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1. Introduction 
 

FE model updating is a method to modify uncertain 

parameters so that the responses of the FE model can 

replicate the actual responses obtained from experiments or 

measurement. As one of the methods for model updating, 

sensitivity-based methods combined with various 

optimization algorithms are widely recognized (Friswell 

and Mottershead 1995, Teughels et al. 2002, Fang et al. 

2008, Yu et al. 2007, Yu and Chung 2012). In sensitivity-

based methods, nonlinear objective functions based on the 

errors between the measured data and the parameterized 

model are linearized and the unknown parameters are 

updated iteratively. In each iteration, the sensitivity matrix 

representing the effects of changes in each parameter on the 

responses is evaluated numerically. Thus, when FE models 

are constructed with commercial FE softwares, the results 

FE analysis for each parameter perturbation should be 

collected for sensitivity calculation. This procedure is 

computationally expensive and performing such work 

manually would be very difficult and annoying. 

Furthermore, convergence of the solution is not always 

guaranteed. 
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Design of experiments (Montgomery 2008) and 

statistical approximation techniques using meta-modelling 

such as the response surface (RS) methodology (Myers and 

Montgomery 2002) can be good strategies to reduce such 

computational expense and manual operations. The basic 

idea of the RS method is to construct surrogate functions by 

approximating the relationship between the input (structural 

parameters) and the output (response) obtained at 

systematically located sampling points. The major benefit 

of the RS method is the significant reduction in 

computation cost to reach the optimal point since the 

surrogate functions are used in lieu of the original analyses.  

The model updating is necessarily involved with 

optimization problem. When two or more quantities are to 

be matched, the traditional approach is to combine their 

respective objective functions to form a single-objective 

function using a weighted sum method (Yu et al. 2007, Yu 

and Chung 2012). In this case, the final solution differs 

depending on which weighting factors are chosen. The 

weighting factors should be decided based on the relative 

importance and noise included in each measurement 

quantity. However, such information is seldom available 

and difficult to quantify. A Pareto-based multiobjective 

optimization method (MOO) (Deb et al. 2002, Xitzler and 

Thiele 1999) can be a good alternative approach to 

circumvent this problem. While the conventional 

optimization problem using single or combined objective 

functions seeks for a unique solution, the MOO generates  
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Abstract.  FE models for complex or large-scaled structures that need detailed modeling of structural components are usually 

constructed using commercial analysis softwares. Updating of such FE model by conventional sensitivity-based methods is 

difficult since repeated computation for perturbed parameters and manual calculations are needed to obtain sensitivity matrix in 

each iteration. In this study, an FE model updating procedure avoiding such difficulties by using response surface (RS) method 

and a Pareto-based multiobjective optimization (MOO) was formulated and applied to FE models constructed with a 

commercial analysis package. The test building is a low-rise reinforced concrete building that has been seismically retrofitted. 

Dynamic properties of the building were extracted from vibration tests performed before and after the seismic retrofits, 

respectively. The elastic modulus of concrete and masonry, and spring constants for the expansion joint were updated. Two RS 

functions representing the errors in the natural frequencies and mode shape, respectively, were obtained and used as the 

objective functions for MOO. Among the Pareto solutions, the best compromise solution was determined using the TOPSIS 

(Technique for Order of Preference by Similarity to Ideal Solution) procedure. A similar task was performed for retrofitted 

building by taking the updating parameters as the stiffness of modified or added members. Obtained parameters of the existing 

building were reasonably comparable with the current code provisions. However, the stiffness of added concrete shear walls and 

steel section jacketed members were considerably lower than expectation. Such low values are seemingly because the bond 

between new and existing concrete was not as good as the monolithically casted members, even though they were connected by 

the anchoring bars. 
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multiple sets of solutions called as the Pareto solutions.  

Generating multiple sets of non-dominant solutions is 

advantageous since solutions with a permissible violation of 

objective functions that would not be found by the single-

bjective function approach can be considered as a candidate 

for the final solution. A literature survey identified several 

attempts to apply the RS method for calibrating or updating 

FE models (Fang and Perera 2009, Fang and Perera 2011, 

Ren and Chen 2010, Deng and Cai 2009, Shahidi and 

Pakzad 2013). However, it was found that almost all the 

reported research regarding the RS method for model 

updating is based on single or combined objective functions 

that yield a single optimal solution and the Pareto-based 

multiobjective optimization approach was seldom studied, 

despite its flexibility to accommodate trade-offs among 

multiple objective functions. 

