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1. Introduction 
 

Concrete is composed mainly of cement primarily 

Portland cement, water, aggregate, and chemical 

admixtures. Concrete is a versatile material that can be 

easily mixed to meet a variety of special needs and casted 

into virtually any shape. Hydration is a chemical process 

due to which concrete solidifies and hardens after mixing 

with water and placement. The water reacts with the 

cement, which bonds with the other components together, 

eventually creating a stone-like material. In case of concrete 

mix design and quality control, the uniaxial compressive 

strength of concrete is considered as the most crucial 

property which is determined by number of factors. Several 

factors affect the concrete mix design like to educe a 

concrete as High Performance Concrete, it should possess, 

in addition to good strength, several other favorable 

properties. To obtain good workability, it requires special 

additives in the concrete, along with a superplasticizer as 

the water/cement (w/c) ratio in the concrete is lower than 

normal concrete. Usually special cements are also involved. 

The nature of aggregate plays an important role to incur 
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high strength. The gradation of the aggregates determines 

the workability. Also, the order in which the materials are 

mixed is also important for the workability of the concrete. 

From engineering point of view, strength is the most 

important property of structural concrete. The 

characteristics of the coarse aggregate, fine aggregate, 

mortar and the interface determines the strength of the 

concrete. Properties of concrete are influenced by the 

properties of each and every constituent added in it. For 

example, for the same quality mortar, different types of 

coarse aggregate with different shape, texture, mineralogy, 

and strength may result in different concrete strengths. The 

tests for compressive strength are generally carried out at 

about 7 or 28 days from the day when the concrete is 

casted. Generally, strength after 28-days is standard and 

therefore essential and if required strength for other ages 

can be carried out. Accidentally, if there is some 

experimental error in designing the mix, the test results will 

fall short of required strength, the entire process of concrete 

design has to be repeated which may be a costly and time 

consuming. The same applies to all types of concrete, i.e. 

normal concrete, self-compacting concrete, ready mixed 

concrete, etc. It is well acknowledged that prediction of the 

compressive strength of concrete is most important in 

modern concrete designing and in taking engineering 

decisions. 

In the last decade due to the importance of the research 

topic Numerous Studies were concentrated on many linear 

and nonlinear regression equations. Modelling by using 

artificial intelligence (AI) has been a very active research 

area. According to previous studies, Although, AI 
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techniques have proved their superior capability over 

traditional modelling methods and so Artificial Neural 

Network (ANN) was one the successful choice that used for 

prediction problems, it has the some following limitations 

(Navarro and Bennun 2014). 

ANN does not provide information about the relative 

significance of the various parameters. A common criticism 

of neural networks is that they require a large diversity of 

training for operation. The knowledge acquired during the 

training of the model is stored in an implicit manner and 

hence it is hard to come up with reasonable interpretation of 

the overall structure of the network. In addition, ANN has 

some intrinsic disadvantages such as slow convergence 

speed, less generalizing performance, arriving at local 

minimum and over-fitting problems. 

So to overcome the above limitations, we adopted 

Gaussian Process for Regression (GPR), Multivariate 

Adaptive Regression Spline (MARS), Minimax Probability 

Machine Regression (MPMR) for prediction of compressive 

strength of concrete. These methods have been used earlier 

individually for predicting the compressive strength of 

concrete (Razavi et al. 2012, Nedushan 2012, Ozturk and 

Turan 2012, Cheng and Cao 2014, Chou et al. 2015, Samui 

et al. 2015) but a comparison has never been made. A 

Gaussian process is an accumulation of random variables, 

any finite number of which has a joint Gaussian 

distribution. Gaussian Process is completely defined by a 

mean function and a positive definite covariance function. 

GPR is a non-parametric regression model (Rasmussen et 

al. 2005). For any input variables, GPR defines a Gaussian 

distribution over the output value. It is employed in many 

fields such as Noise Heart Rate Data (Stegle et al. 2008), 

nonstationary time series prediction (Belhouari and Bermak 

2004), multivariate spectroscopic calibration (Bermak et al. 

2004), single image super-resolution (He and Siu 2011). 

