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1. Introduction 
 

Concrete is one of the most frequently used artificial 

construction material in construction technology. It is a 

composite material that consists of mixtures of cement, fine 

aggregate, coarse aggregate, water. Nowadays, most of the 

concretes are containing chemical admixtures and 

supplementary cementitious materials (Erdogan 2010, 

Neville 2006).   

Supplementary cementitious materials, SCM, are some 

of the most important components of concrete.  Due to 

economic and ecological factors, trass (Kocak et al. 2010), 

zeolite (Kocak et al. 2013), diatomite (Kocak and Savas 

2016, Gerengi et al. 2013), metakaolin (Kelestemur and 

Demirel 2010, Subasi and Emiroglu 2015), pumice (Yildiz 

et al. 2010), fly ash (Kocak and Nas 2014, Zhengqi 2016), 

blast furnace slag (Zhu et al. 2012, Zhao et al. 2015), and 

silica fume (Okoye et al. 2016, Kocak 2010) are intensely 

used in the concrete technology. Some characteristics such 

as strength, durability and low permeability expected from 

good concrete are closely related not only to mix 

proportions but also to concrete properties. Zeolite and 

diatomite are natural mineral materials, that abundant in 
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Turkey. 

Zeolite, allophones type of morphology and consist of 

alkali and alkaline-earth cations. Zeolites keeps water 

molecules in their canals, which make it as a peculiar and 

decent mineral (Canpolat 2002, Serbest 1999). In terms of 

diatomite, it is a type of diatomite that is composed of the 

fossilized siliceous shell of the microscopic single-celled 

alga. The diatomite possesses the structural properties of 

amorphous silica. There are approximately fifteen thousand 

variations of diatomites exist in the nature. In general, the 

morphology is similar to the round tray or a long fish. High 

water absorption rate is another characteristic of this 

cellular material, and 70-90% of the diatomite is composed 

of SiO2 (Aruntas and Tokyay 1996). 

Contribution of zeolites and diatomite‟s on the 

compressive strength analysis of concrete can be observed 

in laboratory experiments. However, laboratory experiments 

would require financial cost due to material and energy 

prices. In addition, laboratory analysis takes decent amount 

of duration. In order to increase efficiency, novel computer 

based analysis approaches can be used. 

Recently, common expert systems studies have been 

exploited to solve a wide variety of problems in civil 

engineering applications. One of the prominent expert 

system study used regression and artificial neural networks 

and introduced mathematical correlations among input and 

output dataset (Suzuki 2011). Other major studies 

implemented efficient expert system approaches such as 

fuzzy logic, adaptive fuzzy inference, genetic algorithms 

and decision trees (Behnood et al. 2015, Behnood et al. 

2017, Velay-Lizancos et al. 2017). These studies developed 

clustering, classification and estimation utilities that extract  
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Abstract.  In this study, we analyze the behavior of concrete which contains zeolite and diatomite. In order to achieve the goal, 

we utilize expert system methods. The utilized methods are artificial neural network and adaptive network-based fuzzy inference 

systems. In this respect, we exploit seven different mixes of concrete. The concrete mixes contain zeolite, diatomite, mixture of 

zeolite and diatomite. All seven concrete mixes are exposed to 28, 56 and 90 days‟ compressive strength experiments with 63 

specimens. The results of the compressive strength experiments are used as input data during the training and testing of expert 

system methods. In terms of artificial neural network and adaptive network-based fuzzy models, data format comprises seven 

input parameters, which are; the age of samples (days), amount of Portland cement, zeolite, diatomite, aggregate, water and 

hyper plasticizer. On the other hand, the output parameter is defined as the compressive strength of concrete. In the models, 

training and testing results have concluded that both expert system model yield thrilling medium to predict the compressive 

strength of concrete containing zeolite and diatomite. 
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Table 1 The chemical properties of PC, diatomite and 

zeolite 

Materials PC Diatomite Zeolite 

Chemical composition, wt.% 

SiO2 18.68 79.56 68.85 

Al2O3 4.67 6.54 11.71 

Fe2O3 3.53 2.76 1.29 

CaO 64.56 2.45 3.97 

MgO 0.98 0.79 1.06 

SO3 3.00 0.48 0.18 

Na2O 0.14 2.63 0.29 

K2O 0.73 0.69 2.19 

S+A+F - 88.86 81.85 

Loss on ignition 3.92 3.88 10.00 

Insoluble residue 0.50 75.98 37.32 

Free CaO 1.74 - - 

 

 

relevant features between input and outputs. 