Although all of the Pareto solutions are considered 

equally good in MOO, there is a trade-off between errors in 

objective functions. Decisions on the final solution among 

Pareto solutions are made by considering the balance 

between the errors. Multi-criteria decision-making 

(MCDM) approaches using posterior evaluation such as the 

TOPSIS method (Technique for Order of Preference by 

Similarity to Ideal Solution) (Huang and Yoon 2011, 

Behzadian et al. 2012) can be used to choose the best 

solution among all Pareto-optimal solutions. 

In this study, an FE model updating procedure using the 

RS method and NSGA-II (Non-dominated Sorting Genetic 

Algorithm II), a Pareto-based MOO algorithm, was 

formulated and applied to update analysis models 

constructed using a commercial FE analysis software. Test 

building is a low-rise reinforced concrete building that has 

been seismically retrofitted. Before and after the seismic 

 

 

 

retrofit, vibration tests were performed and the dynamic 

properties of the building were extracted. The concept of 

TOPSIS was used to determine the final solution among all 

Pareto-optimal solutions. 

 

 

2. Vibration testing and system identification of the 
test building 

 
2.1 Test building 
 

The test structure is a three-story reinforced concrete 

frame building currently being used as an elementary 

school. As shown in Fig. 1, the building is separated into 

two parts by the expansion joint located at line X12. „BD1‟ 

and „BD2‟ in the figure denote the left and right parts of the 

building, respectively. 

Vibration testing was carried out using a shaker system 

with a maximum force capacity of 800 kN, which was 

installed on the roof. Fig. 1 indicates the location and 

direction of the shaker and accelerometers. A total of 12 

channels of accelerometers were used on the roof and the 

second floor of BD1 and BD2. The shaker was located at a 

point away from the center of the building with an inclined 

direction from the main axis of the building to obtain 

shaking in all modes as shown in Fig. 1. After testing on 

BD1 was completed, the shaker was moved to BD2 and an 

identical test was performed.  

This building was seismically retrofitted since seismic 

performance evaluation of the original building indicated 

that a large number of the members had deficiencies in 

resisting the design seismic load. Fig. 2 shows the retrofit 

measure made in this building. In the transverse direction,  

 

Fig. 2 Seismic retrofit of the building 

 

Fig. 1 Location and direction of shaker and accelerometers 
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Fig. 3 Stability plot (BD1 shaking, before retrofit) 
 

Table 1 Measured natural frequencies and damping ratios 

before and after the retrofit 

Mode 
Natural frequencies (Hz) Damping ratios (%) 

Before After Ratio Before After Ratio 

X-dir in-phase 4.35 (1) 4.22 (1) 97% 2.23 2.69 121% 

Y-dir in-phase 5.33 (2) 5.71 (2) 107% 2.47 1.99 81% 

X-dir  

out-of-phase 
5.47 (3) 7.18 (5) 131% 0.68 2.15 316% 

Y-dir  

out-of-phase 
5.92 (4) 6.22 (3) 105% 1.64 2.33 142% 

Torsion  

in-phase 
7.06 (5) 6.76 (4) 96% 1.49 1.76 118% 

Torsion  

out-of-phase 
7.85 (6) 8.38 (6) 107% 2.26 2.28 101% 

 

new shear walls with a thickness of 200 mm were casted in 

place of masonry infills along lines X7 and X16. For retrofit 

in the longitudinal direction, some of the beams and 

columns at the exterior were reinforced by steel wide 

section jacketing and connected with toggle damper 

systems. In addition, the parquet flooring of the classroom 

and hallway was replaced by mortar finish for renovation.  

 

2.2 System identification 
 

White noise excitation and subsequent system 

identification were performed before and after the seismic 

retrofit. The N4SID (subspace state-space system 

identification) (Van Overschee and De Moor 1993), one of 

the time domain methods, was used for system 

identification. Fig. 3 shows the stability plot representing 

the variations in identified properties with changes in the 

order of the state-space model; this was used to distinguish 

spurious modes from the physical mode. 