MARS is a flexible, more accurate, and faster simulation 

method for both regression and classification problems 

(Friedman 1991). It is capable of fitting complex, nonlinear 

relationships between output and input variables. Some 

examples of its usage are Biological conservations (Kandel 

et al. 2015), Ecological Modeling (Pickens et al. 2014), 

Transportation (Sun et al. 2013). MPMR is developed based 

on the concept of minimax probability machine 

classification (Strohmann and Grudic 2002).  It does not 

assume any data distribution. MPMR is used in various 

fields like medical diagnosis (Huang et al. 2006), Porous 

membrane reactor (Trianto and Kokugan 2002). 

 

 

2. Dataset employed 
 

In all about 1200 concrete samples from the 
investigations were evaluated. During the evaluation, some 
of the concrete samples were deleted from the data due to 
larger size aggregates (larger than 20 mm), special curing 
conditions, etc. About 1030 concrete samples made with 
ordinary Portland cement and cured under normal 
conditions were evaluated. Different studies used specimens 
of different sizes and shapes. All of these specimen types 
were converted into 15-cm cylinders through accepted 
guidelines (IS 516 1959, GB 50205 2001). Each input 

Table 1 Ranges of input features of database 

Input Features 
Minimum 

(kg/m3) 

Maximum 

(kg/m3) 

Average 

(kg/m3) 

Contents of cement 71 600 232.2 

Blast furnace slag 0 359 79.2 

Fly ash 0 175 46.4 

Water 120 228 186.4 

Superplasticizer 0 20.8 3.5 

Coarse aggregate 730 1322 943.5 

Fine aggregate 486 968 819.9 

 

 

feature is described using only a single term which actually 

represent a variety of forms. For example, a cement can be 

powdered to various degrees of finenesses and composed of 

several different chemical compositions. Apart from the 

component types, the properties of concrete are influenced 

by the mixing proportions and by the mixing preparation 

technique. Therefore, in this approach, the compressive 

strength of concrete is a function of the following eight 

input features: contents of cement (c), blast furnace slag (b), 

fly ash (f), water (w), superplasticizer (sp), coarse aggregate 

(ca), fine aggregate (fa) and age in days (d) which have 

been taken as inputs and compressive strength (fck) as output 

for the model. Table 1 shows the ranges of parameters of 

the database used. The database often contains unexpected 

inaccuracies, for instance, the class of fly ash is sometimes 

not reported. The greatest difficulty seems to be related to 

the application of superplasticizers. They are from different 

manufacturers, of different chemical compositions, and 

without details concerning the solid contents in the 

suspension. 

The data (Yeh 1998, 1998, 1999, 2003, 2003, 2006) 

used in both the techniques are normalized against their 

maximum values. In carrying out the formulation, the data 

has been divided into two sub-sets:  

(a) Training dataset: This is required to construct the 

model. In this study, 824 (80% of total data) out of the 1030 

values are considered as training dataset. 

(b) A testing dataset: This is required to estimate the 

model performance. In this study, the remaining 206 (20% 

of total data) values are considered as testing dataset. 

 

 
3. GPR model 

 

GPR is a non-parametric model (Trianto and Kokugan 

2002). Let us consider the dataset 

*𝑥𝑘, 𝑦𝑘+𝑘=1
𝑁  ,    𝑥 ∈ 𝑀𝑁 ,     𝑦 ∈ 𝑀,

          
(1) 

where x is the input variable, y is the output variable, MN is 

the N-dimensional vector space, M is the one dimensional 

vector space, k is the number of iterations from 1 to N and 

N is number of data samples. We use c, b, f, w, sp, ca, fa 

and d as input variables for predicting fck. The GPR output 

is fck. So, x=[c,b,f,w,sp,ca,fa,d] and y=[fck]. This dataset has 

been drawn from the noise process for ith iteration shown in 

Eq. (2) where ε is a constant.
  

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀,   𝜀~𝑁(0, 𝜎2)               (2) 
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The joint distribution of y is represented in Eq. (3). 

𝑃(𝑦) = 𝑁(0, 𝐾(𝑥, 𝑥) + 𝜎2𝐼)             (3) 

where K(x, x) is the kernel function and I is the identity 

matrix. For a given input x*, GPR defines a Gaussian 

predictive distribution over the output Y* with a mean (Eq. 

