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1. Introduction 
 

Nowadays, in order to diminish construction costs and 

to shorten construction time of residential buildings, 

different prefabricated systems are offered on the building 

market. Prefabricated building is a type of building that 

consists of several factory-built components or units that are 

assembled on-site to complete the unit. In addition, the 

structural design can be improved through the development 

and application of composite elements. An attractive 

energy-saving construction system for residential buildings 

was proposed, composed of monolithic load bearing 

reinforced concrete (RC) frames and prefabricated 

composite slabs and wall panels composed of reinforced 

concrete (RC) and expanded polystyrene (EPS) (Sewaco 

System, www.sewaco.pl). The advantages of such a 

construction system are: a) short time of the building 

process due to presence of prefabrication for slabs and walls 

during a construction process (3 times shorter than a 

standard monolithic construction), b) energy-saving due to 

the presence of RC and EPS (thermal conductivity 

coefficient of external envelopes is only 0.11-

0.15kW/m2K), c) high apparent sound reduction index R 

due to the presence of reinforced concrete and EPS (R=33-

34 dB) and d) high standard of finish.  

The slabs were composed of RC ribbed box elements 

with the core from the (EPS) foam as a thermal insulation 

material. Both the materials (RC and EPS) were together 

constructed in a prefabrication factory. The slabs were  
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7.07 m long and 2.4 m wide with the total thickness of  

0.30 m. The expanded polystyrene (EPS) foam core had the 

thickness of 0.23 m. In engineering design calculations of 

residential houses, it was assumed that all loads were 

carried by slabs supported on spatial monolithic 

longitudinal and transverse RC frames located on ground 

beams and footings. The slabs were dimensioned in the 

usual way as RC T-elements without EPS.  

Our paper is experimentally and theoretically oriented. 

It focuses on studying the strength, deformability and 

failure of RC concrete slabs without shear reinforcement 

under 4-point bending, based on full-scale laboratory tests 

in order to evaluate their real strength. Such full-scale tests 

always provide the most valuable information on the 

behaviour of concrete elements (De Luca et al. 2014, 

Dulude et al. 2011, Lantsoght et al. 2010). The slabs failed 

along a diagonal shear crack. Initially the experimental 

results were compared with a theoretical formula for the 

shear capacity of RC-elements. Next, a numerical 

deterministic evaluation of experimental results using two 

different continuum constitutive models for concrete was 

conducted. First, an elasto-plastic model with a Drucker-

Prager criterion defined in compression and with a Rankine 

criterion defined in tension was used. Second, a coupled 

elasto-plastic-damage formulation based on the strain 

equivalence hypothesis was used. The latter is obviously a 

more physical constitutive model for describing a non-

linear concrete behaviour in tension. However, the elasto-

plastic models are still frequently used for concrete 

modelling due to its simplicity. Therefore, these two 

different formulations were used for solving the same 

problem. In order to ensure mesh-independent FE results 

and to properly describe strain localization in concrete, both 

models were enhanced in the softening regime by a 

characteristic length of micro-structure by means of a non- 
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(A) 

 
(a) 

 
(b) 

Fig. 1 Composite slab (length L=7.01 m, width b=2.4 m and 

thickness h=0.30 m): (A) geometry and (B) reinforcement 

in form of single bars and bar mesh (a) top and (b) bottom) 

 

 

local theory. For simulations of the reinforcement 

behaviour, an associated elasto-perfectly plastic constitutive 

law was assumed. EPS was described by a linear elastic 

model. Attention was paid to a critical diagonal crack which 

developed before the maximum vertical load was reached. 

This diagonal crack plays an important role in the shear 

brittle failure of typical RC beams under concentrated 

vertical loads and is responsible for a deterministic size 

effect due to concrete failure (Syroka-Korol and Tejchman 

2014, Korol et al. 2014). A statistical size effect is 

negligible in this case since the location of a critical is 

always similar independently of the beam size (Korol et al. 

2014). 

The innovative points in this paper are twofold 

(beneficial for the optimum engineering design): 

a) experimental investigations of large novel composite 

building slabs in the scale 1:1 under bending and b) 

validation of two different continuum approaches for 

concrete in order to describe the shear strength, deflection 

and pattern of shear and bending localization zones in large 

RC elements (by taking bond-slip into account). The  

 
(a) 

 
(b) 

Fig. 2 Loading system of composite slab during four-point 

bending with steel profiles transmitting loads: (a) side view 

and (b) top view (dimensions in (cm)) 

 

 
(a) 

 
(b) 

Fig. 3 Experimental set-up for composite slab: (a) top view 

and (b) side view 

 

 

experimental and numerical results concerning composite 

wall panels under the vertical load will be published later. 
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Fig. 4 Evolution of experimental vertical force F against 

mid-slab deflection u in composite slab (two zig-zags on 

curve were caused by technical reasons-two stop-restart 

processes)  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 Crack pattern evolution (in red) in composite slab for 

the vertical force F: (a) for 25% of failure force Fmax, (b) for 

40% of Fmax, (c) for 60% of Fmax and (d) at failure (note that 

cracks in red are shown for slab at failure) 

 

 

2. Laboratory full-scale tests on composite slabs 
 

The geometry of the composite slab is shown in Fig. 1. 

The RC slab was made in a usual prefabrication factory. It 

had a thin-walled box-type cross-section filled with EPS. 

Five ribs were used in the longitudinal direction and two in 

the transverse direction. The concrete was prepared from 

the ordinary Portland cement (CEM I 42.5 R), aggregate 

and water. The river sand and gravel aggregate were used 

with the mean particle diameter d50=2 mm, maximum 

aggregate diameter dmax=8 mm and aggregate volume of 

75%. The water to cement ratio was equal to 0.42. The 

reinforcement ratio of the main lower horizontal 

reinforcement was 0.6% (13 bars 10 and 15 bars 6) and 

main upper longitudinal reinforcement ratio was 0.2% (30 

bars 6 located in the support neighbourhood). The 

horizontal bars with the diameter of 10 mm and bar meshes 

with the diameter of 6 mm were used at the distance of 150 

mm in the both direction. The concrete cover measured  

 
(a) 

 
(b) 

 
(c) 

Fig. 6 Failure crack location in composite slab: (a) view 

from top (note damaged internal ribs), (b) left side view and 

(c) right side view  

 

 

Fig. 7 Crack pattern on bottom surface of composite slab 

(Green lines-initial cracks due to transportation, red lines-

cracks before failure, blue dotted line-critical diagonal shear 

crack) 

 

 

from the bar centre to the concrete surface was 20 mm 

(bottom) and 15 mm (top). The average cylinder 

compressive strength of concrete was fcm=40.5 MPa and the 

average cylinder splitting tensile strength of concrete was 

fctm=2.06 MPa. The average modulus of elasticity of 

concrete was Ec=30.3 GPa. The yield strength of 

reinforcement was about fy=600 MPa and its modulus of 

elasticity was Es=200 GPa.  