Adaptive network-based fuzzy inference systems 

(ANFIS), and artificial neural network (ANN) are the two 

of the most essential expert systems approaches. Both 

approaches are able to extract features from trained data. 

Henceforth, extracted features can be used during the 

analysis and prediction of a test data, given that both the test 

and train data have common characteristics and features. In 

terms of prediction of test data; such as mechanical 

behavior and physical properties of concrete and cement 

mortars, ANN and ANFIS are the two of the most common 

alternative methods that introduce efficient estimation 

performance (Beycioğlu et al. 2015, Mansouri and Kisi 

2015, Kocak et al. 2015, Sakthivel et al. 2016, Subasi 2009, 

Topcu and Saridemir 2008, Wang et al. 2015, Yaprak et al. 

2013). ANN and ANFIS approaches are based on trial and 

error method to find the network parameters such as number 

of hidden layers and neurons. Therefore, they require 

intense amount of computational energy. (Behnood et al. 

2015, Behnood et al. 2017, Velay-Lizancos et al. 2017). 

In this study, we introduce ANN and ANFIS models to 

evaluate the effect of zeolite and diatomite when used as 

supplementary cementitious materials on compressive 

strength of concrete. Such evaluation model aims to 

increase the efficiency in terms of labor, time and cost. 

Seven different binder combinations are used in this study. 

These seven combinations are consist of PC, 10-20% 

diatomite, 10-20% zeolite, 5+5-10+10% diatomite and 

zeolite. For the sake of the goal, 7 different cements are 

substituted for Portland cement. In order to define a model, 

we have collected 63 samples from the results of 28, 56 and 

90 days compressive strength experiments of concrete, 

which comprises the mentioned seven cements. Having 

acquired the laboratory experiments, the empirical 

observations from laboratory experiments are utilized in 

training of ANN and ANFIS systems. Particularly, we 

defined the input parameters of ANN and ANFIS models as; 

age of samples (days), amount of Portland cement, zeolite, 

diatomite, aggregate, water and hyper plasticizer. On the 

other hand, output parameter of the model is defined by the 

compressive strength of concrete. The obtained results from  

Table 2 The physical and mechanical properties of PC, 

diatomite and zeolite 

Materials 

Compressive 

strength, MPa 

Setting time, 

minute Blaine, 

cm2/g 

Specific 

gravity 
7 days 28 days Initial Final 

PC 29.6 52.8 118 - 4249 3.17 

Diatomite - - - - 13640 2.28 

Zeolite - - - - 5740 2.18 

 

Table 3 The physical characteristic of the aggregates 

Test Result 

Unit weight, 

g/cm
3
 

Loose Unit Weight 1.48 

Dense Unit Weight 1.66 

Specific gravity 

and Water 

absorption 

 Aggregate grading 

 0-5, mm 5-19, mm 19-30, mm 

Dry weight 2.63 2.62 2.66 

Saturated and surface 

-dry weight 
2.64 2.65 2.69 

Water absorption, % 0.61 1.16 1 

Moisture content, % 1.25 1.32 1.41 

Determination of 

organic impurities 

The color of the liquid is light 

yellow color than colorless 

(Organic matter is harmless). 

 

 

compressive strength of concrete were compared with ANN 

and ANFIS model predictions. 

 

 

2. Experimental study 
 

2.1 Materials 
 

In this study, CEM I 42.5 R (PC) type of cement is used 

and it is provided from Bolu Cement Plant. The chemical 

composition of the provided PC are presented in Table 1. 