Fig. 4 shows obtained mode shapes from the first to the 

sixth mode of pre-retrofit building. It can be seen that the 

motion of the left and right parts of the building are coupled 

although the two parts are structurally isolated by the 

expansion joint. The 6 natural modes are composed of in-

phase and out-of-phase vibrations in the x direction, y 

direction, and torsion. Table 1 is the summary of obtained 

modal properties before and after the retrofit. Obtained 

dynamic properties from BD2 excitation were almost 

identical to those from BD1 excitation, and thus were not 

shown in this paper. 

 

 

3. Model updating based on RSM and MOO 
 

   
Freq. : 4.35 Hz   Damping : 2.23% Freq. : 5.33 Hz   Damping : 2.47% Freq. : 5.47 Hz   Damping : 0.68% 

(a) X-dir in-phase (b) Y-dir in-phase (c) X-dir out-of-phase 

   
Freq. : 5.92 Hz   Damping : 1.64% Freq. : 7.06 Hz   Damping : 1.49% Freq. : 7.85 Hz   Damping : 2.26% 

(d) Y-dir out-of-phase (e) Torsion in-phase (f) Torsion out-of-phase 

Fig. 4 Identified mode shapes (BD1 shaking, before retrofit) 
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The RS method is a statistical analysis method to obtain 

approximate multivariate functions describing the response 

surface. Generally, predicted relationships are expressed as 

a polynomial function with different orders. The most 

commonly used function in the RS method is the second-

order polynomial, which can be expressed as 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + ∑ 𝛽𝑖𝑖𝑥𝑖
2 + 𝜀, (1) 

where β is the undetermined regression coefficient; x is the 

design variable; and 𝜀 is the residual error.  

The sampling points (i.e., parameter combinations) to 

obtain the second-order response surface can be determined 

using the Central Composite Design (CCD). The sampling 

points in CCD include the axis points and central points in 

addition to those of factorial design. Therefore, the number 

of samples necessary for a CCD design is 𝑛 = 2k + 2𝑘 +
𝑛c , where 𝑘 is the number of parameters and 𝑛𝑐 is the 

number of center point samples set as 1 in this study. In the 

regression analysis, the significance of each term in Eq. (1) 

is examined using the analysis of variance (ANOVA) 

method, and the final function is determined after non-

significant parameters are dropped out. A detailed procedure 

of the RS method using CCD can be found in the literature 

(Myers and Montgomery 2002).  

After the FE analyses are performed using the parameter 

combinations determined by CCD, two types of residuals as 

shown in Eq. (2) and Eq. (3) were computed, which are the 

RMSE (Root mean square error) of the natural frequency 

residuals and the average error in mode shapes, i.e., the 

complement of the average of the MAC (Modal Assurance 

criterion) values, respectively. 

𝑒1 = √
1

𝑁
∑ (

𝑓𝑗,𝑎 − 𝑓𝑗,𝑚

𝑓𝑗,𝑚

)

2𝑁

𝑗=1

 (2) 

𝑒2 =
1

𝑁
∑(1 − 𝑀𝐴𝐶𝑗)

𝑁

𝑗=1

 (3) 

where 𝑀𝐴𝐶𝑗  denotes the MAC value of the j-th mode, 

defined as 

𝑀𝐴𝐶𝑗 =
{𝜙𝑗,𝑎

𝑇 𝜙𝑗,𝑚}
2

{𝜙𝑗,𝑎
𝑇 𝜙𝑗,𝑎}{𝜙𝑗,𝑚

𝑇 𝜙𝑗,𝑚}
. (4) 

Here, 𝑓𝑗,𝑎 and 𝑓𝑗,𝑚 represent the analytical and measured 

natural frequencies of the j-th mode; 𝜙𝑗,𝑎 and 𝜙𝑗,𝑚  the 

analytical and measured mode shapes of the j-th mode, 

respectively; and N indicates the number of modes used in 

the computation. 