Two slabs were incrementally loaded by 2 vertical band 

forces applied through two steel I-beams placed at the mid-

span of each slab at the distance of 2.4 m (Fig. 2) and at the 

distance of a=2.22 m (a/h=7) from the supports. In the test, 

the span was equal to 6.9 m and slab was free at the ends. 

The supports had the width of 85 mm. In order to avoid 

local damage of concrete surface, rubber pads were placed 

between steel profiles and concrete surface. The quasi-static  
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Fig. 8 Shear failure mechanism of RC beam with cross-

section bh in plastic theory by Nielsen and Bræ strup 

(1976) 

 

 

tests were performed with the controlled displacement rate 

of 7 mm/h. The initial maximum deflection (caused by its 

weight) of slabs was about 7-9 mm. The slabs had some 

initial transverse bending cracks with the width in the range 

of 0.10-0.15 mm due to a too fast lifting for transportation 

purposes (see Fig. 7). During the experiments, the following 

quantities were measured: vertical force, deflection at the 

mid-span and under the forces using induction gauges, 

normal tensile stress in lower reinforcement bars at the mid-

span using electric strain gauges (2 points), normal 

compression stress in concrete at the mid-span using 

electric strain gauges (2 points), angle of rotation of 

supports using an inclinometer (2 points) and width of 

cracks using induction gauges and manual measurements. 

We used the strain gauges (produced by the Tenmex 

company) with the length of 20 mm and width of 5 mm. 

Their measurement accuracy was 0.0005. The experimental 

set-up is presented in Fig. 3. 

Figs. 4-7 show the typical experimental force-deflection 

curve F=f(u) after loading and crack pattern for one slab 

under 4-point bending. The maximum vertical failure force 

was Fmax=142.3 kN (Fig. 4). With the slab weight, the 

failure force was Fmax=184.3 kN. For 0.25Fmax, some 

bending cracks first appeared in the slab mid-span (Fig. 5). 

The first bending crack with the width of 0.3 mm appeared 

for F=51.4 kN and u=17.6 mm (Fig. 5). Then, for about 

0.6Fmax (F=85 kN) and u=37.5 mm, the first inclined shear 

crack occurred. When the vertical force was F=108 kN 

(75% of Fmax) and deflection was u=45.5 mm, the critical 

diagonal shear crack was 0.05 mm wide and propagated up 

to the half of the slab thickness. The slab took place in a 

rapid brittle way for Fmax=142.3 kN due to a diagonal shear 

crack moving through the beam compressive zone towards 

the loading point (Fig. 6). The pattern of vertical bending 

cracks was almost symmetric during almost the entire 

deformation process (Fig. 5). Their mean length along the 

beam height was lc=0.19 m after the test. The maximum 

failure deflection was umax=63 mm (Fmax=142.3 kN). When 

considering the initial deflection due to the slab weight, the 

maximum deflection was umax=70.3 mm. Since the cracks 

did not appear at places of initial existing bending cracks 

due to transportation and the shear failure mode occurred, 

one might assume that the effect of initial cracks on 

experimental results was negligible. The uniform surface 

load used in usual standard dimensioning analyses 

(corresponding to the maximum experimental bending 

moment) was qmax=10.67 kN/m2 

In the experiments the average spacing of vertical 

bending cracks varied during the deformation process. For 

F=35 kN their average spacing was s=343 mm. Afterwards, 

for F=55 kN more vertical cracks appeared and their 

average spacing was s=200 mm. For F=82 kN, additional 

vertical cracks appeared (s=171 mm). At the failure the 

average crack spacing was s=145 mm. A failure diagonal 

shear crack appeared in the slab. It was surprisingly 

strongly non-symmetric. Its distance from the slab end was 

along the horizontal mid-thickness line was x1=116 cm (slab 

right side) and x2=148 cm (slab left side) (Figs. 6 and 7) 

(the mean distance was thus 


x =132 cm > a/2=111 cm). Its 

distance along the slab bottom line was x1=100 cm (right 

side) and x2=128 cm (left side) (Fig. 6) ( 

x =114 cm > 

a/2=111 cm). Its inclination to the horizontal was different 

at the both slab sides: l=38o (left side) and r=53o (right 

side) on average (the mean value along the slab width was 

 =45.5o) (Fig. 6). The failure diagonal crack crossed all 

slab ribs (Fig. 6). The maximum failure shear crack width 

was 0.57 mm. At the failure, the measured maximum 

normal tensile stress in the reinforcement at the mid-span 

was 614 MPafy (but it has not yielded yet) and the 

measured maximum compressive stress in concrete at the 

mid-span was 14.85 MPa (<<fcm=40.5 MPa). The maximum 

angle of the support rotation was negligible (1.48o). 

 

 

3. Analytical calculations 
 

Initially, the shear strength of the slab was analytically 

calculated as RC beams with a rectangular cross-section 

without shear reinforcement (Nielsen and Bræ strup 1976, 

Zhang 1994). In the modified plasticity theory, one assumed 

that the critical diagonal shear crack developed at the 

distance of x from the support (Fig. 8). The beam shear 

strength (the upper bound solution) based on the equality of 

the external energy and internal work dissipated along the 

crack was 

2

00.5 1s ck

a x a x
f

D D
  

   
    
  
 

 

with  x=0.74D(a/D-2), 

(1) 

wherein υ=V/(bD), V-the maximum shear force, b-the 

beam width, D-the effective beam height, a-the distance of 

the vertical force from the support, x-the distance of the 

critical diagonal shear crack from the support along the 

bottom and 0sfck denotes the effective concrete shear 

strength which considers the concrete cohesion reduction 

factor due to micro-cracking o and sliding reduction factor 

due to cracking s. The experimental and theoretical results 

were compared in Tab.1. In the theoretical calculations, the 

following values were assumed: υ0=0.7, υs=0.67 (Nielsen 

and Bræ strup 1976) or υs=0.5 (Zhang 1994), 

fck=fcm=40.5MPa, a=2.22 m and D=0.28 m. The inclination 

of the critical diagonal shear crack with respect to the 

bottom edge was =15.7o (tan =D/(a-x)=0.28/0.99=0.28 

with x=1.23 m) and was strongly smaller than the mean 
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experimental value  =45.5o. The theoretical shear 

strength, υ=1234.6 kPa (υs=0.67) or υ=921.4 kPa (υs=0.5), 

was lower by 7% and 40% than the experimental one 

(υ=1328 kPa). The calculated distance of the critical 

diagonal shear crack from the support along the bottom line, 

x=1.23 m, was higher by about 10% than the mean 

experimental distance (


x =1.14 m). The main disadvantage 

of the formula is the fact that the shear strength constants o 

and s are in general non-linear and depend on many 

different factors (Nielsen and Bræ strup 1976, Zhang 1994). 