The physical and mechanical characteristic of PC are given 

in Table 2. Furthermore, the diatomite is obtained from 

Kutahya region and zeolite from Balikesir-Bigadic region. 

The diatomite is supplied by ASU Chemistry and Mining 

Firm and zeolite is provided by a Zeolite Firm in Turkey. 

The chemical compositions of diatomite and zeolite are 

presented in Table 1, and physical and mechanical 

properties of diatomite and zeolite are given in Table 2. We 

also used crashed sand and crushed stone from Asar River 

aggregates in Duzce region.  

The physical characteristic of the aggregates are 

presented in Table 3. For the purpose of the study, AYDOS 

Construction Chemicals Factory have produced the type of 

fluid 70. In terms of concrete admixtures, new generation 

hyper plasticizer with solid matter content of 34.32%, 

intensity of 1.184 (20°C), pH value of 7.26 (20°C) have 

been applied. For our mixing water needs, we used well 

water from Doganli village in Duzce. 

 

2.2 Methods 
 

During experiment, seven different binder combinations 

are substituted from Portland cement. The substituted  
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Table 4 Concrete‟s mixture proportion 1 m
3
 for each 

concrete group 

Materials 
Specific 

gravity 

R, 

kg 

10D, 

kg 

20D, 

kg 

10Z, 

kg 

20Z, 

kg 

5D5Z, 

kg 

10D10Z, 

kg 

Aggregate 

0-5 2.66 822 831 822 843 855 849 855 

5-19 2.69 586 593 586 602 611 606 611 

19-30 2.70 428 433 428 439 446 442 445 

Total 1836 1857 1836 1884 1912 1897 1911 

PC 3.17 400 360 320 360 320 360 320 

Diatomite 2.28 - 40 80 - - 20 40 

Zeolite 2.18 - - - 40 80 20 40 

Hyper 

plasticizer 
1.184 4.800 4.320 4.800 4.320 4.800 4.320 3.840 

Water 1 139.7 139.7 123.3 139.7 123.2 139.7 124.2 

 

 

cements and their mixture proportions are explained in 

Section 1. We behave in accordance to standards of TS 802 

(TS 802 2009) during the development of concrete mixture, 

and materials ratio. Based on the type and SCM rate, we 

produced seven types of concrete as the cement substitute. 

According to the additive rate and the utilized SCM, we 

encode the seven concretes as R, 10D, 20D, 10Z, 20Z 5D5Z 

and 10D10Z. Based on TS EN 12350-2, consistency of 

fresh concrete is defined for each mixing group individually 

(TS EN 12350-2 2010). We present the rate of material 

amounts on each sample inside concrete mixture of 1m
3
 and 

their fresh concrete characteristics in Table 4. 

15×15×15 cm cubes (three units cube samples have 

been made for each concrete group) were produced from 

each batch. Each specimen was demolded the next day after 

casting and subsequently cured by submerging the 

specimens in water with temperature controlled at 23±2°C. 

The compressive strength of the specimens was obtained by 

testing the specimens at 28, 56 and 90 days in accordance to 

TS EN 12390-6 (TS EN 12390-6 2010).  

 

 

3. Artificial neural network  
 

ANN is one of the most prominent computational 

method that simulate structure and functionalities of 

biological neurons.  Fundamental building blocks of ANN 

are artificial neurons, where each neuron is interconnected 

to many other neurons of ANN. The ANN method has three 

simple sets of rules. These rules are stated as: 

multiplication, summation and activation. At the first phase 

of artificial neurons, the inputs are weighted by initial 

seeds, so that each input value is multiplied with individual 

weight. In the center-piece, there exists a summation 

function that sums all weighted inputs and bias. Finally, at 

the exit phase of artificial neuron, the sum of previously 

weighted inputs and bias is transmitted through activation 

function as the transfer function (Fig. 1) (Suzuki 2011). 

