-output spaces were found. The number 

of clusters defines the number of membership functions in 

the input-output space. Subtractive clustering has four 

parameters (acceptance threshold (ε), rejection threshold 

(έ), the radius of cluster (ra), and the squash factor (η) 

affecting the resultant number of rules for an ANFIS model. 

In the present study, these values were selected as 0.5, 0.15, 

0.5 and 1.25, respectively, as these values led to small 

numbers of rules and satisfactory performance of the 

ANFIS model as will be shown later in the text.  

 

3.2.2 Fuzzy inference method 
The Sugeno inference method was used in the present 

study to develop the ANFIS model as this method was 

 

 

reported to be particularly effective for ANFIS models with 

given input-output data sets (Ross 2004). For a first-order 

Sugeno fuzzy model, a typical rule set with two fuzzy IF-

THEN conditions can be expressed as 

Rule1: IF x is    and y is    

THEN                        (3) 

Rule2: IF x is    and y is    

THEN                        (4) 

where,    and    are the fuzzy sets in the antecedent, and 

  ,   , and    are the design parameters which are 

determined during the training process. The overall output 

( ) was obtained by a weighted average defuzzification 

method as follow 

  
∑      
 
   

∑   
 
   

                   (5) 

where,   is the number of rules,    is the output of the 

    rule, and    is the weight (consequent) of the     

rule. 

 

3.2.3 Process 
Referring to Fig. 1, the ANFIS architecture had five 

layers. The first and fourth layers contained an adaptive 

node, while the other layers contained a fixed node. A brief 

description of each layer is as follows: 

• Layer 1: Each node (  ) generates a membership 

function of a linguistic category (high, medium, low). 

The outputs from this layer are the fuzzy membership 

grade of the inputs, which are given by the following 

equations 

  
     ( )                 (6) 

where,   is the input to node  , and    ( )  is the 

 

Fig. 1 Architecture of the ANFIS model. (Note: |1: interground limestone content, |2: C3A content, |3: penetration 

depth of chloride ions, |4: portlandite content |5: type of de-icing salt, |6: concentration of de-icing salt, |7: code of 

environmental exposure) 
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membership function (which can be triangular, trapezoidal, 

gaussian functions or other shapes) of the linguistic label 

   associated with this node and    is the degree of match 

to which the input   satisfies the quantifier   . Gaussian 

membership functions are the most popular shape for 

specifying the fuzzy set because of their smoothness and 

concise notation (e.g., Cho et al. 2016, Boğa et al. 2013, 

Bianchini and Bandini 2010, Bassuoni and Nehdi 2008). 

Therefore, this function was utilized in the current study, as 

expressed by 

   ( )     [ (
    

   
)
 

]           (7) 

where,    and    are the parameters defining the shape of 

the membership function (premise parameters).  

• Layer 2: Every node multiplies the input signals from 

layer 1, and represents the rule nodes and the output   
  

that represents the firing strength of a rule and is 

computed as 

  
        ( )       ( )                     (8) 

• Layer 3: The     node of this layer calculates the 

ratio of the     rule’s firing strength to the sum of all 

rules’ firing strengths 

  
   ̅  

  

∑   
 
   

                       (9) 

where,  ̅  represents the normalized firing strengths. 

• Layer 4: Every node   is a linear function and the 

coefficients of the function are adapted through a 

combination of least squares approximation and back-

propagation of the form 

  
   ̅      ̅  (          )       (10) 

where,              are a set of consequent parameters of 

rule  . Thus, the components of the fuzzy rules (premise 

and consequent parameters) in the rule-based engine are 

constantly changing at each training epoch until a minimum 

root mean-squared error (RMSE; 0.05 in the present study) 

or desired number of epochs (1000 in the present study) is 

reached. 

• Layer 5: The result of this layer is obtained as a 

summation of the outputs of the nodes of the 

defuzzification layer to produce the overall ANFIS 

output as shown in Eq. (5). 