The standard permissible bending moment MRd and 

shear force VRd were calculated for the slab according to the 

Polish Standard (2002) with the real strength parameters of 

concrete and steel. The total standard (with load factors) 

vertical uniform surface load on the slab (including the slab 

dead weight, weight of finishing layers and live load) was 

qd=7.86 kN/m2 and the total characteristic (without load 

factors) value was q=6.31 kN/m2. Both the standard 

quantities VRd=102.3 kN and MRd=218.1 kNm were higher 

than the experimental outcomes (Vmax=0.5Fmax=92.3 kN and 

Mmax=V× a=204.9 kNm). The experimental slab strength, 

expressed by the maximum vertical uniform surface load of 

qmax=10.65 kN/m2, indicated that the slab had the greater 

shear strength by 30% than the standard load of 

qd=7.86kN/m2. The comparisons with the standard 

requirements PN-B-03264 (2002) with respect to the 

permissible both crack width and deflection were carried 

out by taking into account initial bending cracks due to 

transportation. The standard crack width requirement of 0.3 

mm was satisfied since the total permissible uniform 

surface load was larger than 9.36 kN/m2. The deflection 

requirement of 30 mm was however exceeded by 2%. 

Therefore, it was recommended to slightly decrease the slab 

deflection by increasing the longitudinal bottom 

reinforcement area (13 bars 12 and 15 bars 6 instead of 

13 bars 10 and 15 bars 6). In addition, the bottom slab 

should be connected with the longitudinal ribs by the L-bars 

6 at the distance of 0.15 m to enhance the shear strength of 

the element in weaken places. 

The experimental spacing of vertical bending cracks was 

compared with the average crack spacing according to 

CEB-FIP Model Code (1991)  

2 2 8
247mm

3 3.6 3 3.6 0.006

ss



    



, 
(2) 

the formula by Lorrain et al. (1998) 

8
1.5 0.1 1.5 20 0.1 163 mm

0.006

ss c



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,  
(3) 

and according to Eurocode 2 (1992) 

1 2

,

0.8 0.5 8.3
3.4 0.425 3.4 20 0.425 145 mm

0.0183

eq

p eff

k k
s c





 
     

 
(4) 

wherein øs=8 mm is the mean bar diameter, ρ=0.6% 
denotes the horizontal reinforcement ratio, c=20 mm 
denotes the concrete cover, øeq=8.3 mm is the equivalent 
bar diameter, ρp,e f f=1.83% denotes the horizontal 
reinforcement ratio in the effective tension area, c=20 mm 
is the concrete cover and k1 and k2 are coefficients which 
take into account the bond properties of reinforcement and  

 
(A) 

 
(B) 

 

 
(C) 

Fig. 9 Coupled Drucker-Prager-Rankine criterion for 

concrete in space of principal stresses (A) and different 

curves in enhanced elasto-plasticity: (B) 

hardening/softening curve σc=f(κ1) in compressive regime 

(a) Gc=4000 N/m, (b) Gc=3250 N/m, (c) Gc=2500 N/m), (C) 

softening curve σt=f(κ2) in tensile regime (a) Gf=100 N/m, 

(b) Gf=200 N/m, (c) Gf=400 N/m): (σc-compressive stress, 

σt-tensile stress, κi-hardening/softening parameter) 

 

 

strain distribution. The mean experimental spacing of main 

vertical cracks, 145 mm, was similar to this according to 

Eq. (4) (s=145 mm), smaller by 15% than this according to 

Eq. (3) (s=163 mm) and smaller by 70% than this according 

to Eq. (2) (s=247 mm). 

 

 

4. Constitutive models for concrete, reinforcement 
and EPS 
 

Elasto-plastic model for concrete 

Two different constitutive models for concrete were 

used: an isotropic elasto-plastic model (Eqs. (A1)-(A6),  
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(a) 

 
(b) 

 
(c) 

Fig. 10 Element tests for concrete response (within elasto-

plastic-damage): (a) uniaxial compression, (b) uniaxial 

tension and (c) simple shear 

 

 

Appendix 1) and a coupled elasto-plastic-damage model 

(Eqs. (A7)-(A14), Appendix 2). 

Elasto-plastic models have been widely used to describe 

concrete behaviour in compression, tension and shear (e.g., 

Willam and Warnke 1975, Etse and Willam 1994, Feenstra 

and De Borst 1996). Our isotropic elasto-plastic model for 

concrete (Marzec et al. 2007, Majewski et al. 2008, 

Tejchman and Bobiński 2012, Korol et al. 2014) includes 

the Drucker-Prager criterion (defined in compression) and 

the Rankine criterion (defined in tension) (Fig. 9(A)). It 

requires two elastic parameters: modulus of elasticity E and 

Poisson’s ratio υ, one compression yield stress function 

σc=f(κ1) (based on uniaxial compression tests), one tensile 

yield stress function σt=f(κ2) (based on uniaxial tension 

tests), internal friction angle φ and dilatancy angle ψ based 

on a triaxial compression test (Gabet et al. 2008). The 

constitutive model has some disadvantages as e.g., the 

shape of the failure surface in the principal stress space is 

conical (not paraboloidal as in reality). In addition, in 

deviatoric planes, the shape is circular (during compression) 

and triangular (during tension); thus, it does not gradually 

change from a curvilinear triangle with smoothly rounded 

corners to nearly circular with increasing pressure. In our 

elasto-plastic model, the stiffness degradation due to strain 

localization (damage zones) and non-linear volume changes 

during loading are not taken into account. 

The following material parameters were assumed in FE 

simulations: E=30.3 GPa, υ=0.20, fc=40.5 MPa 

(compressive strength) and ft=2.06 MPa (tensile strength), 

based on laboratory experimental outcomes. The assumed 

relationship between the compressive stress σc and 

hardening (softening) parameter κ1 was composed of 3 

linear parts. One assumed 3 different relationships 

(Fig.9(B)). The compressive fracture energy Gc varied 

between 2500-4000 N/m. It was calculated as Gc=gc× wc 

(gc-area under the entire softening/hardening function up to 

κ1=0.006, wc≈3.5×lc-the width of compressive localization 

zones, lc=5 mm, Section 5). In the case of the tensile 

fracture energy 2 different exponential Hordijk (2011) 

curves wereanalysed (Fig. 9(c)). The tensile fracture energy 

Gf varied between 100-400 N/m. It was calculated as 

Gf=gf× wf (gf-area under the entire softening function, 

wf≈3.5× lc-width of tensile localization zones, lc=5 mm, 

Section 5). The internal friction angle was equal φ=12° 

(Eq.(2)), dilatancy angle ψ=8° (Abaqus 2004) and non-

locality parameter m=2 (Brinkgreve 1994). 

