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1. Introduction 
 

Cylindrical shells can be used extensively in many 

engineering fields such as mechanical, chemical, aerospace, 

civil, nuclear and so forth. For example, in automotive 

industry the body of the automobiles and also in oil and gas 

industry the pressure vessels are the obvious cases of 

application of cylindrical shells.  

Linear and nonlinear vibrations of cylindrical shells 

have been investigated by many researchers. Considering 

the nonlinear terms in motion equations can increase the 

accuracy of the calculations. Most investigations on 

cylindrical shells conveying fluid were done by Amabili 

(2003). The effect of flowing fluid in cylindrical shells was 

studied by many researchers such as Pa¨ıdoussis and Denise 

(1972), Weaver and Unny (1973), Pa¨ıdoussis et al. (2003) 

and Amabili and Garziera (2002). The static and free 

vibration analysis of three-layer composite shells was 

performed by Maturi et al. (2015) using radial basis 

functions collocation, according to a new layerwise theory 

that considers independent layer rotations. The static and 

free vibration analysis of doubly-curved laminated shells 

was performed by Ferreira et al. (2016) using radial basis 

functions collocation. 

In none of mentioned investigations, the structure is 

smart or nanocomposite. Ghorbanpour et al. (2011) studied 

the effect of material inhomogeneity on the behavior of the 

smart piezoelectric cylinder by applying analytical method.  
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piezoelectric nanoplate made of polyvinylidene fluoride 

(PVDF) was presented by Kolahchi et al. (2016a) based on 

differential cubature method (DCM) in conjunction with the 

Bolotin’s method. Dynamic elasticity solution for a 

clamped, laminated cylindrical shell with two orthotropic 

layers bounded with a piezoelectric layer and subjected to 

exponential dynamic load distributed on inner surface was 

presented by Saviz (2015). The active vibration control of 

carbon nanotube (CNT) reinforced functionally graded 

composite cylindrical shell was studied by Song et al. 

(2016) using piezoelectric materials. Nonlinear dynamic 

stability analysis of embedded temperature-dependent 

viscoelastic plates reinforced by single-walled carbon 

nanotubes (SWCNTs) was investigated by Kolahchi et al. 

(2016b). Zhang et al. (2017) investigated the impact 

responses of CNT reinforced functionally graded composite 

cylindrical shells. 

For the seismic analysis of the structures, seismic 

response of buried pipes in longitudinal direction was 

studied by Nedjar et al. (2007). The effect of the variation 

of geotechnical properties of the surrounding soil on the 

stiffness, mass and damping of the soil was considered. The 

stress response of the piping system in the advanced power 

reactor 1400 (APR 1400) with a base isolation design 

subjected to seismic loading was addressed by Surh et al. 

(2015). Seismic responses of concrete pipes armed with 

Silica (SiO2) nanoparticles and concrete columns with 

nanofiber reinforced polymer layer were presented by 

Motezaker and Kolahchi (2017). 

However, no researcher has examined the dynamic 

behavior of the smart nanocomposite pipes conveying fluid 

under earthquake load. This problem is very significant in 

the field of mechanical and civil engineering. So, in this 

research, for the first time, the seismic response of the  
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Fig. 1 A schematic figure of nanocomposite pipe covered 

by piezoelectric layer conveying fluid under seismic load 

 

 

nanocomposite pipe covered with a piezoelectric layer and 

conveying fluid under earthquake load is investigated. 

Mori-Tanaka approach is applied to estimate the effective 

material properties of the nanocomposite and to consider 

the effect of the agglomeration. The governing equations of 

the structure are derived using energy method and 

according to Mindlin theory. Given that the extracted 

equations are nonlinear, harmonic differential quadrature 

method (HDQM) is employed to obtain the dynamic 

displacement of the structure caused by earthquake. In 

present paper, effect of various parameters like volume 

percent and agglomeration of carbon nanotubes (CNTs), 

external voltage applied to piezoelectric layer, geometrical 

parameters of pipe and boundary conditions on the dynamic 

displacement of the structure is studied. 