The output of a neuron is transmitted to another neuron 

as input. Such yield is computed by multiplication of the 

outputs of the connected neurons via synaptic strength of 

the connection. As introduced in Eq. (1) below, weighted 

sums of the input components are computed by weights of 

the neighbor neurons. Furthermore, bias should be 

 

Fig. 1 The artificial neuron model 

 

 

considered during the computation. 

bownet i

n

i

ijj 
1

)(  (1) 

where: (net)j, is the weighted sum of the j
th

 neuron 

comprising bias; wij is the weight between the j
th

 neuron in 

the preceding layer; oi is the output of the i
th

 neuron in the 

antecedent layer; b is a fixed value as an internal summation 

of the function (Topcu et al. 2008).  

Let assume that the inputs of a neural network are 

received from the preceding layer via n distinguished 

neurons. During execution of neural network, Activation 

function processes the net input, which is provided from 

sum function and computes the neuron output. In most 

cases, (f (net)j) sigmoid activation function is used as the 

activation function for multilayer feed forward models. As 

shown in Eq. (2), the output of the j
th

 neuron is computed 

with a sigmoid activation function (Topcu et al. 2009) 

jnetjj
e

netfo
)(

1

1
)(




  (2) 

where: oj is the output of the j
th

 neuron; e is natural 

logarithm; α is the constant that describes the slope of the 

semi-linear region.  

The sigmoid activates all but input layer in nonlinear 

form. The yield of the sigmoid function is represented by 

either 0 or 1. When necessary, the output range of the 

sigmoid function can be transformed into (−1, 1) range as 

well.  

The sigmoid processor represents a continuous function 

during non-linear descriptions, since derivatives of sigmoid 

can be fixed easily by the parameters of (net)j (Topcu et al. 

2009). 

 

 

4. Adaptive network-based fuzzy inference systems 
 

Adaptive network-based fuzzy inference system 

(ANFIS) is a hybrid system which comprises both neuronal 

network and fuzzy inference systems. Obviously, fuzzy 

inference in this hybrid system is used to handle 

imprecision and uncertainty. Fuzzy Logic concept allows 

membership degrees to the variables. Based on the if-then 

rules of the fuzzy inference system, each input‟s fuzzy sets  

Inputs Weights
Sum 
function

Activation 
function Outputs

X1

X2

Xn

bW1

W2

Wn

X1 W

X2 W

Xn W

(net)j
Oj∑

1

-1
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Fig. 2 Equivalent ANFIS scheme 

 

 

are evaluated. As a consequence of this operation, fuzzy 

system can yield optimum outputs, which is close to the 

response outputs. The optimum results of the system bound 

up with the experience of the expert system. On the other 

hand, the neuronal network handles adaptability. Neural 

networks are adaptive networks which are composed of 

highly interconnected simple elements, adaptive nodes. 

They imitate human brain by setting up the right network 

connections. In general, neural networks are adjusted or 

trained so that a particular input causes particular response. 

Takagi, Sugeno, and Kang introduced the model, which 

produces fuzzy rules from an input-output data set. A 

typical fuzzy rule has the following format; 

If x is A and y is B then z = f(x,y) 

where, A and B are fuzzy sets in the antecedent; and z=f 

(x,y) is a crisp function. In general, f(x,y) is a polynomial 

grounding on the input variables; x and y. When f(x,y) is a 

first-order polynomial, the model becomes a first-order 

Sugeno fuzzy model. On the other hand, if f is a constant, it 

is assumed as zero-order Sugeno fuzzy model. In order to 

make precise definitions, let consider a first-order Sugeno 

fuzzy inference system which contains two fuzzy If-then 

rules as follows: 

Rule1: If x is A1 and y is B1 , then f1= p1 x+ q1 y +r1 

Rule 2: If x is A2 and y is B2 , then f2= p2 x+ q2 y+ r2 

In terms of ANFIS inference, output of each rule is a 

linear combination of the input variables taking part by a 

fixed term such as p1, q1 and ri. The final output of the 

inference system is established by the weighted average (
iw

) of each rule‟s output (Aali et al. 2009, Jang 1996, Atmaca 

et al. 2001).  