Coupled elasto-plastic damage model for concrete 

Besides elasto-plastic formulations to the describe the 

concrete behaviour under monotonic loading, damage 

(Krajcinovic and Fonseka 1981, Mazars 1986) and coupled 

elasto-plastic damage formulations (Lubliner et al. 1989, 

Meschke et al. 1998, Faria et al. 1998) also may also be 

used. The constitutive model (Marzec and Tejchman 2012, 

Tejchman and Bobiński 2012, Marzec et al. 2013, Korol et 

al. 2017) combines elasto-plasticity with damage mechanics. 

It assumes the different stiffness in tension and compression 

and a positive-negative stress projection operator to simulate 

crack closing and crack re-opening. It shares main properties 

of the model by Lee and Fenves (1998) which was proved 

to not violate thermodynamic principles, expressed by the 

lack of the spurious energy dissipation, Carol and Willam 

(1996), since plasticity was defined in the effective stress 

space, isotropic damage was used and the stress weight 

function was continuous. Carol and Willam (1996) showed 

namely that for damage models with crack-closing-re-

opening effects, only isotropic formulations did not suffer 

from spurious energy dissipation under non-proportional 

loading in contrast to anisotropic ones. Similar coupled 

models were presented for concrete by Simo and Ju (1997) 

and more recently by Chen et al. (2012), Grassl et al. 

(2013), Mihai et al. (2016) and Xotta et al. (2016). 
The coupled elasto-plastic-damage model requires the 

following 12 material constants E, υ, κ0, α, β, 1, 2, , at, 
ac,  and  and 2 hardening yield stress functions (the 
Rankine function in tension and the Drucker-Prager 
function in compression). In the case of linear hardening, 16 
material constants are needed (E, υ, κ0, α, β, 1, 2, , at, ac, 
, , initial yield stresses yt

0 (tension) and yc
0 

(compression) and plastic hardening moduli Hp (in 
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compression and in tension). If the tensile failure prevails, 
one yield stress function by Rankine can be used. The 
quantities y

0 (initial yield stress during hardening) and κ0 
are responsible for the peak location on the stress-strain 
curve and a simultaneous activation of the plasticity and 
damage criteria (usually the initial yield stress in the 
hardening function yt

0=3.5-6.0 MPa and κ0=(8-15)10-5 
under tension). The shape of the stress-strain-curve in 
softening is influenced by the constant β in tension (usually 
β=50-800), and by the constants  and 2 in compression 
(usually =50-800 and 2=0.1-0.8). The parameter 2 
influences also the hardening curve in compression. In turn, 
the stress-strain curve at the residual state is affected by the 
constant  (usually =0.70-0.95) in tension and by the 
constant 1 in compression (usually 1=1.0-1.2). Since the 
parameters  and 1 are solely influenced by high values of 
κ, they can arbitrarily be assumed for softening materials. 
Thus, the most crucial material constants are y

0, κ0, β,  
and 2. In turn, the scale factors at and ac influence the 
damage magnitude in tension and compression. In general, 
they vary between zero and one. There do not exist 
unfortunately experimental data allowing for determining 
the values of at and ac. Since, the compressive stiffness is 
recovered upon the crack closure as the load changes from 
tension to compression and the tensile stiffness is not 
recovered due to compressive micro-cracks, the parameters 
ac and at can be taken for the sake of simplicity as ac=1.0 
and at=0 for many different simple loading cases as e.g., 
uniaxial tension and bending. The equivalent strain measure 
  was defined in terms of elastic strains. In uniaxial 
compression, the material strength increased with 
increasing κ0 and decreasing δ and 2 and the material 
ductility reduced with increasing both δ and 2. The effect 
of  was negligible. In uniaxial tension, the material 
strength increased with growing κ0 only. The material 
ductility mainly decreased with increasing . The drawback 
of this formulation is the necessity to tune up constants 
controling plasticity and damage to activate an elasto-
plastic criterion and a damage criterion at the same moment. 
As a consequence, the chosen initial yield stress y

0 may be 
higher than this obtained directly in simple monotonic 
laboratory experiments. The material constants E, ν, κ0, β, 
α, η1, η2, δ and two hardening yield stress functions should 
be determined for concrete by means of two independent 
full monotonic tests: uniaxial compression test and uniaxial 
tension (or three-point bending) test. However, the 
determination of the damage scale factors at and ac requires 
one full cyclic compressive test and one full cyclic tensile 
(or three-point bending) test. In addition, the values of  
and  may be determined by means of triaxial compression 
tests. Due to the lack of laboratory stress-strain curves 
during uniaxial compression and uniaxial tension, a 
simplified calibration procedure of the constitutive model 
was performed for concrete. The material constants were 
fitted to the uniaxial compressive strength fcm=40.5 MPa. 
Initially the following set of the material constants was 
assumed for FE calculations with the slab: E=30 GPa and 
ν=0.2 (measured values), yt

0=3.5 MPa, yc
0=40 MPa 

(compression), Hp=19 GPa, 0=8×10-5, =14º, =8º, 
=100, =0.90, 1=1.05, 2=0.30, =300, at=0, ac=1. The 
value of =14º was calculated with Eq. (A5) and the value 
of =8º was chosen based on our earlier calculations within 
elasto-plasticity (Tejchman and Bobiński 2012). Using the 

assumed material constants, the fracture energies were: 
Gf=130 N/m (in tension) and Gc=2550 N/m (in 
compression) and the uniaxial tensile strength was 
ft=2.2MPafctm. The concrete behaviour during element 
tests (uniaxial compression, uniaxial tension and shear) is 
shown in Fig. 10. In computations of slabs the other values 
of Hp and  were also assumed (Hp=7.5 GPa and =300). 

Non-local approach for concrete 

A non-local theory was used as a regularization 

technique (Bažant and Jirásek 2002, Pijauder-Cabot and 

Bažant 1987, Bažant et al. 2010, Giry et al. 2011, Tejchman 

and Bobiński 2012, Bobiński and Tejchman 2016). In this 

approach, the principle of a local action does not hold any 

more. Polizzotto et al. (1998) and Borino et al. (2003) laid 

down a thermodynamically consistent formulation of non-

local plasticity and non-local damage. In the calculations, the 

softening parameters i (i=1, 2) were assumed to be non-

local (independently for both yield surfaces fi) (Brinkgreve 

1994) 

𝜅̅𝑖(𝒙) = (1 − 𝑚)𝜅𝑖(𝒙) + 𝑚
∫ 𝜔(‖𝒙 − 𝝃‖)𝜅𝑖(𝝃)d𝝃𝑉

∫ 𝜔(‖𝒙 − 𝝃‖)d𝝃
𝑉

 

for =1, 2,  

(5) 

where
i (x) are the non-local softening parameters, V 

denotes the body volume, x is the coordinate vector of the 

considered point,  is the coordinate vector of the 

surrounding points,  denotes the weighting function and m 

is the additional non-locality parameter also controlling, 

except of lc, the size of a localization zone (Brinkgreve 

1994, Bobiński and Tejchman 2004). In the calculations 

within and coupled elasto-plastic-damage, the equivalent 

strain measure   was replaced by its non-local definition 

(Pijauder-Cabot and Bažant 1987, Saouridis and Mazars 

1992) 

𝜀 ̅ =
∫ 𝜔(‖𝒙−𝝃‖)𝜀̃(𝝃)d𝝃𝑉

∫ 𝜔(‖𝒙−𝝃‖)d𝝃𝑉

. (6) 

As a weighting function ω, the Gauss distribution 

function was used (Bažant and Jirásek 2002) 

 

2

1
c

r

l

c

r e
l




 
 
  , (7) 

where lc is a characteristic length of micro-structure and the 

parameter r denotes the distance between material points. 