(4)) of 

𝜇 = 𝐾(𝑥∗, 𝑥)(𝐾(𝑥, 𝑥) + 𝜎2𝐼)−1𝑦           (4) 

and variance (Eq. (5)) 

𝛴 = 𝐾(𝑥∗, 𝑥∗) − 𝜎2𝐼  
−𝐾(𝑥∗, 𝑥)(𝐾(𝑥, 𝑥) + 𝜎2𝐼)−1𝐾(𝑥, 𝑥∗)        (5)    

We observe from Eq. (4) that the mean prediction is a 

linear combination of y. A suitable covariance function and 

its parameter are required to develop the GPR model. For a 

fixed value of Gaussian noise, GPR is trained by 

maximizing marginal likelihood. 

 

 

4. MARS model 
 

MARS is widely accepted by researchers and 

practitioners for the following reasons.  

• MARS is capable of modeling complex non-linear 

relationship among variables without strong model 

assumptions.  

• MARS can capture the relative importance of 

independent variables to the dependent variable when 

many potential independent variables are considered.  

• MARS does not need long training process and hence 

can save lots of model building time, especially when 

the dataset is huge.  

Finally, one strong advantage of MARS over other 

classification techniques is the resulting model can be easily 

interpreted. It not only points out which variables are 

important in classifying objects/observations, but also 

indicates a particular object/observation belongs to a 

specific class when the built rules are satisfied. The final 

fact has important managerial and interpretative 

implications and can help to make appropriate decisions. 

The MARS model splits the data into several splines on 

an equivalent interval basis (Friedman 1991). In every 

spline, MARS splits the data further into many subgroups 

(Yang et al. 2003). Several knots are created by MARS.  

These knots can be located between different input 

variables or different intervals in the same input variable, to 

separate the subgroups. The data of each subgroup are 

represented by a basis function (BF). The general form of a 

MARS predictor can be represented by Eq. (6) as 

𝑓(𝑥) = 𝛽0 + ∑ ∑

𝐵

𝑏=1

𝑃

𝑗=1

 

,𝛽𝑗𝑏(+)𝑀𝑎𝑥(0, 𝑥𝑗 − 𝐻𝑏𝑗) + 𝛽𝑗𝑏(−)𝑀𝑎𝑥(0, 𝐻𝑏𝑗 − 𝑥𝑗)- (6) 

where x=input, f(x)=output, P=predictor variables and 

B=basis function. Max(0, x-H) and Max(0, H-x) are BF and 

do not have to each be present if their coefficients are 0. 

The H values are called knots. The spline function consists 

of two segments, i.e., truncated functions of the left-hand 

side of Eq. (7) and right-hand side Eq. (8) separated from 

each other by a so-called knot location (Veaux et al. 1993), 

as follows 

𝑏𝑞
−(𝑥 − 𝑡) = ,−(𝑥 − 𝑡)-+

𝑞
= {

(𝑡 − 𝑥)𝑞 , 𝑖𝑓 𝑥 > 𝑡
0   , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (7) 

𝑏𝑞
+(𝑥 − 𝑡) = ,+(𝑥 − 𝑡)-+

𝑞
= {

(𝑥 − 𝑡)𝑞 , 𝑖𝑓 𝑥 > 𝑡
0   , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (8) 

where: t is the knot location and 𝑏𝑞
−(𝑥 − 𝑡)  &  𝑏𝑞

+(𝑥 −

𝑡) are the spline functions. The MARS algorithm consists 

of (i) a forward stepwise algorithm to select certain spline 

basis functions, (ii) a backward stepwise algorithm to delete 

BFs until the “best” set is found, and (iii) a smoothing 

method which gives the final MARS approximation a 

certain degree of continuity. BFs are deleted in the order of 

least contributions using the generalized cross-validation 

(GCV) criterion (Craven and Wahba 1979). The GCV 

criterion is defined using Eq. (9) 

𝐺𝐶𝑉 =
1

𝑁
∑ ,𝑦𝑖−𝑓(𝑥𝑖)-2𝑁

𝑖=1

01−
𝐶(𝐵)

𝑁
1
2               (9) 

where N is the number of data and C(B) is a complexity 

penalty that increases with the number of BF in the model 

and which is represented as Eq. (10) 

𝐶(𝐵) = (𝐵 + 1) + 𝜆𝐵             (10) 

where λ is a penalty for each BF included into the model. It 

can be also regarded as a smoothing parameter. (Friedman 

1991) provided more details about the selection of the λ. 

 

 
5. MPMR model 

 

MPMR uses kernel function for prediction of output(y). 