 

 

2. Geometry of the problem 
 

Fig. 1 shows a nanocomposite pipe with average radius 

R, thickness h, length L and density ρs in a cylindrical 

coordinate system (x, θ, z). The pipe is covered by a layer of 

piezoelectric with a thickness of hp and density of ρp and 

conveying flow with density ρf and viscosity μ0. In all the 

following equations, the subscripts s and p stand for pipe 

and piezoelectric layer, respectively. 

 

 

3. First order shear deformation theory (mindlin) 
 

According to Mindlin theory, the displacement field is 

given as follows (Brush and Almorth 1975) 

     , , , , , , , ,xu x z t u x t z x t      (1) 

     , , , , , , , ,v x z t v x t z x t      (2) 

   , , , , , ,w x z t w x t   (2) 

In which ψx and ψθ are the angle of rotation around the x 

and θ axes, respectively. Using above relations, the strain-

displacement relations are obtained as follows 
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4. Constitutive equations 
 

4.1 Piezoelectric layer 
 

The piezoelectric layer is made of polyvinylidene 

fluoride (PVDF) and is reinforced by CNTs. This material 

displays piezoelectric properties and is known as a smart 

material. In a piezoelectric material, stresses σ and strains ε 

tensors on the mechanical viewpoint, as well as flux density 

D and field strength E on the electrostatic viewpoint, can be 

arbitrarily combined as the following forms (Saviz 2015) 
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(10) 

where Qij, eijk and ∈mk are elastic, piezoelectric and 

dielectric constants, respectively. Also, electric field Ek in 

terms of electric potential φ is given as below (Kolahchi et 

al. 2016a) 
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.kE  (11) 

In this paper, the electric potential distribution which 

satisfies the Maxwell equation is considered as follows 

.kE  (12) 

where V0 is the external electric voltage which is applied to 

the structure. So the electric field components may be 

obtained as 

,
)(

sin
xh

hz

x
E

p

x
















 








 (13) 

,
)(

sin

























 







Rh

hz

R
E

p

 (14) 

.
)(

cos 0

ppp

z
h

V

h

hz

hz
E 













 





 


 (15) 

Finally, by applying the classical theory, the coupled 

electro-mechanical relations of the piezoelectric layer can 

be rewritten as follows 
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4.2 Nanocomposite pipe 
 

According to Hook’s law, the constitutive equation of 

nanocomposite pipe is expressed as follows 
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(18) 

It should be noted that the effective material properties 

of the nanocomposite pipe Cij are calculated based on Mori-

Tanaka approach and by considering the agglomeration 

effect which is addressed in Appendix A. 

However, obtaining E and v, stiffness matrix of the 

structure can be calculated. 

 
 

5. Energy method 
 

One of the general and comprehensive ways to obtain 

the governing equations of the structure is equating the 

work done by external forces and the energy stored in the 

structure under load.  

 
5.1 The strain energy 
 
The strain energy of the structure is equals to sum of the 

strain energy which stored in the pipe and the piezoelectric 

layer and given as follows 
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By substituting Eqs. (4)-(8) into Eq. (19) the strain 

energy stored in cylindrical shell can be expressed as below 
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By introducing the stress resultants as below 
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where k’ is the shear correction factor. 

 
5.2 The kinetic energy 
 

The kinetic energy of the structure can be described as 

follows 
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where ρs and ρp are the equivalent density of the 

nanocomposite pipe and piezoelectric layer, respectively. 