The averaging in Eq. (5) was restricted to a small 

representative area around each material point (the 

influence of points at the distance of r=3lc was only of 

0.01%). The characteristic length is mainly determined with 

an inverse identification process of experimental data 

(Mahnken and Kuhl 1999, Skarżyński et al. 2011). In order 

to simplify the calculations, non-local rates were replaced 

by their approximations calculated with known total strain 

increments (Brinkgreve 1994). The characteristic length lc 

of micro-structure within isotropic elasto-plasticity and 

isotropic damage mechanics may be about 2 mm (fine-

grained concrete) and 5 mm (usual concrete). These 

estimations were based on measurements of the localization 
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zone width on the concrete surface by means of the digital 

image correlation (DIC) technique (Skarżyński et al. 2011, 

Skarżyński and Tejchman 2010, 2013) and following 

comparative non-linear FE analyses with non-local 

softening. In our FE calculations of the composite slab we 

assumed lc=5-20 mm. One calculation within elasto-plastic 

damage was also performed without regularization (lc=0). 

Note that in order to obtain totally mesh-independent results 

within non-locality, the finite element size e should be 

smaller or equal to e=3×lc (Tejchman and Bobinski 2012). 

Reinforcement 

In order to simulate the behaviour of the bottom and top 

reinforcement bars (modelled as one-dimensional truss 

elements), an elasto-perfect plastic constitutive law was 

assumed with Es=200 GPa (modulus of elasticity) and 

σy
s=fy=600 MPa (σy

s-yield steel stress). 

In order to describe the interaction between concrete and 

reinforcement, a bond relationship was defined. In general, 

this relationship is complex and depends on several factors 

(e.g., concrete class, concrete cover, bar diameter, bar rib 

height and bar rib spacing). Two different bond-failure 

mechanisms may appear connected to a pull-out or splitting 

mode (Den Uijl and Bigaj 1996). It should be determined in 

the experiment with the same concrete and reinforcement. 

Several various reinforcement-concrete bond laws were 

proposed in the literature (Rehm and Eligehausen 1979, 

Eligehausen et al. 1982, Malvar 1992, Den Uijl and Bigaj 

1996, Lowes et al. 2004 and Haskett et al. 2008). The effect 

of different bond-slip laws was investigated by Syroka-

Korol et al. (2014). Our calculations were carried out with 

perfect bond and bond-slip. In the first case, the same 

displacements along a contact surface/line between concrete 

and reinforcement were assumed. Since the bond behaviour 

was not experimentally investigated, in the case of bond-

slip, the analyses were carried out with a relationship 

between the bond shear stress τb and slip u using the 

simplest bond law by Dörr (1980) with 2 parameters only. It 

neglects softening and assumes a yield plateau 

2 3

0

0 0 0

0

0.5 4.5 1.4 0

1.9

b t

b t

u u u
f if u u

u u u

f if u u





      
          
       

 

. 
(8) 

The parameter and u0 is the displacement at which 

perfect slip occurs. In order to consider bond-slip, the 

interface with a zero thickness was assumed along a contact 

surface where the relationship between the shear traction 

and the slip was introduced. The assumed value of u0 varied 

from 0 (perfect bond) up to 1 mm.  

Expanded polystyrene 
The EPS core was modelled as the elastic 3D elements 

with the modulus of elasticity Eeps=8.01 MPa and the 
Poisson's ratio  ep s=0.25 based on own standard 
experiments (Smakosz and Tejchman 2014). During 
uniaxial compression, the initial part of the vertical stress-
vertical strain diagram indicated a linear elastic behaviour at 
very low strain (up to 2%). Next the material underwent 
hardening connected to the densification. The densification 
was weak up to strain equal to =70% and later became 
very strong since the cellular foam structure was completely 
crushed. For the vertical normal strain of =10%, the 

 
(a) 

 
(b) 

 
(c) 

Fig. 11 Composite slab: (a) slab quarter assumed for FE 

calculations, (b) FE mesh without EPS and (c) FE mesh 

with EPS  

 

 

vertical normal stress was u=0.11 MPa (E=6.09 MPa, 

=0.25). During uniaxial tension, a brittle mode was 

observed due to the occurrence of a discrete tensile crack in 

the horizontal direction in the mid-region. Initially, the 

material behaviour was linear, later non-linear up to the 

peak. The maximum critical vertical normal stress was on 

average u=0.22 MPa for =3.5% (E=10.37 MPa). The 

evolution of experimental curves from three-point bending 

tests and a failure mechanism were similar as in tension (the 

maximum vertical normal stress was on average 

u=0.20MPa for =2.4% and E=8.01 MPa). 
The two 3D enhanced models were implemented into 

the commercial finite element code Abaqus (2004) with the 
aid of the subroutine UMAT (user constitutive law 
definition) and UEL (user element definition) for efficient 
computations (Bobiński and Tejchman 2004). For the 
solution of the non-linear equation of motion governing the 
response of a system of finite elements, the initial stiffness 
method was used with a symmetric elastic global stiffness 
matrix (implicit approach). The calculations with the full 
Newton-Raphson method resulted in a poor convergence in 
a softening regime. In addition, the determination of a 
tangent stiffness matrix within a non-local plasticity is 
virtually impossible.  The non-local averaging was  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12 Force-deflection curves and final distribution of 

non-local tensile softening parameter κ2 (u=63 mm) for 

composite slab from FE analyses within enhanced elasto-

plasticity with different tensile fracture energy Gf as 

compared to experiment of Fig. 4 (compressive fracture 

energy Gc=3250 N/m, characteristic length of micro-

structure lc=5 mm, perfect bond between steel and 

reinforcement): (a) experimental result at failure, (b) FEM 

with Gf=100 N/m (Fig. 9(Ca)), (c) FEM with Gf=200 N/m 

(Fig. 9(Cb)) and (d) FEM with Gf=400 N/m (Fig. 9(Cc)) 
 
 

performed in the current configuration. This choice was 
governed by the fact that element areas in this configuration 
were automatically calculated by Abaqus (2004). 