In MPMR, the relation between input(x) and y is given in 

Eq. (11).  

𝑦 = ∑ 𝛽𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑁
𝑖=1              (11) 

where N is the number of datasets, K(xi, x) is kernel 

function, βi and b are outputs of MPMR. This article uses c, 

b, f, w, sp, ca, fa, d as inputs. The output of MPMR is fck.  

So, x=[c,b,f,w,sp,ca,fa,d] and y=[fck]. 

One data set is obtained by shifting all of the regression 

data +ε along the output variable axis. The other dataset is 

obtained by shifting all of the regression data -ε along the 

output variable axis. Regression model is the classification 

boundary between these two classes. More details of 

MPMR are given by (Strohmann and Grudic 2002).  

The datasets are scaled between 0 and 1. Radial basis 

function (exp 2−
(𝑥𝑖−𝑥)(𝑥𝑖−𝑥)𝑇

2𝜎2 3 , where σ is the width of 

radial basis function) has been adopted as kernel function 

for the MPMR model.  

In this study, a sensitivity analysis has been done to 

extract the cause and effect of relationship between the 

inputs and outputs of the GPR, MARS and MPMR models. 

The basic idea is that each input of the model is offset 

slightly and the corresponding change in the output is 

reported. The procedure has been taken from the work of 

Liong et al. (2000). According to Liong et al. (2000), the 

sensitivity(S) of each input parameter has been calculated  
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Fig. 1 Performance of training and testing dataset (GPR) 

 

 

by the following formula: 

𝑆(%) =
1

𝑁
∑ .

% 𝑐𝑕𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡

% 𝑐𝑕𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑝𝑢𝑡
/

𝑗
× 100𝑁

𝑗=1     (12) 

where N is the number of data points. In this study, N=824. 

The analysis has been carried out on the trained model by 

varying each of the input parameters, one at a time, at a 

constant rate of 30%. 

 

 

6. Results and discussions 
 

Error and Correlation Calculations 

The validity of each and every model can be verified 

using these following formulas: 

The mean absolute error (MAE), Eq. (13) is a quantity 

used to measure how close predictions are to the actual 

value. 

𝑀𝐴𝐸 =
∑ |𝑤𝑎𝑖−𝑤𝑝𝑖|𝑛

𝑖=1

𝑛
                         (13) 

Root-mean-square error (RMSE), Eq. (14) is used to 

measure the differences between predicted value by the 

models and the actual values.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑤𝑎𝑖−𝑤𝑝𝑖)2𝑛

𝑖=1

𝑛
          (14) 

Coefficient of correlation (R), Eq. (15) has been used as 

main criterion to examine the performance of the developed 

models. The value of R has been determined by using the 

following equation 

𝑅 =
∑ (𝑤𝑎𝑖−𝑤𝑎)(𝑤𝑝𝑖−𝑤𝑝)𝑛

𝑖=1

√∑ (𝑤𝑎𝑖−𝑤𝑎)𝑛
𝑖=1 √∑ (𝑤𝑝𝑖−𝑤𝑝)𝑛

𝑖=1

          (15) 

ρ is known as the Performance Index, Eq. (16) is used to 

check the accuracy of the predicted values. 

𝜌 =
𝑅𝑀𝑆𝐸

𝑤𝑎

1

𝑅+1
               (16) 

where wai and wpi are the actual and predicted W values, 

respectively, wa and wp are mean of actual and predicted W 

values corresponding to n patterns. For a predictive model 

of high accuracy, the value of R should be close to one. 

For developing the GPR, the design values of Gaussian  

 

Fig. 2 Performance of training and testing dataset (MARS) 

 

 

noise and σ have been determined by the trial and error 

approach. The GPR gives the best performance at Gaussian 

noise=0.1 and σ=0.001. Graphs are plotted between Actual 

Normalized Strength and Predicted Normalized Strength. 

Fig. 1 shows the performance of training and testing dataset 

respectively. After the compilation of the model, following 

results are obtained. 

Training and testing performance are illustrated in the 

Table 2. As shown in Fig. 1, the value of R is very close to 

one for training but not so close for testing datasets. So, the 

developed GPR is less capable for prediction of 

compressive strength of concrete. The value of error and 

correlation functions for GPR is shown in Table 2. 