By substituting Eqs. (1)-(3) into Eq. (25), we have 
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By defining the following terms 

,

22
2

1

0

dz

z

zdz

z

z

I

I

I
phh

h

h

h 


































































 

(27) 

Eq. (26) can be rewritten as below 
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5.3 The external work done due to the fluid flow 
 

By assuming the Newtonian fluid, the governing 

equation of the fluid can be described by the well-known 

Navier-Stokes equation as below (Kolahchi and 

Moniribidgoli 2016) 

,bodyf
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where V=(vz, vθ, vx) is the flow velocity vector in cylindrical 

coordinate system with components in longitudinal x, 

circumferential θ and radial z directions. Also, P, μ and ρf 

are the pressure, the viscosity and the density of the fluid, 

respectively and Fbody denotes the body forces. In Navier-

Stokes equation, the total derivative operator with respect to 
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At the point of contact between the fluid and the core, 

the relative velocity and acceleration in the radial direction 

are equal. So 

,
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By employing Eqs. (30) and (31) and substituting into 

Eq. (29), the pressure inside the pipe can be computed as 

,

2

22

3

3

3

22

3

2

3

2

2
2

2

2

2




































































xR

w

x

w
v

tR

w

tx

w

x

w
v

tx

w
v

t

w

z

p

x

xxf
z





 

(32) 

By multiplying two sides of Eq. (32) in the inside area 

of the pipe (A), the radial force in the pipe is calculated as 

below 
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Finally, the external work due to the pressure of the fluid 

may be obtained as follows 
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5.4 The external work done due to the earthquake 
 

The external work due to the earthquake loads can be 

computed as below 
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(35) 

where m and a(t) are the mass of pipe and the applying 

acceleration from the Tabas earthquake (Peer site). 

 

5.5 Hamilton’s principle 
 

The governing equations of the structure are derived 

using the Hamilton’s principle which is considered as 

follows 
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Now, by applying the Hamilton’s principle and after 

integration by part and some algebraic manipulation, six 

electro-mechanical equations of motion can be derived as 

follows 
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Now, by substituting Eqs. (B1)-(B8) into the equations 

of motion (Eqs. (37)-(42)) we have 
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Also, the boundary conditions are considered as below 

• Clamped-Clamped supported 
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• Simply-Simply supported 
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Given that the governing equations are nonlinear, so 

HDQ method along with Newmark method is applied to 

achieve results with higher accuracy. 

 

 

6. HDQ method 
 

HDQM is one of the numerical methods in which the 

governing differential equations turn into a set of first order 

algebraic equations by applying the weighting coefficients. 

So that, at a given discrete point, a derivative of a function 

with respect to a spatial variable will be expressed as a 

weighted linear sum of the function values at all discrete 

points chosen in the solution domain of that variable and in 

the direction of the axes of coordinate system (Civalek 

2004l, Jafarian Arani and Kolahchi 2016, Safari Bilouei et 

al. 2016). In these methods, the one-dimensional and two-

dimensional derivative of the function may be defined as 

follows 
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So, it is apparent that the two most important factors in 

determining the accuracy of HDQ, are the selection of 

sampling grid points and weighting coefficients. For 

choosing sampling grid points, the Chebyshev polynomials 

are used as follows 
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The weighting coefficients can be obtained by the 

following simple algebraic relations 
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in which 
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and for higher-order derivatives we have 
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Considering Nx=Nθ=N and substituting above equations 

into the motion equations (Eqs. (43)-(48)), the motion 

equations and boundary conditions may be rewritten in the 

matrix form as below 
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(63) 

where [KL], [KNL], [C] and [M] denote linear part of the 

stiffness matrix, nonlinear part of the stiffness matrix, the  

 

Fig. 2 Acceleration history of Tabas earthquake 

 

 

damping matrix and the mass matrix, respectively. Also, 

{db}={u1, v1, w1, w2, ψx1, ψθ1, ϕ1, uN, vN, wN-1, wN, ψxN, ψθN, 

ϕN} and {dd}={u2:N-1, v2:N-1, w3:N-2, ψx2:N-1, ϕ2:N-1} represent 

boundary and domain points, respectively. 
 