 

3.3 Model’s description 
 

ANFIS was developed to predict the TF for concrete 

under various exposure regimes combined with different 

de-icing salts from the seven input parameters. For the 

training database, subtractive clustering was applied to the 

345 data sets which led to producing 154 fuzzy membership 

functions for the seven input variables and consequently 

154 rules in the rule-based engine were generated. As 

mentioned previously, the Gaussian membership function 

was selected, and first-order Sugeno model was adopted as 

the fuzzy inference method. In the rule-based engine, the 

fuzzified input variables were connected by T-norm (logical 

“and”) with a minimization operator. The hybrid learning 

algorithm of the ANFIS combined the gradient method with 

the least-square and back-propagation techniques to 

optimize the membership functions and the parameters. At 

each epoch, an error measure, usually defined as the sum of 

the squared difference between actual and desired output, 

was reduced. Training stopped when either the predefined 

epoch number or a stable error decrement was obtained. In 

the current study, the number of iterations (training) 

continued until a stable error decrement (after 288 epochs) 

was observed. Finally, defuzzification of the output (TF) 

was done by the weighted average method, as described 

earlier. 

 

 

4. Results and discussion 
 

After successful training, testing data (not included in 

the training data) were applied to gauge the ANFIS 

predictions for unknown data, and thus its generalization. 

The performance of the ANFIS model was assessed based 

on the variance accounted for (VAF), average absolute error 

(AAE) and root mean square error (RMSE) according to the 

following equations, respectively 

    (  
   (     )

   (  )
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∑ (     )
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where,    and    is the measured and predicted values, 

respectively and   is the number of data points. The higher 

the VAF, the better the model performance is and vice 

versa. For instance, a VAF of 100% means that the 

measured output has been predicted exactly (perfect model). 

The AAE is defined as the average magnitude of the errors 

in a set of predictions, which indicates how close the 

predictions are to the eventual outcomes. Also, the RMSE 

has a quadratic error rule; as a result, a relatively high 

weight is given to large errors which are useful when large 

errors are undesirable in a statistical model. Table 5 

summarizes the statistical parameters for the response of the 

ANFIS model. Also, the ratio of experimental-to-predicted 

TF for the training and testing data and its coefficient of 

variation (COV) are tabulated. All these indices indicated 

that the performance of ANFIS Model was satisfactory. For 

example, the VAF was 98.7 and 94.3% for the training and 

testing data, respectively with AAE less than 5%. These 

trends were substantiated as the ANFIS model reliably 

captured the input-output relationships since the points are 

mostly located on or slightly under/above the equity line 

between the experimental and predicted TF values for the 

training and testing data, as shown in Fig. 2. The 

coefficients of determination (  ) for the training and 

testing data were 0.99 and 0.93, respectively, indicating 

strong association between the predicted and experimental 

TF values. Therefore, it can be deduced that the model has a 

satisfactory generalization capacity for predicting the TF 

values of other concrete mixtures exposed to various 

exposure regimes combined with different types and 

concentrations of chloride-based de-icing salts (within the 

range of training data). 
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(a) Training data 

 
(b) Testing data 

Fig. 2 Response of ANFIS model in predicting the TF of 

specimens 

 

 

5. Effect of the solution type and environmental 
conditions  
 

In this section, the effect of the solution type on the 

damage of concrete is evaluated. The overall trends from 

experimental database and predictions of the ANFIS model 

in all exposure regimes indicated that the aggression of 

solutions, in an ascending order, was NaCl, MgCl2, CaCl2 

and combined (MgCl2+CaCl2) salts, as shown in Fig. 3. It 

can be noted that the combined salt (MgCl2+CaCl2) 

solution, which simulates a synergistic maintenance and 

protective strategy in winter for concrete pavements and 

bridges, showed the most severe damage to concrete under 

all exposures. Thus, this practice should be cautiously 

reconsidered by transportation agencies. 