Subsequently, the RS method was employed to yield 

two RS functions corresponding to 𝑒1  and 𝑒2 , 

respectively. The accuracy of regression is generally 

quantified by the coefficients of determination, i.e., 𝑅2 and 

𝑅𝑎𝑑𝑗
2 . Since a value of 𝑅2 is automatically and spuriously 

increasing when additional parameters (even non-

significant ones) are added to the model, an 𝑅𝑎𝑑𝑗
2  that 

adjusts for the number of parameters in a model relative to 

the number of data points is used as a supplementary 

evaluation. An RS model is well fitted with the samples if 

both 𝑅2 and 𝑅𝑎𝑑𝑗
2  are large. However, a well-fitted model 

does not always accurately predict the responses of the 

unseen values of input parameters. Hence as a third 

criterion, the normal regression parameter of PRESS, 

𝑅𝑃𝑟𝑒𝑑
2 , is also considered. The PRESS (predicted residual 

error sum of squares) is computed via the leave-one-out 

cross validation process by adding the square of the 

residuals when each sample is left out in turn, as 

represented in Eq. (5). 

𝑅pred
2 = 1 −

∑ (𝑦(𝑖) − 𝑦𝑃𝑟𝑒𝑑
(𝑖)

)
2

𝑛
𝑖=1

∑ (𝑦(𝑖) − �̅�)2𝑛
𝑖=1

, (5) 

where 𝑦(𝑖)  is the i-th measurement, 𝑦𝑃𝑟𝑒𝑑
(𝑖)

 is the 

prediction of the model in which 𝑦(𝑖) is left out, and 𝑦(𝑖) 

is the mean of all measurements. 𝑅𝑝𝑟𝑒𝑑
2  measures the 

capability of the model to predict future values and is more 

sensitive measure for the accuracy of the RS function.  

Obtained RS functions are used as the objective 

functions for optimization. This study employed NSGA-II, 

which is a kind of the advanced algorithms in MOO. The 

accuracy of Pareto solutions would depend on the accuracy 

of the RS functions. If 𝑅𝑃𝑟𝑒𝑑
2  is low, there exist large 

differences between the predicted response and the actual 

behavior. In practice, the accuracy of the RS model depends 

on the range of the parameters used in CCD. Therefore, 

iterative estimation of RS functions using adjusted CCD 

table (i.e., adjusted bounds) is required. In this study, 

adjustment of the CCD table is performed based on the 

parameter values of the Pareto solutions. That is, the upper 

and lower bounds are set as the maximum and the minimum 

of each parameter of the Pareto solutions, respectively. The 

central point for CCD is set as the average of the upper and 

lower bounds. However, when the accuracy of the RS 

function is not high enough, obtained Pareto solutions can 

be located far from the optimal point. In this case, extended 

bounds from the range of the Pareto solutions is 

appropriate.  
Once the Pareto-optimal set is found from an RS model 

with sufficiently high 𝑅𝑝𝑟𝑒𝑑
2  values, the next task is to 

choose one of them as the final solution. Since all of the 
Pareto solutions are considered equally good in MOO, a 
decision on the final solution among the Pareto solutions 
requires additional information or experts‟ preferences. The 
final solution may be determined as one of the Pareto 
solutions that have the minimum in the sum of the errors in 
objective functions. However, when the errors have 
different scales, the results would be biased. 

In this paper, the TOPSIS procedure is used to find the 

best compromise solution. The concept of TOPSIS is that 

the preferred solution should not only have the shortest 

distance from the positive ideal solution, but also have the 

longest distance from the negative ideal solution (Huang 

2011, Behzadian et al. 2012). 

The overall procedure for model updating in this study 

can be summarized as Fig. 5. 

 

 

4. FE modeling and updating 
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Fig. 5 Procedure of model updating 

 

 

Fig. 6 FE modeling of the test building using commercial 

software 

 
 

4.1 Initial model and updating of FE model (before 
retrofit) 

 

The initial FE model of the test building is constructed 

using the proprietary FE analysis program Midas Gen 

(2004), as shown in Fig. 6, based on the information 

provided in structural drawings, as well as data obtained 

from the detailed field inspection. Conventional 

assumptions for modeling of building structures (lumped 

mass and rigid diaphragm) were used.  

The elastic modulus of concrete (𝐸𝑐), elastic modulus of 

masonry (𝐸𝑚 ), and stiffness of the elastic links in the 

normal direction (𝑘𝑥) and in the tangential direction (𝑘𝑦) 

were selected as the updating parameters. The elastic 

modulus of concrete was evaluated using Eq. (6) provided 

in the Korean Building Code (2016) from the concrete 

strength obtained from the Schmidt hammer test. 