 

 

5. FE results for composite slab under bending 
 

In the FE calculations, some simplifications were 

assumed. The slab part (1/4 of the entire slab) was analyzed 

only in order to strongly reduce the computation time 

(Fig.11). Thus, a symmetric failure mode was taken into 

account in contrast to the experimental results (Fig.6) and a 

statistical strength contribution of concrete was not 

considered. This contribution was namely very difficult to 

be estimated in view of an extremely strong non-symmetric 

failure mode in the experiments (usual statistical 

distributions of the tensile strength insignificantly affect the 

location of a diagonal shear crack, Korol et al. 2014). In 

addition, the initial bending cracks due to transportation 

were also not considered. Approximately 400 ,000 

tetrahedral elements with linear shape functions were used: 

200,000 for the RC slab and 200,000 for EPS. The element 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 13 Force-deflection curves and final distribution of 

non-local tensile softening parameter κ2 (u=63 mm) for 

composite slab from FE analyses within enhanced elasto-

plasticity as compared to experiment (compressive fracture 

energy Gc=3250 N/m, tensile fracture energy Gf=200 N/m 

and characteristic length of micro-structure lc=5 mm): (a) 

experimental result at failure, (b) perfect bond, (c) bond-slip 

with u0=0.03 mm, (d) bond-slip with u0=0.06 mm and (e) 

bond-slip with u0=1.0 mm (Eq. (8)) 

 

 

size was e=30 mm (i.e., e=6×lc). The computation time was 

still very long, about 2 weeks using the computer Intel 

Xeon CPU 3.10 GHz (2 processors, 128 GB RAM, 64-bit 

system).  

 

5.1 FE results within enhanced elasto-plasticity 
 

Since the presence of the EPS foam increased the slab 

strength solely by 6% as compared to the FE calculations 

without the EPS core, the further computations were carried 

out without the EPS core. The compressive fracture energy 

of Fig. 9(B) did not affect both the force-deflection curve 

and distribution of the non-local softening parameter. Figure 

12 shows the calculated load-deflection curves and 

localization zones in the composite slab for 3 different 

tensile fracture energies in tension of Fig. 9(C) 

(Gc=3250N/m, lc=5 mm) and perfect bond between steel 

and reinforcement (without the slab weight). The calculated 

load-deflection curves and localization zones for the 

different initial bond-slip stiffness and perfect bond are in 

Fig. 13. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14 Distribution of non-local tensile softening parameter 

κ2 on the right side of composite slab from FE analyses 

within enhanced elasto-plasticity for different vertical force 

values: (a) F=35 kN, (b) F=55 kN, (c) F=82 kN and (d) 

Fmax=142.3 kN (failure) (tensile fracture energy 

Gf=200N/m, compressive fracture energy Gc=3250 N/m, 

bond-slip with u0=0.03 mm and characteristic length of 

micro-structure lc=5 mm) 
 

Table 1 The comparison between experimental and 

theoretical results by Eq. (1) 

Shear strength from 

experiments  

υexp (kPa) 

Shear strength 

by Eq. (1) with different 

parameter υs 

υ (kPa) 

Mean experimental 

distance of inclined 

crack from support 


x  (m) 

Theoretical distance of 

inclined crack from 

support 

x (m) 

1316.43 

 

1234.6 kPa (υs=0.67) 

921.4 kPa (υs=0.50) 
1.14 1.23 

 
 

The vertical force increased with increasing tensile 
fracture energy Gf=100-400 N/m. For Gf=100 N/m, the 
calculated maximum vertical force Fmax was smaller by 
20% than the experimental one Fmax=142.3 kN (Fig. 12). 
However, for Gf=200 N/m, the calculated maximum 
vertical force Fmax was smaller merely by 7% than the 
experimental one Fmax=142.3 kN (Fig. 12). In the case of 
Gf=400 N/m, the calculated was significantly too high 
(Fig.12). The calculated deflection for the maximum 
vertical force was 62.6 mm (Fig. 12(b)) and was similar to 
the experimental one (63 mm). The initial bond stiffness 
insignificantly influenced the force-deflection curve, 
however, it affected the distribution of the non-local tensile 
softening parameter (Fig. 13). The combined failure took 
place at the same place, both in the critical diagonal shear 
crack and along the bottom reinforcement (Fig. 14). There 
were vertical and inclined and long and short localization 
zones (Fig. 15). The width of vertical localization zones 
was about wc=(3-4)×lc whereas the width of the inclined 
localization zone was wc=8× lc. The calculated average 
spacing s of tensile localization zones using the model with 
Gc=3250 N/m, Gf=200 N/m and lc=5 mm increased with 
decreasing initial bond stiffness from slz=150 mm for 
perfect bond, slz=155-160 mm for u0=0.06 mm and  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig. 15 Comparison of calculated distribution of non-local 

tensile softening parameter κ2 within enhanced elasto-

plasticity in composite slab with experimental crack pattern 

for different vertical force values: (a) F=35 kN, (b) 

F=55kN, (c) F=82 kN and (d) Fmax=142.3 kN (failure) 

(tensile fracture energy Gf=200 N/m, compressive fracture 

energy Gc=3250 N/m, bond-slip with u0=0.03 mm and 

characteristic length of micro-structure lc=5 mm) 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 16 Distribution of non-local tensile softening parameter 

κ2 within enhanced elasto-plasticity in slab for maximum 

vertical force Fmax=142.3 kN (tensile fracture energy 

Gf=200 N/m, compressive fracture energy Gc=3250 N/m) 

for different characteristic lengths: (a) lc=5 mm, 

(b) lc=10 mm and (c) lc=20 mm 
 
 
slz=185mm for u0=1.0 mm (the experimental average 
vertical crack spacing at failure was approximately 145mm, 
Fig. 5). The calculated distance of the critical diagonal 
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(A) 

 
(B) 

Fig. 17 Calculated and measured normal stress  at slab 

mid-span versus deflection u: (A) tensile stress in bottom 

reinforcement, (B) compressive stress in concrete along slab 

top and (a) experiments and (b) FE results within enhanced 

elasto-plasticity 
 
 

shear localization zone from the support was strongly 
affected by the bond stiffness; it was at the distance of 
x=1.48 m for perfect bond, x=1.20 m for u0=0.03 mm, 
x=1.07 m for u0=0.06 mm and x=0.96 m for u0=1.0 mm 
from the support (Fig. 13) along the slab bottom line 
(against 



x =1.14 cm in the experiment, Table 1). The mean 
length of calculated bending vertical localization zones, 
llc=0.20 m (Fig. 15), was similar as in experiments (0.19 m). 
The best agreement with experiments was obtained for the 
following material parameters: Gc=3250 N/m, Gf=100-
200N/m, u0=0-0.06mm and characteristic length lc=5 mm. 
The effect of lc=5-10mm on the pattern of localization 
zones was negligible (Fig. 16). The calculated inclination of 
the critical shear zone with respect to the bottom edge was 
=38.6o and was smaller by 7º than the mean experimental 
value of θ=45.5º. 