For MARS model, during training, the forward stepwise 

procedure was carried out to select 70 basis functions (BF) 

to build the MARS model. This was followed by the 

backward stepwise procedure to remove redundant basis 

functions. The final model includes 61 basis functions, 

which are listed in Table A1 together with their 

corresponding equations and am. 

The final equation for the prediction of strength (fck) 

based on MARS model is given Eq. (17) 

𝑓𝑐𝑘 = 0.7798 + ∑ 𝑎𝑚𝐵𝑚(𝑥)𝑀
𝑚=1          (17) 

where, 

a0=0.7798, i.e., coefficient of the constant basis 

function, or the constant term; 

{am}=vector of coefficients of the non-constant basis 

functions, m=1, 2, …, M; 

Bm are the basis functions that are selected for inclusion 

in the model. 

The ANOVA decomposition is specified in row wise for 

each ANOVA function. The columns represent summary 

quantities for corresponding ones. The first column lists the 

function number. The second gives the standard deviation 

(STD) of the function. This gives indication of its (relative) 

importance to the overall model and can be interpreted in a 

manner similar to a standard regression coefficient in a 

linear model. The third column provides another indication 

of the importance of the corresponding ANOVA function, 

by listing the GCV score for a model with the entire basis 

functions corresponding to that particular ANOVA function 

removed. This can be used to judge whether this ANOVA  
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Fig. 3 Performance of training and testing dataset (MPMR) 

 

 

Fig. 4 Cumulative probability plots of Predicted/Actual 

Strengths for different models for testing data 

 

 

function is making an important contribution to the model, 

or whether it just slightly helps to improve the global GCV 

score. The fourth column gives the number of basis 

functions comprising the ANOVA and the last column of 

Table A2 gives the particular predictor variables associated 

with the ANOVA function. Table A2 shows the ANOVA 

decomposition for Training dataset. 

Fig. 2 depicts the performance of training and testing 

dataset. It is observed from figure that the value of R is very 

close to one for training as well as for testing datasets. 

Therefore, the developed MARS proves is highly capable 

for prediction of compressive strength of concrete. The 

value of error and correlation functions for MARS is shown 

in Table 2. 

For developing MPMR, the design value of ε and width 

(σ) of radial basis function have been determined by trial 

and error approach. The design values of ε and σ are 0.1 and 

0.01 respectively. The performance of training and testing 

datasets has been depicted in Fig. 3 respectively. The 

performance of MPMR has been assessed in terms of 

coefficient of correlation (R). For a good model, the value 

of R should be close to one. As shown in Fig. 3, the value of 

R is very close to one for training but not so close for 

testing datasets. So, the developed MPMR has low ability 

for prediction of compressive strength of concrete.  

The approximates of error and correlation functions i.e., 

mean absolute error (MAE), root-mean-square error 

(RMSE), coefficient of correlation (R) and performance  

 

Fig. 5 Log normal distribution of Predicted/Actual 

Strengths for different models for testing data 

 

 

Fig. 6 Sensitivity analysis of the input parameters for GPR, 

MARS and MPMR models 

 

 

index (ρ) for all the models employed are consolidated in 

Table 2. 

A comparative study has been carried out between the 

developed GPR, MARS and MPMR models. Figs. 1, 2 and 

3 shows the graph of R value of the training and testing 

datasets for GPR, MARS and MPMR models respectively. 

Fig. 4 shows the cumulative probability plots of Predicted/ 

Actual Strengths for different methods for the testing 

dataset. The lognormal distributions of the Predicted/Actual 

Strengths for different models of the testing data are shown 

in Fig. 5. Based on the plots it can be seen that MARS 

model is better than GPR and MPMR models. It can be 

inferred from Figs. 2, 4 and 5 that the performance of 

MARS outperforms the performance of GPR and MPMR 

model. It is also clear from Table 3 that the performance of 

MARS is best. Fig. 6 presents the results of sensitivity 

analysis. It can be seen that, contents of cement (c) has the 

most significant effect on the predicted compressive 

strength (fck) for MARS and MPMR models followed by 

fine aggregate (fa), coarse aggregate (ca), fly ash (f), water 

(w), blast furnace slag (b), age in days (d) and 

superplasticizer (sp) (specifically for MARS model). 

Superplasticizer seems to contribute the least for all the 3 

models.  

