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1. Introduction 
 

As it is well known, the best way for impact analysis of 

concrete structures in military, civil and mineral industries 

is the experimental tests in real scale. In real scale due to 

the lack of sufficient knowledge from the environment, the 

effects of combine parameters and other items, the detail 

and exact analysis of the structure is impossible. However, 

the researchers use from the small-scale models for the 

exact analysis of the concrete structures subjected to impact 

load. Due to the high cost and time consuming of 

experimental tests, matching a mathematical model for 

theoretical analysis of the concrete structures is very 

important which the researchers should study about his 

field. Our purpose in this article is opening a new field in 

the mining engineering for theoretical analysis of the 

models under impact, blast and etc. 

Experimental analysis of wave propagation in different 

structures has been studied by many authors. Boadu and 

Long (1996) investigated the effects of fractures on the 

seismic-wave velocity and attenuation of a rock using 

theoretical results and experimental data. The propagation 

characteristics of blast-induced shock waves in a jointed 

rock mass were monitored and studied by Wu et al. (1998). 

Cai and Zhao (2000) presented a theoretical study and the 

UDEC modeling on the effects of multiple parallel planar 

fractures on the apparent attenuation of normally incident  
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one-dimensional elastic waves. Stress wave propagation 

through concrete was simulated by Yaman et al. (2006) 

using finite element analysis. The concrete medium was 

modeled as a homogeneous material with smeared 

properties to investigate and establish the suitable finite 

element analysis method (explicit versus implicit) and 

analysis parameters (element size, and solution time 

increment) also suitable for rigorous investigation. Wang et 

al. (2006) studied wave propagation of one-dimensional 

normally incident wave in rock mass containing no joint, a 

single joint and two parallel joints were conducted by Three 

Dimensional Distinct Element Codes (3DEC). The 

calibration work of universal distinct element code (UDEC) 

modeling on P-wave propagation across single linearly and 

nonlinearly deformable fractures was conducted by Zhao et 

al. (2008). An experimental study of stress wave 

propagation across filled rock joints was carried out by Li 

and Ma (2009) using a modified Split Hopkinson Pressure 

Bar (SHPB) apparatus. An analytical and experimental 

study on a longitudinal wave (P-wave) transmission 

normally across a filled rock joint was presented by Li et al. 

(2010). Based on the conservation of momentum at the 

wave fronts and the displacement discontinuity method, 

quantitative analysis for the interaction between obliquely 

incident P- or S-blast wave and a linear elastic rock joint 

was carried out by Li and Ma (2010). The interaction of a 

blast wave with a multilayered material was investigated by 

Petel et al. (2011) for the purpose of blast wave attenuation. 

In order to investigate the transmission and reflection of 

stress waves across joints, a fractal damage joint model was 

developed by Li et al. (2011) based on fractal damage 

theory, and the analytical solution for the coefficients of 
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transmission and reflection of stress waves across joints was 

derived from the fractal damage joint model. Thermal stress 

and pore pressure development in microwave heated 

concrete was studied by Akbarnezhad and Ong (2011). 

Wave propagation across single and multiple parallel joints 

filled with viscoelastic medium was examined by Zhu et al. 

(2012). Kurtulus et al. (2012) presented experimental 

studies in wave propagation across a jointed rock mass. Li 

et al. (2013) employed a thin-layer interface model for 

filled rock joints to analyze wave propagation across the 

jointed rock masses. In another work, Li et al. (2014) 

extended the thin-layer interface model (TLIM) for filled 

joints to analyze wave propagation obliquely across jointed 

rock masses. The dynamic fracture mechanism of blast-

induced fracturing of rock mass around a blast hoe, two-

dimensional (2D) distinct element method was used by 

Aliabadian et al. (2014). Wang et al. (2015) developed a 

theoretical model based on the analysis of interaction 

process between stress waves and a single open joint. 

Khatibinia et al. (2016) predicted the compressive and 

flexural strengths of self-compacting mortar (SCM) 

containing nano-SiO2, nano-Fe2O3 and nano-CuO using 

wavelet–based weighted least squares-support vector 

machines (WLS-SVM) approach. Akköse et al. (2016) 

investigated arrival direction effects of travelling waves on 

non-linear seismic response of arch dams. Al-Rousan et al. 