For the force F=35 kN, more vertical localization zones 
were calculated (slz=240 mm) (Fig. 15) than cracks in the 
experiment (sc=350 mm). For F=55 kN, the calculated 
spacing of localization zones was slz=200 mm (sc=200 mm), 
for  F=82 kN-s l z=182 mm (s c=170 mm) and for 
Fmax=142.3 kN-slz=155 mm (sc=145 mm). The calculated 
critical diagonal shear localization zone was at the distance 
of x=1.20 m (for u=0.03 mm) from the support (against  


x =1.14 m in the experiment). 
Fig. 17 shows the comparison of numerical and 

experimental normal stresses in tensile reinforcement and 
compressive concrete at the mid-span. The calculated 

  

(a) 

  
(b) 

  
(c) 

  

(d) 

Fig. 18 Distribution of normal σ and shear stress τ along 

slab thickness h in vertical cross-sections (vertical dashed 

lines in Fig. 14) for different loading stages (results within 

elasto-plasticity with non-local softening) 

 

Table 2 FE results versus experimental outcomes 

Result 
Enhanced elasto-

plasticity 

Enahanced 

elasto-plastic-

damage 

Experiment 

Maximum vertical force 

Fmax (kN) 
129.7 133.6 142.3 

Spacing of vertical 

cracks (localization 

zones) at failure load s 

(mm) 

155 125 145 

Mean location of critical 

diagonal shear crack 

(localization zone) from 

support x (m) 

1.20 1.27 1.14 

Mean inclination of 

critical diagonal shear 

crack 

(localization zone)  (º) 

38.6º 42.5º 45.5º 

 

 

maximum normal tensile stress in reinforcement at failure 

was 578 MPa (in the experiment 614 MPa) (Fig. 17(a)). The 

calculated maximum compressive stress in concrete in FEM 

was at failure 17.2 MPa whereas in the experiment it was 

14.5 MPa (Fig. 17(b)). The maximum normal stress in 

expanded polystyrene was 0.15 MPa (<u=0.20 MPa) and 

was measured in the neighbourhood of the transverse rib at 

the end of the loading process. Thus, the assumption of a 

linear elastic behaviour of EPS was correct. The normal and  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 19 Force-deflection curves and distribution of non-

local equivalent strain measure (u=70 mm) for composite 

slab from FE analyses within enhanced coupled elasto-

plastic-damage and bond-slip law as compared to 

experiment (characteristic length of micro-structure 

lc=5mm): (a) experimental result, (b) FE result with set of 

material constants in Section 4, (c) FE result with tensile 

hardening modulus Hp=7.5 GPa (instead of 19 GPa), (d) FE 

result with softening constant β=300 (instead of 100) and 

(e) FE result with characteristic length lc=0 mm (instead of 

lc=5 mm) 

 

 

shear stress distribution along the slab thickness in vertical 

cross-sections are presented in Fig. 18. At the failure, the 

normal and shear stress along the crack were almost equal 

to 0. Above the crack, the maximum normal stress was 

12MPa and maximum shear stress 2.2 MPa (Fig. 18(d)). 

 

5.2 FE results within enhanced coupled elasto-
plastic-damage 
 

The results for coupled elasto-plastic-damage model 

with the bond-slip law (u0=0.03 mm) are described in Figs. 

19 and 20. In addition, the comparative calculations were 

carried out without regularization (lc=0 mm) (Fig. 19(e)). 

The calculated mean ultimate vertical force differed by  

 
(A) 

 
(B) 

Fig. 20 Calculated and measured normal stress  at slab 

mid-span versus deflection u: (A) tensile stress in bottom 

reinforcement, (B) compressive stress in concrete along slab 

top, (a) experiments and (b) FE result within enhanced 

coupled elasto-plastic-damage 

 

 

about 3-10% from the experimental force with lc=5 mm and 

by 20% with lc=0 mm. The best agreement was achieved 

with Hp=19 GPa (~0.6Ec), =100 and lc=5 mm; the 

difference was merely 3% (curve ‘b’ in Fig. 19). The 

maximum vertical force slightly became larger with 

decreasing hardening plastic modulus Hp in tension, 

increasing lc and decreasing softening parameter β 

corresponding to the larger tensile fracture energy (Fig. 19). 

The influence of Hp on Fmax was more pronounced than of 

β. For Hp=19 GPa the failure mechanism was solely 

governed by the growth of a critical diagonal shear crack 

(the bond did not fail as in the elasto-plastic approach) 

(Figs. 19(b), 19(d) and 19(e)). The decrease of both the 

softening parameter β and characteristic length lc 

insignificantly influenced the crack pattern and the position 

of the critical diagonal crack. In turn, a decrease of the 

plastic modulus Hp caused a different failure mechanism 

through bending (Fig. 19(c)) due to a smaller increase of the 

elastic strain and consequently to the smaller equivalent 

strain which was defined in terms of elastic strains. 

A similar effect was observed within the enhanced elasto-

plasticity with very large fracture energy (Fig. 16(c)). For 

lc=5 mm, the width of the short vertical localization zones 

was wc=(3-4)×lc and of the long vertical and inclined cracks 
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was wc=(6-8)×lc. In the case of lc=0 mm, the width of 

localization zones was limited to the element size. The 

calculated average spacing of localization zones varied for 

lc=5 mm between slz=125 mm for all zones and slz=155 mm 

for the long localization zones in view of the experimental 

crack spacing sc=145 mm. In the case of lc=0 mm, the 

average distance of localization zones was slz=125 mm (all 

zones) and slz=165 mm (long zones only). The calculated 

length of localization zones due to bending was 11-26 mm 

(lc=0-5 mm). In the case of lc=0 mm, an additional inclined 

localization zone was obtained under loading points 

(Fig.19(e)) in contrast to experiments. The critical diagonal 

shear localization zone was created for x=127 cm (138 cm 

for perfect-bond) from the support (in the experiment 


x =114 cm). Its inclination to the horizontal line was 

=42.5o< =45.5o (lc=5 mm) and =46o (lc=0 mm). The 

calculated maximum von Mises stress in tensile 

reinforcement at the mid-span was 600 MPa, whereas in the 

experiment 614 MPa (Fig. 20(b)). The calculated maximum 

compressive stress in concrete at failure at the mid-span 

was 16.2 MPa, whereas in the experiment 14.5 MPa 

(Fig.20(a)). 

Summarizing, both the enhanced constitutive continuum 

models for concrete satisfactorily captured the slab 

behaviour under 4-point bending. Good accordance 

between the numerical and experimental outcomes was 

achieved with respect to the maximum vertical force, failure 

mode, location of the critical inclined localization zone 

(both models) and localization zone spacing (enhanced 

elasto-plasticity) (Table 2). The bond-slip stiffness 

significantly influenced the location of the critical diagonal 

shear crack. The differences between experiments and 

calculations were probably caused by the fact that: a) a 

symmetric failure mode was taken into account in the FE 

calculations, b) the FE mesh size assumed was still too 

large, 6×lc, instead of the recommended one e(2-3)×lc and 

c) the material imperfections were not considered which 

strongly influenced the non-uniform slab behaviour at the 

failure. 