The equivalent ANFIS scheme is shown in Fig. 2, where 

node of a coequal layer performs same task. In general, 

ANFIS structural model is consist of five layers. In order to 

ensure precise explanation, let assume that j
iO  denotes the 

output of the i
th

 node in j
th

 layer is preferred.  

The Layer 1 is defined as Fuzzification Layer. In this 

layer, every node i in the layer is an adaptive node with 

following node function; 

4,3         ),(

,2,1             ),(

2
1
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 iforyBO

oriforxAO

ii

ii
 

where x or y is an input to the i 
th

 node, and Ai or Bi-2 is a 

linguistic label such as tall, short. On the other hand, 
j

iO  

is the membership degree of a fuzzy set A or B. 
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ii
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j

i
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where ai, bi, ci are the parameter coefficients. In view of 

parameters changes, the bell-shaped function will vary 

correspondingly; henceforth exhibiting various forms of 

membership functions on linguistic label, Ai. Parameters of 

this layer are referred as premise parameters. The outputs of 

the layer are assumed as the membership values of the 

premise part.  

The Layer 2 of ANFIS is defined as Rule inference 

layer. Each rule is assigned a firing strength which measures 

the degree to which the rule matches the inputs. In this 

layer, each node computes the firing strength of a rule by 

multiplication as follows 

,...2,1       )().(2  iyBxAO iii 
          

(4) 

where each node output represents the firing strength of a 

rule. 

The Layer 3 of ANFIS is defined as Normalization 

layer. A member of this layer, Node i, computes the ratio 

between i
th

 rule‟s firing strength and all firing strengths. 

Formally 

,...2,1      
21

3 


 i
ww

w
wO i

ii

         

(5) 

The outputs of third layer are named as normalized 

firing strengths. 

The Layer 4 of ANFIS is defined as Consequent layer. A 

member of this layer, Node i, computes the contribution of 

i-th rule toward the overall output. Mathematically 

    ..  .4
iiiiiii ryqxpwfwO 

        
(6) 

where wi is defined as output of layer 3, and {pi, qi, ri} is 

reckoned as the parameter set. Parameters in this layer are 

referred to as the consequent parameters. 

Finally, Layer 5 is defined as the Output layer. This 

layer‟s single fixed node, labeled as ∑, computes the final 

output as the summation of all incoming signals. 

    

.

 . 5




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i

ii

i

iii
w

fw

fwoutputoverallO

    

(7) 

In summary, fundamental learning strategy of ANFIS is 

based on backpropagation gradient descent, which 

calculates error signals in a bottom up approach recursively. 

Precisely, ANFIS starts the execution from output layer 

through to the nodes of input layer. In this strategy, error 

signals are determined by the derivative of the squared error 

with respect to each node‟s output. In fact, such learning 

strategy is similar to the backpropagation learning. 

 

 

5. Experimental design and model parameters 
 

In terms of training and testing of the ANN and ANFIS, 

we used seven input parameters: age of samples (days),  
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Table 5 Utilized input and output parameters and their 

quantities during ANN model 

 

Utilized training and 

testing data of the model 

Minimum Maximum 

Input 

variable 

Age of samples, days 28 90 

PC, kg 320 400 

Zeolite, kg 0 80 

Diatomite, kg 0 80 

Aggregate, kg 1836 1912 

Water, kg 123.2 139.7 

Hyper plasticizer, kg 3.840 4.800 

Output 

variable 

Compressive strength, 

MPa 
42.8 67.9 

 

 

Fig. 3 Degree importance of the input variables 

 

 

amount of PC, zeolite, diatomite, aggregate, water and 

hyper plasticizer. The response parameter is compressive 

strength and the ranges of the input parameters are 

presented in Table 5. The sensitivity levels of the input 

variables are computed by using SPSS 22.0 software 

package and importance level of the aforementioned 

variables are presented in Fig. 3. The significance levels of 

the input parameters are as follows:  

- days                : 0.31 

- aggregate  : 0.265 

- zeolite        : 0.120 

- diatomite  : 0.115 

- water         : 0.097 

- hyper plasticizer  : 0.071 

- PC              : 0.022 

 

 

Table 6 Parameters of the model in quantitative form 

Parameters ANN model values 

Number of input layer neurons 7 

Number of hidden layer 2 

Number of first hidden layer neurons 10 

Number of second hidden layer neurons 5 

Number of output layer neuron 1 

Error after learning 1×10-7 

Learning cycle 6 

 

 

In the ANN and ANFIS models, we utilized 63 data for 

training and 21 data for testing purposes. As shown in Table 

7, we considered 21 different criteria for the experiments. 