The performance of training and testing dataset is 

almost same for the GPR and MPMR models but MARS 

shows the best performance among the three models. Table  
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3 shows the actual results and predicted fck from the 

developed MARS, MPMR and GPR for five random testing 

values from the dataset. It shows that the predicted fck from 

MARS match well with the actual fck. The developed 

models do not show overtraining. Therefore, the developed 

models have good generalization capability. Datasets are 

normalized between for developing the GPR, MARS and 

MPMR models. The developed models do not make 

assumption about the dataset. The developed MARS gives 

equation for prediction of strength. However, MARS do not 

use statistical parameters of the dataset for prediction. 

MARS adopts basis function for final prediction. MPMR 

uses kernel function for prediction of output. GPR defines a 

Gaussian predictive distribution over the output. 

When the results of GPR, MARS and MPMR are 

compared with the results of previously used model for 

prediction i.e., ANN (Artificial Neural Networks) (Yeh 

1998, 1999, 2003, 2003, 2006, Moretti et al. 2016, Erdala et 

al. 2013, Chou and Pham 2013, Kong and Chen 2015, 

Kumar et al. 2014, Viswanathan et al. 2015) it has been 

observed that these three models generate more accurate 

results than ANN. The coefficient of correlation for testing 

dataset obtained using ANN is 0.914 which is less 

compared to the three models used here. Therefore, among 

the four models, MARS gives the best result. MARS gives 

the equation to predict fck whereas ANN does not provide 

any equation. Moreover, MARS model is easier to build. 

And also, it automatically takes care of unimportant and 

redundant predictor values whereas ANN fails to do so. The 

developed MARS does not use any strong model 

assumptions. The main advantage of the developed MARS 

is that it can determine the contributions of basis functions 

for a particular problem. It can find out interaction between 

variables. It can easily handle the large variation of 

variables. The developed MARS is more flexible than the 

GPR and MPMR models. Outliers have no effect on the 

developed MARS. 

 

 

 

7. Conclusions 
 

This study has described the application of GPR, MARS 

and MPMR models for the prediction of compressive 

strength of concrete. Sensitivity analysis indicates that 

contents of cement has the most significant effect on the 

predicted compressive strength of concrete. The 

performance of MARS is better than GPR and MPMR 

model. User can use the developed model for prediction of 

compressive strength of concrete. The developed models 

can be used as a quick tool for prediction of compressive 

strength of concrete. The developed equation is very useful 

for estimation of compressive strength of concrete. 

Experiment is not required for determination of 

compressive strength of concrete. Hence, the developed 

models are cost effective. This paper shows that the 

developed MARS is a robust model for prediction of 

compressive strength of concrete. 
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Appendix 
 