𝐸𝑐 = 8500 √𝑓𝑐′
3

 ,      (𝑀𝑃𝑎) (6) 

where 𝑓𝑐′ is the compressive strength of the concrete. It 

was reported in ACI 318 (2011) that the actual modulus of 

the concrete can be varied about 20% from the specified 

value in Eq. (6). Thus, the range of 0.8-1.2 was used as the 

Table 2 Bounds for the first CCD 

Coded value 
Lower bound Central point Upper bound 

-0.5 0 0.5 

𝐸𝑐 (MPa) 24488.1 27209.0 29929.9 

𝐸𝑚 (MPa) 1422.0 1706.5 1990.9 

𝑘𝑥 (N/mm) 18506.8 28518.5 18911.3 

𝑘𝑦 (N/mm) 8191.8 13551.5 18911.3 

 

Table 3 Parameters for NSGA-II 

Parameters Values 

Population Size 50 

Number of iterations 200 

Crossover probability 0.90 

Mutation probability 1/n 

Crossover index 5 

Mutation index 20 

 

 

bound for this parameter in CCD. 

The masonry infills were included in the FE model 

using the shell elements. The masonry infills have a 

thickness of 190 mm. The elastic modulus of masonry 

infills was assumed to be between 1138 MPa and 2275.3 

MPa according to ASCE 41-06 (2007), which correspond to 

the values when the masonry condition is poor and fair, 

respectively. 

As observed in identified mode shapes, the behaviors of 

the left and right parts of the building are coupled. Thus, in 

the FE model, two parts were connected using elastic link 

elements at the expansion joint. The expansion joints were 

filled with asphalt caulking according to architectural 

drawings. The spring constants of the elastic links were 

determined using the material properties of asphalt caulking 

(E=0.7−4.0 MPa and G=E/3−E/2) and the contacting area 

of the expansion joint. The resulting range of the spring 

constants was computed as 8495-48542 N/mm in the 

normal direction and 2832-24271 N/mm in the tangential 

direction. 

The model updating procedure based on the RS method 

and the MOO stated previously were performed 

subsequently. The combination of parameters for FE 

analyses was generated according to the CCD. Table 2 

shows the bounds for the CCD table. 

Estimation of the RS functions and subsequent 

optimization was performed. Using the NSGA-II with the 

parameters of Table 3, a total of 18 Pareto solutions were 

obtained. The 𝑅𝑝𝑟𝑒𝑑
2  values for the first RS functions are 

shown in Table 4. 𝐽1 and 𝐽2 in Table 4 denote obtained RS 

functions from 𝑒1  and 𝑒2 , respectively, through the 

multivariate regression. Since the 𝑅𝑝𝑟𝑒𝑑
2  value for 𝐽2 of 

the initial RS model is quite low, it is expected that the 

prediction of the mode shapes is somewhat inaccurate. 

Thus, the obtained Pareto solutions were not considered as 

candidates for the final solution. Instead, iterative 

estimation via CCD using modified bounds and a new RS 

model was performed. As mentioned previously, since the 

𝑅𝑝𝑟𝑒𝑑
2  was quite low, modified bounds were extended and 

set as 90% of the minimum values and 110% of the  
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Table 4 R
2
 values of the RS models (before retrofit) 

 
1st RS model 2nd RS model 

J1 J2 J1 J2 

R2 0.999 0.733 1.000 0.991 

𝑅𝑎𝑑𝑗
2  0.999 0.662 1.000 0.986 

𝑅𝑝𝑟𝑒𝑑
2  0.964 0.155 0.929 0.971 

 

Table 5 Updated parameter (before retrofit) 

Parameters Initial guess Updated value Changes (%) 

𝐸𝑐 (MPa) 27209 28531 5% 

𝐸𝑚 (MPa) 1706.45 2245 32% 

𝑘𝑥 (N/mm) 28518.5 42382 49% 

𝑘𝑦 (N/mm) 13551.5 19104 41% 

 

Table 6 Natural frequencies and MAC values (before 

retrofit) 

Mode 

Natural Frequencies MAC 

Measured 

(Hz) 

Initial model 

(Hz) 

Updated 

model (Hz) 

Updated 

model (Hz) 

1st 4.35 3.87 (-11.0%) 4.24 (-2.6%) 0.96 

2nd 5.33 4.87 (-8.5%) 5.48 (2.9%) 0.64 

3rd 5.47 5.03 (-8.1%) 5.63 (3.0%) 0.84 

4th 5.92 5.57 (-6.0%) 6.18 (4.4%) 0.91 

5th 7.06 6.13 (-13.1%) 6.84 (-3.1%) 0.92 

6th 7.85 6.74 (-14.1%) 7.61 (-3.1%) 0.96 

 

 

maximum values of the obtained Pareto solutions. 