From each criterion, we collected 3 observations to achieve 

63 training data. In order to obtain testing data, we compute 

the average of 3 observations for each criterion. 

Our ANN architecture consist of six components. These 

components are feed-forward back propagation, two hidden 

layers, training function (Levenberg-Marquardt), adaptation 

learning function (learngdm), transfer function (tansig) and 

performance function (MSE-mean squared error). These 

components are visually presented in Fig. 4. Quantitatively, 

exploited neurons in the first and second layers of ANN 

model are 10 and 5 respectively. Furthermore, both 

momentum rate and learning rate values were also 

determined and the model was trained through iterations. 

The quantitative parameters of the multilayer feed-forward 

neural network model are presented in Table 6.  

There are seven input parameters incorporated in ANFIS 

model. These inputs are; the days, PC, zeolite, diatomite, 

aggregate, water and hyper plasticizer and an output 

compressive strength of the concrete and units of these 

input parameters are demonstrated in Fig. 5. We have done 

intense computational experimentations with various neural 

network epochs. Results of the different learning algorithms 

with different epochs, best correlations were found through 

hybrid learning algorithm and 6 epochs. Furthermore, two 

„„gbellmf‟‟ membership functions for each input variables 

were selected for the days, PC, zeolite, diatomite, 

aggregate, water and hyper plasticizer. Compressive 

strength has been nominated as the output variable of the 

expert system implementations. The membership function 

for each input parameter is presented in Fig. 6. 

 

 

6. Results and discussion 
 

In this study, we estimate the value of compressive 
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Fig. 4 The architecture used in the neural network model for compressive strength 
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strength of concrete experiments by using artificial 

intelligence models, which are ANN and ANFIS.  In order 

to evaluate the estimation and efficiency performance of the 

models, we made use of three common criteria that 

compares the predictions of expert systems and laboratory 

experiments. For evaluating the robustness of the network 

models, several parameters are used as indicators. These 

parameters are absolute fraction of variance (R
2
), mean 

absolute percentage error (MAPE), and root-mean squared 

(RMS) error. The formula for R
2
, MAPE, and RMS are 

presented in Eq. (8) to Eq. (10) (Ozcan et al. 2009). 
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In Eqs. (8), (9) and (10) t is defined as the target value, 

and o is defined as the network output value. On the other 

hand, we let N as the number of patterns to be analyzed. 

We have collected 63 observation data from concrete 

experiments. We utilized the 63 of them during the training 

ANN and ANFIS models. In order to obtain testing data, we 

compute the average of 3 observations for each criterion. 

The 21 data is reserved for testing purposes, which maintain 

the average properties of train data.  

In order to ensure precise explanation, we introduced 

sample number and yield of ANN estimation model in Fig. 

7. 

Fig. 8 presents the sample numbers, and comparison of 

the experimental results versus estimations of ANN and 

ANFIS models. 

The results of compressive strength obtained from 

experiment, ANN & ANFIS analysis along with the detail 

 

Fig. 5 General structure of the model 

 

Fig. 6 Membership functions of input variables 

Days

Compressive  

strength

PC

Zeolite

Diatomite

Aggregate

Water

Hyper plasticizer

Input Inputmf Rule Outputmf Output

Days PC

Zeolite Diatomite

Aggregate Water

Hyper plasticizer
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Fig. 7 Comparison of compressive strength experimental 

and training results of ANN model with sample number 

 

 

Fig. 8 Comparison of compressive strength experimental 

and testing results of ANN and ANFIS models with sample 

number 

 