Table A1 list of basis functions which give the best 

performance 

Basis Function Equation am 

BF1 max(0, d -0.1511) +0.153 

BF2 max(0, 0.1511 -d) -1.379 

BF3 max(0, c -0.9657) -0.070 

BF4 max(0, 0.9657 -c) -0.605 

BF5 max(0, b -0.0528) +0.938 

BF6 max(0, 0.0528 -b) +0.818 

BF7 max(0, sp -0.3388) -0.212 

BF8 max(0, 0.3388 -sp) +0.001 

BF9 max(0, 0.7413 -w) +0.365 

BF10 max(0, 0.0357 -d) -7.783 

BF11 
max(0, d -0.0357) * max(0, 

0.1103 -fa) 
-13.318 

BF12 max(0, b -0.8707) -0.412 

BF13 max(0, 0.8707 -b) -0.146 

BF14 BF2 * max(0, 0.3614 -b) +0.514 

BF15 BF13 * max(0, 0.0054 -d) -15.995 

BF16 BF10 * max(0, 0.7853 -c) +7.990 

BF17 
max(0, d -0.0357) * max(0, fa -

0.1103) * max(0, ca -0.9418) 
+1.763 

BF18 
max(0, d -0.0357) * max(0, fa -

0.1103) * max(0, 0.9418 -ca) 
-0.891 

BF19 BF8 * max(0, ca -0.0491) +0.053 

BF20 BF8 * max(0, 0.0491 -ca) -40.497 

BF21 BF1 * max(0, 0.1906 -fa) +7.242 

BF22 BF19 * max(0, b -0.2114) -4.737 

BF23 BF19 * max(0, 0.2114 -b) -5.154 

BF24 BF8 * max(0, w -0.1856) +0.295 

BF25 BF8 * max(0, 0.1856 -w) -11.501 

BF26 BF9 * max(0, c -0.2545) +8.166 

BF27 BF9 * max(0, 0.2545 -c) -1.323 

BF28 BF22 * max(0, c -0.6347) 392.870 

BF29 BF22 * max(0, 0.6347 -c) +5.651 

BF30 BF23 * max(0, w -0.7045) +36.233 

BF31 BF23 * max(0, 0.7045 -w) +11.775 

BF32 BF4 * max(0, b -0.1321) -0.248 

BF33 BF9 * max(0, d -0.0164) +0.787 

BF34 BF9 * max(0, 0.0164 -d) -15.965 

BF35 BF24 * max(0, ca -0.0755) +0.569 

BF36 BF24 * max(0, 0.0755 -ca) +0.968 

BF37 BF10 * max(0, b -0.2728) -8.360 

BF38 BF10 * max(0, 0.2728 -b) +9.614 

BF39 BF5 * max(0, b -0.1224) -0.553 

BF40 BF5 * max(0, 0.1224 -b) -1.250 

BF41 BF39 * max(0, w -0.5257) +1.120 

BF42 BF39 * max(0, 0.5257 -w) +10.875 

BF43 BF42 * max(0, c -0.1827) -38.064 

BF44 BF42 * max(0, 0.1827 -c) -53.159 

BF45 BF13 * max(0, ca -0.9418) +0.499 

BF46 BF13 * max(0, 0.9418 -ca) -0.075 

BF47 BF42 * max(0, fa -0.4804) +14.161 

BF48 BF42 * max(0, 0.4804 -fa) -21.935 

BF49 BF46 * max(0, c -0.7351) -0.586 

Table A1 Continued 

BF50 BF46 * max(0, 0.7351 -c) +0.128 

BF51 BF4 * max(0, sp -0.1055) -0.380 

BF52 BF4 * max(0, 0.1055 -sp) -0.485 

BF53 BF26 * max(0, b -0.3948) +37.225 

BF54 BF26 * max(0, 0.3948 -b) -20.455 

BF55 BF26 * max(0, b -0.1224) -33.035 

BF56 BF53 * max(0, d -0.0741) +17.613 

BF57 BF53 * max(0, 0.0741 -d) -36.959 

BF58 BF26 * max(0, d -0.1510) -1.340 

BF59 BF26 * max(0, 0.1510 -d) +3.712 

BF60 BF4 * max(0, sp -0.3068) +0.289 

 

Table A2 ANOVA decomposition for Training dataset 

Function 

Number 

Standard  

Deviation 
GCV 

Basis 

Function 
Parameters Variable(s) 

1 0.142 0.160 2 2.0 1 

2 0.191 0.087 2 2.0 2 

3 0.045 0.015 2 2.0 3 

4 0.057 0.019 1 1.0 4 

5 0.016 0.004 2 2.0 5 

6 0.165 0.058 3 3.0 8 

7 0.033 0.005 1 1.0 1, 2 

8 0.650 0.698 2 2.0 1, 4 

9 0.017 0.005 3 3.0 1, 5 

10 0.039 0.006 1 1.0 1, 8 

11 0.042 0.007 2 2.0 2, 3 

12 0.038 0.006 3 3.0 2, 8 

13 0.015 0.004 2 2.0 3, 6 

14 0.005 0.004 1 1.0 3, 8 

15 0.029 0.005 2 2.0 4, 5 

16 0.038 0.005 2 2.0 4, 8 

17 0.010 0.004 2 2.0 5, 6 

18 0.035 0.005 2 2.0 7, 8 

19 0.637 0.684 3 3.0 1, 3, 4 

20 0.017 0.004 2 2.0 1, 3, 6 

21 0.033 0.005 2 2.0 1, 4, 8 

22 0.053 0.007 2 2.0 2, 3, 4 

23 0.114 0.029 2 2.0 2, 5, 6 

24 0.017 0.024 2 2.0 4, 5, 6 

25 0.026 0.004 2 2.0 6, 7, 8 

26 0.021 0.004 2 2.0 1, 2, 3, 4 

27 0.049 0.007 2 2.0 1, 2, 5, 6 

28 0.012 0.004 2 2.0 1, 3, 4, 8 

29 0.015 0.004 2 2.0 2, 3, 4, 7 

30 0.046 0.007 2 2.0 2, 4, 5, 6 
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