 
7. Newmark method 
 

In this section, Newmark method (Simsek 2010, 

Motezaker and Kolahchi 2017) is applied in the time 

domain to obtain the time response of the structure under 

the earthquake loads. Based on this method, Eq. (56) can be 

written in the general form as below 

,)( 11

*

  ii QdK
 

(64) 

where subscript i+1 indicates the time t=ti+1, K*(di+1) and 

Qi+1 are the effective stiffness matrix and the effective load 

vector which can be considered as 

,)()( 1011

* CMdKKdK iNLLi   
 (65) 

   ,5413201

*

1 iiiiiiii dddCdddMQQ    
 (66) 
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in which γ=0.5 and χ=0.25. Based on the iteration method, 

Eq. (64) is solved at any time step and modified velocity 

and acceleration vectors are calculated as follows 

,)( 32101 iiiii ddddd      (68) 

,1761   iiii dddd    (69) 

Then for the next time step, the modified velocity and 

acceleration vectors in Eqs. (68) and (69) are employed and 

all these procedures mentioned above are repeated. 
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Table 1 Material property of PE, PVDF and CNT 

PVDF CNT PE 

11 238.24(GPa)C   1(TPa)E   125(GPa)E   

22 23.6(GPa)C   0.34   0.30   

12 3.98(GPa)C   31.4( / cm )gr   31.45(kg/m )   

66 6.43(GPa)C     
2

11 0.135(C/m )e      
2

12 0.145(C/m )e      
81.1068 10 (F/m)     

57.1 10 (1/K)x
     

57.1 10 (1/K)
     

 

 

Fig. 3 Comparison of analytical and numerical results 
 

 

8. Numerical results 
 

In this section, the numerical results for the dynamic 

response of the pipeline which is reinforced by CNTs and 

covered with piezoelectric layer under the earthquake loads 

are examined. For this purpose, a polyethylene pipe of 

length L=2 m, R=20 in and thickness h=1 in is considered. 

The pipe is covered with a piezoelectric layer of PVDF with 

the thickness hp=5 mm and conveying a fluid flow of 

velocity vx=40 ft/s and viscosity μ=63.6 Pa.s. The elastic 

and piezoelectric properties of these materials are given in 

Table 1 (Kolahch et al. 2016a). 

It is worth mentioning that the acceleration of the 

earthquake is considered according to Bam earthquake that 

the distribution of acceleration in 20 seconds is shown in 

Fig. 2. 
 

8.1 Verification 
 

Since this research has been defined for the first time in 

the world, there is not any reference to validate the obtained 

results. Therefore, it has been tried to examine the results 

without considering the nonlinear terms of the governing 

equations and by comparing the linear dynamic response of 

the structure which obtained by two various solution 

methods. For the analytical method, the Navier method is 

used with the following relations for SS pipe 
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Fig. 4 Distribution of axial stress across the 

thickness direction 
 

 

Fig. 5 Distribution of transverse stress across the 

thickness direction 
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Substituting Eqs. (70)-(75) into Eqs. (43)-(48) yields 

           ( ) ,LK d C d M d ma t     
(76) 

Finally, using Newmark, the dynamic response of the 

structure can be obtained. The results of the analytical and 

numerical (HDQ) methods are depicted in Fig. 3. As it can 

be seen, the difference between the analytical method and 

HDQ method is negligible and so, the obtained results are 

accurate and acceptable. 