 

Fig. 9 Comparison of compressive strength experimental 

results with training results of ANN model 
 

 
Fig. 10 Comparison of compressive strength experimental 

results with testing results of ANN () and ANFIS ( ) 

models 

 

Table 7 Comparison of compressive strength experimental 

results with testing results obtained from ANN and ANFIS 

Data used in the model construction 
Compressive 

strength, MPa 

As, 

days 

PC, 

kg 

Zeolite, 

kg 

Diatomite, 

kg 

Aggregate, 

kg 

Water, 

kg 

HP, 

kg 
Exp. ANN ANFIS 

28 400 0 0 1836 139.7 4.80 54.4 54.8 54.6 

28 360 0 40 1857 139.10 4.32 49.9 49.8 50.5 

28 320 0 80 1836 123.3 4.80 43.8 43.5 45.2 

28 360 40 0 1884 139.7 4.32 48.2 48.7 48.6 

28 320 80 0 1912 123.2 4.80 43.8 43.8 43.6 

28 360 20 20 1897 139.7 4.32 44.9 44.9 45.4 

28 320 40 40 1911 124.2 3.84 43.0 43.1 42.9 

56 400 0 0 1836 139.7 4.80 59.3 59.2 59.1 

56 360 0 40 1857 139.10 4.32 58.0 57.8 57.0 

56 320 0 80 1836 123.3 4.80 52.1 51.7 49.7 

56 360 40 0 1884 139.7 4.32 57.1 56.8 56.4 

56 320 80 0 1912 123.2 4.80 49.9 49.9 50.3 

56 360 20 20 1897 139.7 4.32 52.0 52.2 51.0 

56 320 40 40 1911 124.2 3.84 47.3 47.3 47.4 

90 400 0 0 1836 139.7 4.80 65.3 65.1 65.4 

90 360 0 40 1857 139.10 4.32 65.4 65.3 65.9 

90 320 0 80 1836 123.3 4.80 55.0 54.6 56.1 

90 360 40 0 1884 139.7 4.32 66.9 66.9 67.1 

90 320 80 0 1912 123.2 4.80 59.9 61.1 59.7 

90 360 20 20 1897 139.7 4.32 58.4 58.5 58.7 

90 320 40 40 1911 124.2 3.84 53.5 53.5 53.4 

 

 

of the input parameter values are presented in Table 7. 

The quantitative data are collected through experiment. 

These data are later used for training and testing purposes of 

ANN and ANFIS models. In Figs. 9 and 10, we denote the 

28, 56 and 90 days‟ compressive strength estimations of 

ANN and ANFIS models and subsequently, the 

comparisons of the collected data from laboratory 

experiments. 

In Figs. 9 and 10, we present linear least square fit line, 

and the R
2
 values of the experiments and predicted values of 

compressive strength. Results in Figs. 9 and 10 denotes 

ANN and ANFIS models successfully predicts compressive 

strength of concrete containing zeolite and diatomite. In 

both figures, it is possible to draw a regression line between 

experimental compressive strength and predictions, whose  
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Table 8 The compressive strength statistical values of 

proposed ANN and ANFIS models 

Statistical 

parameters 

ANN ANFIS 

Training set Testing set Testing set 

R2 0.9741 0.9976 0.9879 

MAPE 0.0174 0.0042 0.0106 

RMS 1.1654 0.3521 0.7827 

 

 

distance to all points is small enough. In the figures, RMS, 

R
2
 and MAPE results supports such claim with quantitative 

results. As a consequence, it is possible to claim that ANN 

and ANFIS models are capable to make good predictions 

that can generalize a computational algorithm between 

input and output variables. 

In terms of RMS, R
2
 and MAPE, the statistical results of 

ANN and ANFIS models for both training and testing sets 

were presented in Table 8. 