From the experimental database and predictions of the 

ANFIS model, it can be noted that the environmental 

exposure had a pronounced effect on the degree of 

 

 

Fig. 3 Average experimental and predicted TF of concrete 

specimens exposed to different de-icing salts under all the 

environmental conditions 

 

 

Fig. 4 Average experimental and predicted TF of the 

specimens exposed to combined salts under all exposure 

regimes 

 

 

deterioration of the specimens. Fig. 4, which depicts the 

average TF of the specimens tested in each exposure under 

the most aggressive salt solution (combined salts), 

substantiates this observation. Exposure III (F/T cycles) was 

the least aggressive (experimental and predicted TF of 434 

and 431 days, respectively) relative to the other exposures, 

while exposure IV (consecutive W/D and F/T cycles), 

which represents alternating seasonal climatic conditions, 

was the most aggressive (experimental and predicted TF of 

356 and 343 days, respectively). Overall, the results of the 

four exposure regimes correlated well with their 

corresponding average predicted TF values. The field-like 

combined exposure of cyclic environments had additive and 

perhaps synergistic effects on the specimens, causing the 

coexistence of complex degradation mechanisms (salt 

crystallization, surface scaling, frost damage and chemical 

Table 5 Performance indices of the ANFIS model 

Training Data Testing Data 

VAF 

% 

AAE 

% 
RMSE 

Average experimental 

-to-predicted TF R2 
VAF 

% 

AAE 

% 
RMSE 

Average of experimental 

-to-predicted TF R2 

Value COV Value COV 

98.7 2.32 0.06 1.00 2.03 0.99 94.3 4.31 0.11 1.03 4.38 0.93 
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Table 6 Levels of the parameters of interest used in the 

sensitivity analysis 

Parameter of Interest Variation 

Penetration depth (mm) 5, 10, 15, 20, 30, 40, 50 

Initial portlandite content (J/g) 5, 10, 15, 20, 30, 40, 50, 60 

C3A content (%) 3, 5, 7, 9, 11 

Interground limestone powder 

in cement (%) 
3, 5, 7, 9, 11, 13, 15 

 

 

degradation) depending on the solution type and 

concentration as well as the mixtures design variables. 

Thus, such cyclic environmental conditions should also be 

considered besides individual testing approaches for 

developing performance tests that provoke multiple damage 

mechanisms to improve the understanding of their 

combined effects on normal and emerging concretes, and 

hence allow a better modeling of the life-cycle performance 

of concrete in the field. 

 

 

6. Sensitivity analyses 
 

The purpose of this section is to investigate the ability of 

the model to capture the sensitivity of the predicted 

properties to individual input parameters. The sensitivity 

analysis was done by fixing all the input parameters except 

the variable of interest (Table 6) to evaluate its effect within 

the range of training data. The selected parameters of 

interest were the physical penetration depth of chloride, 

initial portlandite content, C3A content, and interground 

limestone powder content in the cement. For all the 

parameters tested, the combined salt (MgCl2+CaCl2) 

solution, which simulates a synergistic maintenance and 

protective strategy in winter for concrete pavements and 

bridges, was used as this combination provoked the most 

severe damage to concrete under all exposure regimes. 

Also, the combined exposure procedure (alternating W/D 

with F/T cycles), which mimics field conditions of concrete 

(successive spring/summer and winter seasons), was 

implemented in the analysis. 

 

6.1 Sensitivity to physical penetration depth  
 

The sensitivity of the ANFIS model to the penetration 

depth of chloride ions (physical resistance of concrete to 

ingress of aggressive fluids) was investigated. For the 

concrete mixture used in this analysis, the C3A 
and interground limestone powder contents were 9 and 4% 

similar to the GU mixture. Also, the enthalpy of initial 

portlandite was 63.6 J/g. Fig. 5 shows the ANFIS model 

predictions of the TF. The responses of the model indicated 

that as the depth of penetration increased, the durability of 

the specimens decreased. This trend complied with the 

experimental results as the specimens with smaller whitish 

precipitate indicating smaller penetration depth of chloride 

ions in the cross section had better resistance to 

degradation, which generally performed better and/or 

survived longer (Ghazy and Bassuoni 2017a). For instance, 

the binary binder containing nanosilica (GUS) primarily 

 