In another comparison, the maximum deflection and 

stresses of the structure are reported in Table 2. In addition, 

the distributions of axial and transverse stresses are shown 

in Figs. 4 and 5 for a special time. As can be seen, the 

numerical and analytical results math with each others. 
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Table 2 Comparison of analytical and numerical methods 

for maximum deflation and stresses of the pipe 

cr w(m) xx
(MPa) 


(MPa) 

 x

(MPa) 
xz (MPa) z (MPa) 

Numerical 0.02521 8.4476 6.2018 4.4405 1.1125 0.8091 

Analytical 0.02520 8.4475 6.2016 4.4404 1.1122 0.8089 

 

 

Fig. 6 Convergence and accuracy of HDQM 
 

 

Fig. 7 The effect of CNTs volume percent on the dynamic 

deflection of the structure 
 

 

Fig. 8 The effect of CNTs agglomeration on the dynamic 

deflection of the structure 
 
 

8.2 The convergence of numerical method 
 

The convergence of HDQ method in evaluating the 

maximum deflection of the structure versus number of grid 

points is illustrated in Fig. 6. As it can be seen, with 

increasing the number of grid points, the maximum 

deflection of the structure decreases so far as, at N=15 the  

 

Fig. 9 The effect of boundary conditions on the dynamic 

deflection of the structure 
 

 

Fig. 10 The effect of applied external voltage on the 

dynamic deflection of the structure 
 

 

deflection converges. So, the results presented below are 

based on the number of grid points 15 for DQ solution 

method. 

 
8.3 Effect of various parameters 
 

Fig. 7 shows the effect of CNTs volume percent on the 

dynamic deflection of the structure versus time. The 

changes of the deflection are shown for cr=0, cr=0.05 and 

cr=0.10. It is apparent that with increasing of CNTs volume 

percent, the dynamic deflection of the system reduces 

because the stiffness of the structure increases. 

The agglomeration effect of CNTs on the dynamic 

deflection of the structure versus time is indicated by Fig. 8.  

It can be found that considering the agglomeration 

decreases the stiffness of the structure and as a result, the 

displacement of the structure increases. Given that during 

the process of nanocomposite manufacturing, the uniform 

distribution for CNTs in the polymer matrix is impossible, 

so the results of this figure can be very significant. So it can 

be concluded that about CNTs reinforced pipes, as the 

agglomeration in various regions decreases, the 

displacement of the structure decreases. 

Fig. 9 illustrates the effect of various boundary 

conditions on the dynamic displacement of the structure 

versus time. It is found that, the boundary conditions have a 

significant effect on the dynamic displacement of the 

system so that the pipe with clamped-clamped boundary 

condition has the lowest deflection. It is predictable,  
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Fig. 11 The effect of pipe thickness on the dynamic 

deflection of the structure 
 

 

because the constraint of clamped boundary condition is 

stronger than the other ones and consequently the structure 

is stiffer. Also, among the mentioned boundary conditions 

Eqs. (85)-(87), simply-simply boundary condition denotes 

the most dynamic displacement. 

Fig. 10 indicates the effect of the applied external 

voltage to the piezoelectric layer on the dynamic deflection 

versus time. It can be observed that by applying the positive 

voltage to the structure, dynamic deflection of system 

increases and it is because of the tensile force which exerted 

to the structure and makes the structure softer. Applying the 

external negative voltage has a reverse effect and leads to 

compressive force in the structure and decreases the 

dynamic deflection of the system. Thus, the external voltage 

is an important parameter to control the dynamic behavior 

of the structure. 

Effect of pipe thickness on the deflection behavior 

versus time is shown in Fig. 11. It can be seen that by 

increasing the thickness of the pipe, the stiffness of the 

structure increases and so the dynamic deflection of the 

system decreases. 

 

 
9. Conclusions 
 

In this study, the electro-mechanical dynamic response 

of a nanocomposite polyethylene pipe covered with a 

piezoelectric layer under the earthquake load was examined 

using HDQM and Newmark method. The pipe conveying 

viscous fluid flow was reinforced by CNTs. For modeling 

and determining the mechanical properties of 

nanocomposite, the Mori-Tanaka approach was used by 

considering the agglomeration effect. By applying the 

nonlinear strain-displacement relations, Mindlin theory and 

the stress-strain relations, the general energy formulation 

was obtained and by employing Hamilton’s principle or 

virtual work method, the equations of motion were 

obtained. The aim of this research was to investigate the 

effects of volume percent of CNTs, the agglomeration of 

CNTs, boundary conditions, geometrical parameters of pipe 

and the external applied voltage to the piezoelectric layer on 

the dynamic displacement of the structure for the Bam 

earthquake features. According to the plotted figures, the 

following results were obtained: 

1. The difference between HDQM and the analytical 

method was negligible and it shows the validity of the 

results of the present study. 