As can be seen in Table 8, statistical values of R
2
, 

MAPE and RMS from training in the ANN model were 

found as 0.9741, 0.0174 and 1.1654. In the same manner, 

these testing values of aforementioned statistical parameters 

are 0.9976, 0.0042 and 0.3521 respectively. The statistical 

values of R
2
, MAPE and RMS from testing in the ANFIS 

model were found as 0.9879, 0.0106 and 0.7827, 

respectively. These results satisfy the goals of the study. In 

addition to the above statistical evaluations, we have 

observed statistical relationship and correlation between 

experimental data and the expert system model when 

compressive strength values are considered in (Table 9).  

 

 

7. Conclusions 
 

Due to plentiful zeolite and diatomite resources in 

Turkey, we have motivated on compressive strength 

analysis of concrete containing zeolite and diatomite. In 

general, compressive strength analysis of concrete is 

implemented in the laboratory and contribution of the 

zeolite and diatomite on the compressive strength must be 

analyzed. During the laboratory experiments of 

compressive strength, three basic resources are needed. 

These are financial costs, labor, and time. In order to utilize 

the resources in an efficient form, computerized techniques 

are also used in literature. Particularly, computer based 

techniques are used to estimate chemical reactions of 

concrete such as compressive strength. 

In terms data analysis, ANN and ANFIS are two of the 

most common expert system models that can learn from the 

training data. During the learning phase, both models 

establish neural rules between input and response values. 

Those neural rules are then can be used to estimate test data 

behaviors.  

During this study, we utilized ANN and ANFIS models 

and estimated the 28, 56 and 90 days compressive strength 

of concrete, which contain either zeolite, diatomite, both 

zeolite and diatomite. In order to develop the expert system 

models, we collected 63 data from laboratory experiments. 

We reserved the 63 of data for training and 21 data (the  

Table 9 Statistical comparison of experimental values with 

ANFIS and ANN model test values 

 Experimental ANFIS ANN 

Experimental 

Pearson Correlation 1 0.994** 0.999** 

Sig. (2-tailed) - 0.000 0.000 

Covariance 53.167 52.532 53.312 

Test samples (N) 21 21 21 

** Correlation is significant at the 0.01 level (2-tailed). 

 

 

average of the 3 experimental data for each concrete group) 

are employed for testing purposes. We attach importance to 

ensure that test data fairly represent the average of training 

data. While developing ANN and ANFIS models, we tested 

different learning algorithms with different epochs to define 

a model which introduces potentially best estimation ability. 

After finding the best ANN and ANFIS models, and 

consequently most accurate executions of ANN and ANFIS, 

we did comprehensive comparisons to achieve our goals 

that have mentioned. In order to compare the ANN, ANFIS 

and experimental results, R
2
, MAPE and RMS statistics 

were utilized as the essential evaluation criteria. When 

laboratory experiments are compared to expert system 

models, we observed that both ANN and ANFIS models 

yield significant result and they can be used to reduce labor, 

time and financial costs. Particularly, the estimations and 

the experimental values in the training stage R
2
, MAPE and 

RMS were found as 0.9741, 0.0174 and 1.1654 for ANN 

model, respectively. When the test stage is considered, R
2
, 

MAPE and RMS were found as 0.9976, 0.0042 and 0.3521 

for ANN model and 0.9879, 0.0106 and 0.7827 for ANFIS 

model, respectively. The results denote that both expert 

system models yielded significant results. The statistical 

parameter values of R
2
, MAPE and RMS that compared 

experimental data against ANN and ANFIS models 

estimations have verified our goals.  

Arising from the results of this study, we have 

concluded that compressive strength values of concrete 

containing zeolite, diatomite, both zeolite and diatomite can 

be predicted in the ANN and ANFIS models in a quite short 

period of time with small error rates. The estimation results 

have shown that ANN and ANFIS systems are practicable 

methods for predicting compressive strength values of 

concrete containing zeolite, diatomite, both zeolite and 

diatomite. Furthermore, these systems can reduce losses in 

both elapsed time and financial costs during the preparation 

of the cement mortars and concretes by utilizing various 

additives. In the future, new studies can focus on the 

removing limitations including but not limited to the 

concrete types that may be prepared with various 

supplementary cementitious materials.  
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