Subsequent MOO using new RS functions also yielded 18 

Pareto solutions. Since the 𝑅𝑝𝑟𝑒𝑑
2  values at the second RS 

functions were sufficiently high as shown in Table 4, no 

further iterations were performed and the final solution was 

found among the Pareto solutions. Fig. 7 shows bounds for 

CCD and the changes in the parameter values of the Pareto 

solutions with iteration. 

The final solution was determined using the TOPSIS 

procedure, which identifies a compromise set that has the 

shortest distance from the ideal solution and the longest 

distance from the worst solution. This concept is useful 

when the criteria for selection have different scaling and 

variation ranges. For example, one can choose a final 

solution that has the minimum of the weighted sum of the 

errors (the RMSE of natural frequencies and errors in mode 

shape in this study), but it is unclear if chosen weighting 

factor is optimal. The TOPSIS procedure provides an 

objective weighting considering the variation of errors 

rather than subjective judgement.  

In this study, 12 error terms (composed of the natural 

frequency errors and mode shape errors in the 1st to 6th 

mode) were evaluated from FE analysis using the parameter  

 set of the final Pareto solutions, which were then used for 

the decision matrix for the TOPSIS. For the purpose of 

illustration, obtained best compromise solution is indicated 

on 𝑒1  and 𝑒2  space in Fig. 8. Also the values of the 

solution are indicated in Fig. 7 with arrows. 

Parameters of the best compromise solution and changes 

from the initial guess are shown in Table 5, and the dynamic 

properties of the final updated model were compared with 

 

 

 

 

Fig. 7 Distribution of parameters with iteration (before 

retrofit) 

 

 

the measured ones, shown in Table 6. 

 

4.2 Updating of FE model (after retrofit) 
 
The FE model for the building after retrofit was 

constructed by reflecting the modifications made during the 

retrofit. The elastic modulus of existing concrete and 

masonry walls were kept unchanged from the updated 

model for pre-retrofit. The updating parameters for the 

model after retrofit were selected as the elastic modulus of 

concrete of the new shear wall (𝐸𝑐), effective stiffness  
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Table 7 Bounds for parameters (after retrofit) 

 

Bounds 

Ec of 

shearwall (MPa) 
α kx (N/mm) ky (N/mm) 

1st 

CCD 
1349-26986 5%-100% 

42382-

127145 

19104- 

57312 

2nd 

CCD 
2674-3261 16%-24% 

113623-

138889 

34967- 

56570 

 

 

Fig. 8 Pareto solutions and best compromise solution 

(before retrofit) 

 

Table 8 R
2
 values of the RS models (after retrofit) 

 
1st RS model 2nd RS model 

J1 J2 J1 J2 

𝑅2 0.689 0.993 0.998 0.997 

𝑅𝑎𝑑𝑗
2  0.650 0.991 0.995 0.995 

𝑅𝑝𝑟𝑒𝑑
2  0.194 0.969 0.954 0.974 

 

 

factor for jacketed members (α), and spring constants of the 

elastic link at the expansion joint (𝑘𝑥 and 𝑘𝑦). 

The bounds for parameters are shown in Table 7. The 

bound for the effective stiffness factor of the jacketed 

members was set as 0.05-1.0 since the stiffness of the 

jacketed members was considered to be lower than that of 

fully composite section. The bounds for 𝐸𝑐 of new shear 

wall concrete followed a similar assumption because added 

shear walls were not continuous vertically, even though 

even though they are connected to bottom of the beams and 

top of floor slabs using anchoring rebars (Fig. 9). In the 

case of elastic link stiffness, the stiffness was expected to 

increase since the details of expansion joints were repaired. 

The upper bound of 3 times the updated values was set by 

engineering judgement. 

Updating the FE model was performed using the same 

procedure as for the pre-retrofit. Identical objective 

functions were used for updating. As the case of pre-retrofit 

model, one iteration was required to obtain the final 

solution. Tables 7 and 8 show the bounds of the parameters 

and 𝑅𝑝𝑟𝑒𝑑
2  values per iteration.  