2. With increasing the volume percent of CNTs, the 

dynamic deflection of the system decreases that it was 

because of the increasing of the stiffness of the structure. 

3. Considering the agglomeration effect of CNTs, 

decreases the stiffness of the structure while increases the 

displacement of that. 

4. Boundary conditions have a remarkable effect on the 

dynamic displacement of the system so that the lowest 

dynamic displacement belongs to the pipe with clamped-

clamped boundary condition. 

5. By applying the positive voltage to the structure, the 

dynamic deflection of the system increases. However, 

applying the external negative voltage has a reverse effect 

and decreases the dynamic deflection of the system by 

exerting the compressive forces. 

6. With increasing the thickness of the pipe, the stiffness 

of the structure increases and therefore the dynamic 

deflection of the system decreases. 
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Appendix A 
 

In this section, the micromechanics model is developed 

to examine the elastic properties of the single walled carbon 

nanotubes (SWCNTs)-reinforced polymeric composite. 

Some cases such as, straight and aligned CNTs and also two 

types of agglomeration by considering the effect of volume 

percentmay are analyzed by applying the micromechanical 

model (Mori and Tanaka 1973). The experimental results 

reveal that the most of CNTs dispersion irregularly and 

centralize in spherical shapes in the matrix (Shi and Feng 

2004). These regions are called “inclusions” which have 

different elastic properties from the matrix material. Vr is 

the total volume of CNTs which given as below 

inclusion m

r r rV V V   (A1) 

in which Vr
inclusion and Vr

m are the volumes of CNTs 

distributed in the spherical inclusions and in the matrix 

(concrete), respectively. Two following parameters are used 

to indicate the effect of agglomeration in the 

micromechanical model. 

,inclusionV

V
   (A2) 

,inclusionV

V
   (A3) 

Cr is the average volume fraction of CNTs in composite 

which is defined as follows 

.r
r

V
C

V
  (A4) 

The volume fraction of the CNTs in the inclusions and 

in the matrix (concrete) can be related to each other as 

follows 

,
inclusion

r r

inclusion

V C

V




  (A5) 

 1
.

1

m
rr

inclusion

CV

V V
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


 
 (A6) 

Assuming that the nanotubes are transversely isotropic 

and are distributed in the inclusions randomly, the 

inclusions are considered to be isotropic. Thereby, by 

applying Eshelby-Mori-Tanaka approach, the effective bulk 

modulus K and the effective shear modulus G of the 

isotropic materials can be written as below 
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where Kin and Kout are the effective bulk modulus of the 

inclusion and the matrix outside the inclusion, respectively. 

Also, Gin and Gout are the effective shear modulus of the 

inclusion and the matrix outside the inclusion, respectively 

and are considered as follows 
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in which χr, βr, δr and ηr can be calculated as 
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Also, Km and Gm are the bulk and shear modulus of the 

matrix phase which are given as below 
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Furthermore, α and β which mentioned in Eqs. (A7) and 

(A8) are defined as follows 
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Eventually, the effective Young’s modulus E and 

Poisson’s ratio v of the composite are given by 

9
,

3

KG
E

K G



 (A22) 

3 2
.

6 2

K G

K G






 (A23) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

681



 

Abbas Zamani, Reza Kolahchi and Mahmood Rabani Bidgoli 

Appendix B 
 

By integrating the stress-strain relations of the structure 

(Eqs. (21)-(23)) we have 
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where the constants Aij, Bij, Dij, Eij and Fij are equal to 
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