Fig. 5 Sensitivity of the ANFIS model to the penetration 

depth of chloride ions 

 

 

resists the degradation due to its significant physical 

resistance. Using an ultrafine pozzolan such as nanosilica 

(specific surface of 80,000 m
2
/kg) in the binary and/or 

ternary binders produced significantly refined 

microstructure, and in turn reduced penetrability of these 

matrices and consequently less solution uptake and less 

damage (Ghazy and Bassuoni 2017a, Ashok et al. 2017). 

This was clearly captured by the ANFIS model, which 

showed notable improvement of the TF by approximately 

160 days when the penetration depth dropped from 50 mm 

to 10 mm and by more than 500 days when the penetration 

depth was lower than 10 mm (Fig. 5) when the other 

parameters were kept constant.  

 

6.2 Sensitivity to initial portlandite content  
 

Portlandite is a key component in the chemical reaction 

of hydrated paste with de-icing salts, forming complex 

compounds (oxychloride phases), resulting in chemical 

degradation of hardened concrete (Ghazy and Bassuoni 

2017a, Wang et al. 2006, Cody et al. 1996). To test the 

sensitivity of the ANFIS model to the initial portlandite 

content in the binder (before exposure), the C3A content, 

interground limestone powder and physical resistance for 

the created mixtures were kept constant at 9%, 4% and 20 

mm, respectively. Fig. 6 shows the ANFIS model 

predictions of the TF. It can be noted that the model was 

sensitive to the initial portlandite content in the 

cementitious matrix, as it showed poor performance (early 

TF) for the mixtures containing high portlandite contents 

and vice versa. This complies with thermal, mineralogical 

and microscopy analyses which showed that the 

degradation of the specimens exposed to de-icing salts 

under such exposure regimes was mainly controlled by the 

availability of portlandite with respect to the infiltration of 

chloride ions in the matrix to stimulate chemical 

degradation (Ghazy and Bassuoni 2017a). This complies 

with the experimental observations as the W/D (II) or 

combined exposures (IV) increased the long-term efficiency 

of pozzolanic reactivity of Type F fly ash, and thus the 

better performance of specimens comprising fly ash. In 

contrast, the long-term activity of fly ash was hindered in 

binary specimens exposed to continuous immersion at 5°C 

(exposure I) or F/T cycles (exposure III) as indicated by the 
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Fig. 6 Sensitivity of the ANFIS model to the initial 

portlandite content in the binders 

 

 

Fig. 7 Sensitivity of the ANFIS model to the C3A content 

 

 

abundance of portlandite in these specimens. Hence, the 

binary fly ash specimens generally failed (but after the GU 

specimens with higher initial portlandite contents) under 

regimes I and III. Conversely, nil portlandite content was 

observed in ternary cementitious systems comprising GU, 

fly ash and nanosilica, which corresponded to sound 

mechanical properties and longevity. Using nanosilica with 

a specific surface of 80,000 m
2
/kg in the ternary binders led 

to speeding up the rate of hydration and pozzolanic 

reactions (fly ash reactivity) which led to significant 

reduction of the initial portlandite contents (Ghazy et al. 

2016, Madani et al. 2012, Said et al. 2012).  

 

6.3 Sensitivity to C3A content  
 

To test the sensitivity of the ANFIS model to the C3A 

content in the binder, the interground limestone powder, 

initial portlandite content, and physical resistance for the 

created mixtures were fixed at 4%, 63.6 J/g, and 20 mm, 

respectively. Fig. 7 shows the predictions of the ANFIS 

model reflecting the variations in the C3A content between 

3 to 9% (within the range of training data). The responses of 

the model indicated that as the C3A content decreased, the 

durability of the specimens notably improved. This was 

exhibited by a delay of the TF by more than 300 days when 

the C3A content dropped to 5%. This agrees with 

experimental observations, as the mixtures containing low 

C3A content (e.g., PLC specimens) had slower chemical 

activity and less quantities of the reaction products [calcium 

oxychloride, Friedel’s salt, ettringite, magnesium 

 

Fig. 8 Sensitivity of the ANFIS model to the interground 

limestone powder content in cement 

 

 

oxychloride, and gypsum, irrespective of the type of 

solution] as observed in the mineralogical analysis (Ghazy 

and Bassuoni 2017a). Therefore, specimens with low C3A 

content in the binder performed better and/or survived 

longer than the specimens with high C3A content. 