Fig. 10 shows the Pareto solutions at the second analysis 

and the best compromise solution from TOPSIS. Updated 

parameters and resulting dynamic properties for retrofitted  

 
(a) new shear wall 

 
(b) steel wide section jacketing 

Fig. 9 Details of added members 

 

Table 9 Updated parameter (after retrofit) 

Parameters Initial guess Updated value Note 

𝐸𝑐 of new 

concrete 
26986 MPa 3160.1 MPa 

12% of value 

using Eq. (6) 

𝛼 1.0 0.230 
22% of fully 

composite section 

𝑘𝑥 127145N/mm 130217 N/mm 
307% increase 

from pre-retrofit 

𝑘𝑦 57312N/mm 40081.9 N/mm 
210% increase 

from pre-retrofit 

 

Table 10. Natural frequencies and MAC values (after 

retrofit)  

Mode 

Natural Frequencies MAC 

Measured 

(Hz) 

Initial model 

(Hz) 

Updated 

model (Hz) 

Initial model 

(Hz) 

Updated 

model 

1st 4.05 4.12 (-2.4%) 4.22 (-4.0%) 0.99 0.99 

2nd 5.56 5.42 (-5.0%) 5.71 (-2.7%) 0.40 0.97 

3rd 6.13 5.61 (-9.8%) 6.22 (-1.4%) 0.24 0.92 

4th 6.76 6.14 (-9.2%) 6.76 (0.03%) 0.02 0.95 

5th 7.23 6.73 (-6.3%) 7.18 (0.67%) 0.54 0.95 

6th 8.46 7.50 (-10.5%) 8.38 (0.90%) 0.66 0.82 

 

 

building are summarized in Table 9 and Table 10, 

respectively.  
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Fig. 10 Pareto solutions at the second iteration and best 

compromise solution (after retrofit) 

 

 

Changes in the parameters from the initial guess before 

and after retrofit are shown in Table 5 and Table 9, 

respectively. In the case of building before retrofit, the 

elastic modulus of existing concrete has changed by 5% 

from the code proposed value, which seems reasonable 

considering small vibration amplitude during the test. The 

stiffness of the masonry also seems reasonable since the 

identified value is similar to ASCE 41-06 (2007) when the 

masonry condition is fair. However, the identified stiffness 

of jacketed members and added shear walls were much 

smaller than those for fully composite or monolithic 

sections. This might be caused by the condition of the 

interface between the new and existing concrete, which is 

completely different from the monolithically casted 

members. To identify the influence of such low stiffness of 

retrofitted and added members on the overall behavior, 

further research is needed, including the behavior in the 

nonlinear load range through the analytical and 

experimental investigations. 

 

 

5. Conclusions 
 

In this study, the FE model updating procedure based on 

the RS method and a Pareto-based MOO was formulated 

and applied for updating of a low-rise reinforced concrete 

building before and after the seismic retrofit. Vibration tests 

were performed to identify the modal properties of the 

building before and after the seismic retrofit. From 

identified mode shapes, coupled motion between two parts 

of the building separated by the expansion joint was 

observed and reflected in the FE model. 

For updating of pre-retrofit building, the elastic modulus 

of concrete and masonry, and spring constants for the 

expansion joint were selected as the updating parameters. 

Two RS functions representing the errors in the natural 

frequencies and mode shape, respectively, were obtained 

and used as the objective functions for MOO. The best 

compromise solution was determined among the Pareto 

solutions using the TOPSIS procedure. A similar task was 

performed for the building after the retrofit by taking the 

updating parameters as the stiffness of modified or added 

members. 

Obtained parameters of the existing building were 

reasonably comparable with the current code provision. 

However, the stiffness of added concrete shear walls and 

steel section jacketed members was considerably lower than 

expectation. Such low values are seemingly because the 

bond between new and existing concrete is not as good as 

the monolithically casted members, even though they are 

connected by the anchoring bars.  

Implications of identified parameters to overall 

performance of the structure needs to be further investigated 

and verified analytically and experimentally, including the 

behavior in the nonlinear range. Aside from the identified 

parameters, the model updating procedure proposed in this 

paper provides an efficient guideline for calibration of FE 

models using general-purpose analysis software. 
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