 

 

6. Conclusions 
 

Based on the experimental and numerical investigations 

of novel composite building slabs subjected to four-point 

bending in the scale 1:1, a number of conclusions can be 

drawn in the following:  

• The EPS foam negligibly influenced the force-

deflection curve and crack pattern.  

• The experimental slab failure was brittle and 

characterized by the occurrence of a diagonal shear crack. 

The diagonal failure crack was strongly non-symmetric 

along the slab width. Its inclination to the horizontal varied 

between 38º and 53º. It occurred 1.14 m on average from 

the slab support. The mean experimental spacing of main 

vertical cracks was smaller than this according to Eq. (4), 

smaller by 15% than this according to Eq. (3) and smaller 

by 70% than this according to Eq. (2). It was recommended 

to slightly increase the horizontal longitudinal 

reinforcement area bars in order to decrease the slab 

deflection and to connect the bottom slab with longitudinal 

ribs in order to increase the shear capacity. 

• Both the enhanced constitutive continuum models for 

concrete satisfactorily captured the behaviour of the slab 

under 4-point bending although the slab quarter, twice too 

large finite elements and no material imperfections were 

used. The good accordance between the numerical and 

experimental outcomes was achieved with respect to the 

failure mode, shear strength, deflection and location of the 

critical diagonal localization shear zone. The differences 

between the models mainly concerned the spacing and 

pattern of localization zones and inclination of the failure 

diagonal shear crack. A coupled elasto-plastic-damage 

model with non-local softening is recommended for 

calculations due its more physical foundations when 

describing a non-linear behaviour of concrete under tension. 

• The shear capacity slightly increased with increasing 

tensile fracture energy and decreasing hardening plastic 

modulus in tension.  
• The calculated average spacing slz of bending 

localization zones varied between 96-148 mm and 
decreased with decreasing bond stiffness. For the perfect 
bond or bond-slip with the small slip parameter within the 
range u0=0-0.06 mm using the simple bond-slip law by Dörr 
(1980), it was similar to the average experimental crack 
spacing of 145 mm. The mean height of calculated 
localization zones was close to the experiments.  

• The computed distance of the critical shear localization 

zone from the support decreased with decreasing bond 

stiffness (from 1.48 m down to 0.96 m). With the bond-slip 

displacement of u0=0.03 mm, it was close to the mean 

experimental value of 114 cm. 

• The experimental shear strength was realistically 

described with the analytical formula for RC beams without 

shear reinforcement (Eq. (1)) by assuming the sliding 

reduction factor υs=0.67. However, the inclination of the 

critical diagonal shear crack to the horizontal was 

significantly higher in experiments than the theoretical 

solution. 
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Appendix 1 
 

In order to describe the concrete behaviour by an elasto-

plastic constitutive model, two failure criteria were 

assumed. In the tensile regime, the Rankine criterion was 

used with the yield function f1 using isotropic softening and 

associated flow rule and in the compressive regime, the 

Drucker-Prager yield surface f2 with isotropic 

hardening/softening and non-associated flow rule was used  

𝑓1(𝜎𝑖 , 𝜅1) = max{𝜎1, 𝜎2, 𝜎3} − 𝜎𝑡(𝜅1) ≤ 0, (A1) 

     2 2 2 2

1
1 0

3
ij cf , q p tan c q p tan tan       

 
          

 

 
(A2) 

,
1

3
kkp    (A3) 

, (A4) 

1 1g f , (A5) 

2 tang q p   ,

 

(A6) 

where: i-principal stresses (i=1, 2, 3), t-uniaxial tensile 

yield stress, 1-softening parameter equal to the maximum 

principal plastic strain 1
p, q-Mises equivalent deviatoric 

stress, p-mean stress, -the internal friction angle in the 

meridional stress plane (p–q plane), c-cohesion related to 

uniaxial compression strength, sij-the deviator of the stress 

tensor ij, (sij=ij+ijp) c-uniaxial compression yield stress, 

2-the hardening/softening parameter corresponding to the 

vertical normal plastic strain during uniaxial compression, 

gi-flow potential function, rbc
-the ratio between the biaxial 

compressive strength and uniaxial compressive strength 

(rbc
1.2) and -the dilatancy angle (). The last term in 

Eq. (A2) results from the yield condition q-ptan-c=0 for 

uniaxial compression with q=c and p=1/3c. 

 

 

Appendix 2 
 

The coupled elasto-plastic-damage model for concrete 

(Marzec and Tejchman 2012, Marzec et al. 2013) combines 

elasto-plasticity with a scalar isotropic damage (Simo and 

Ju 1987) assuming a strain equivalence hypothesis 

according to Pamin and de Borst (1999). The elasto-

plasticity was defined in terms of effective stresses 

according to  

eff e

ij ijkl klC  .

 

(A7) 

In an elasto-plastic regime, a linear isotropic Drucker-

Prager criterion with a non-associated flow rule in 

compression and a Rankine criterion with an associated 

flow rule in tension (Appendix 1) defined by the effective 

stresses were used. The material degradation was calculated 

Table 3 Summary of material constants in coupled elasto-

plastic-damage model  

Parameter Descritpion 

Elastic behaviour 

E 

υ 

- Young modulus 

- Poisson’s ratio 

Plastic behaviour 

,  

yt
0, yc

0 

Hp 

- dilatancy and internal friction angle 

- initial yield stress under tension and ompression 

- hardening modulus 

Damage behaviour 

κ0 

α, β 

1, 2,  

at, ac 

- threshold parameter when damage starts 

- parameters of softening tensile function 

- parameters of softening compressive function 

- splitting factors (influence damage magnitude in 

tension and compression) 

 

 

within isotropic damage mechanics, independently in 

tension and compression using one equivalent strain 

measure   by Mazars (1986) (i-principal strains). 

2

i

i

  
,

 
(A8) 

The equivalent strain measure   was defined in terms 

of elastic strains. The stress-strain relationship was 

represented by the following formula 

 1 eff
ij ijD  

 

(A9) 

with the term ‘1-D’ defined as 

    1 1 1c t t cD s D s D    ,

 

(A10) 

wherein 

0( )01 (1 )tD e
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 1 eff

t t ijs a w    and   1 1 eff

c c ijs a w    , (A13) 
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ijw
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



, 

(A14) 

where Dt and Dc are the damage parameters which describe 

the damage evolution under tension (Peerlings et al. 1998) 

and compression (Geers 1997 with the material constants: 

α, β, η 1, η 2 and δ. The splitting factors are at and ac and 

 eff

ijw  denotes the stress weight function (Lee and Fenves 

1998). The Macauley bracket in Eq. (A14) is defined as 

  / 2x x x  . All material constants are summarized in 

Table 3.  

3

2
ij ijq s s

 3 1
tan

1 2
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bc

r

r


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
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