 

6.4 Sensitivity to limestone content  
 

To examine the effect of variation in interground 

limestone content in cement on the responses of the ANFIS 

model, the C3A content, portlandite content, and physical 

resistance for the created mixture were fixed at 9%, 63.3 

J/g, and 20 mm, respectively. Fig. 8 shows that the 

prediction of the ANFIS model was relatively sensitive to 

the transition from low (i.e., 4% in the GU mixtures) to high 

(i.e., 12% in the PLC mixtures) contents of limestone in the 

cementitious matrix. This complies with thermal, 

mineralogical and microscopy analyses which showed that 

the higher limestone component in PLC mixtures changed 

the hydration pattern of the binder due to formation of 

carboaluminate-type compounds rather than other aluminate 

compounds (e.g., hydroxy-AFm and monosulfate) (Ipavec 

et al. 2013, Lothenbach et al. 2008). The ability of 

carboaluminate phases to bind chloride was reported to be 

significantly less than other aluminate compounds (Ipavec 

et al. 2013). Subsequently, the system with high 

interground limestone content had slow chemical activity 

(limited formation of Friedel’s salt). This chemical effect of 

limestone explains the notable improvement in the 

resistance of the mixtures containing high interground 

limestone content (within the range of training data) 

exposed to chloride-rich environments, which generally 

performed better and/or survived longer than the specimens 

with low interground limestone content as exhibited by a 

delay of TF by more than 150 days in the ANFIS model 

(Fig. 8).   

 
 
7. Conclusions 
 

• The present study showed that adaptive neuro-fuzzy 

inference systems (ANFIS) can be used to predict the 

complex behavior of cement-based materials under 
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combined damage mechanisms. This model integrates 

the advantages of artificial neural networks (e.g., self-

learning and pattern recognition) and fuzzy inference 

systems (e.g., accommodating uncertainty, linguistic 

use, and approximation).   

• The ANFIS model developed in the present study 

accurately predicted the time of failure (TF) of a wide 

range of concrete mixture designs under various 

exposure regimes combined with the most widely used 

chloride-based de-icing salts (individual and combined). 

The model had a good generalization capacity beyond 

the training stage as verified by results obtained on new 

testing data within the range of training database. 

• Predictions of the ANFIS model showed that the 

combined salt (MgCl2+CaCl2) solution, which simulates 

a synergistic maintenance and protective strategy in 

winter for concrete pavements and bridges, and the 

field-like combined exposure, which mimics field 

performance had additive and perhaps synergistic effects 

on aggravating the degradation of concrete. Thus, this 

practice should be cautiously reconsidered by 

transportation agencies, especially with the intensive 

winter maintenance practices adopted by transportation 

agencies to cope with climatic changes. 

• Sensitivity analyses showed that the developed model 

captured the effect of individual input parameters on the 

results. Thus, this model can be used to forecast the 

deterioration of tailor-made concrete mixtures exposed 

to such aggressive conditions. In the design and 

prequalification stage of a construction project, this 

model can reduce the need for exhaustive trial batches 

and long-term experiments, thus facilitating decision-

making on optimum mixtures. 

• The developed ANFIS model is versatile and can be 

re-trained to encompass wider ranges of input variables, 

different concentrations of de-icing salt solutions, other 

types of de-icing salts, other environmental conditions, 

etc. Once, such data becomes available in the future, the 

re-training process of this model would be readily 

achievable.  
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