(2017) investigated the feasibility of using polypropylene 

fibers to improve the impact resistance of reinforced 

concrete slabs. 

To the best of the author knowledge, no research has 

been found in the literature for mathematical modeling of 

concrete models under impact load considering the effects 

of nanotechnology. However, in this paper, for the first 

time, a mathematical model is presented for wave 

propagation of concrete models reinforced with SiO2 

nanoparticles subjected to impact load. SSDT, energy 

method and Hamilton’s principle are utilized for obtaining 

the governing equations. An exact solution is used for 

calculating the velocity of the structure. In addition, the 

theoretical results are validated with experimental test for 

the square models with two geophones for recording the 

velocity. The effect of different parameters such as SiO2 

nanoparticles volume percent, situation of the impact, 

length, width and thickness of the model as well as velocity, 

diameter and height of impactor are shown on the 

maximum velocity of the model. 
 
 

2. Mathematical modeling 
 

Consider a concrete cube reinforced with SiO2 

nanoparticles as depicted in Fig. 1 as follows. 
 

 

 

Fig. 1 A schematic figure for the concrete plate reinforced 

with SiO2 nanoparticles under impact load 

in which geometrical parameters of length L, width b and 

thickness h are indicated. The Cartesian coordinate is 

considered in the middle surface of plate in which x, y and z 

represent the axial, vertical and transverse directions, 

respectively. A particle with diameter of D is released from 

height of H on the sample. 

 

2.1 Kinematic of theory  
 

Here, the concrete cube is simulated with plate element 

based on SSDT where the displacement field can be 

obtained using as (Kolahchi et al. 2015) 
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are the bending and shear components of transverse 

displacement. The nonlinear kinematic relations can be 
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where 
h

z
p


cos .  

 
2.2 Mori-Tanaka model 
 
In this section, the effective modulus of the concrete 

plate reinforced by SiO2 nanoparticles is developed. 
Different methods are available to obtain the average 
properties of a composite. Due to its simplicity and 
accuracy even at high volume fractions of the inclusions, 
the Mori-Tanaka method (Mori and Tanaka 1973) is 
employed in this section. The matrix is assumed to be 
isotropic and elastic, with the Young’s modulus Em and the 
Poisson’s ratio vm. The constitutive relations for a layer of 
the composite with the principal axes parallel to the r, θ and 
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z directions are (Mori and Tanaka 1973) 
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(9) 

where σij, εij, γij, k, m, n, l, p are the stress components, the 

strain components and the stiffness coefficients 

respectively. According to the Mori-Tanaka method the 

stiffness coefficients are given by (Mori and Tanaka 1973) 
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(10) 

where the subscripts m and r stand for matrix and 

reinforcement respectively. cm and cr are the volume 

fractions of the matrix and the nanoparticles respectively 

and kr, lr, nr, pr, mr are the Hills elastic modulus for the 

nanoparticles (Mori and Tanaka 1973). 

  

2.3 Governing equations 
 

In this section, the energy method and Hamilton’s 

principle are used for deriving the governing equations for 

the concrete plate reinforced by SiO2 nanoparticles 

subjected to impact load. The potential energy of the 

structure can be written as 
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Substituting Eqs. (4) to (8) into Eq. (11) yields the 

potential energy of SSDT as follows 
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where the resultant force and moments may be calculated as 

/2

/2
,

xxxx
h

h

x x

N

N dz

N

 

 








  
  

   
     

  (13) 

/2

/2
,

xxxx
h

h

x x

M

M zdz

M

 

 








  
  

   
     

  (14) 

/2

/2
,

xxxx
h

h

x x

S

S fdz

S

 

 








  
  

   
     

  (15) 

,
2/

2/ 


















 h

h

xxxx
pdz

F

F

 


 (16) 

The kinetic energy of the structure is 
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where ρ is the density of the structure. The kinetic energy of 

SSDT can be obtained by substituting Eqs. (1)-(3) into Eq. 

(17) as follows 
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where the moment of inertia in kinetic energy of three 

theories can be defined as 
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The work done by the impact load can be expressed as 
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where q can be written as (Gong and Lam 2000) 
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where V0 is the impact velocity of impactor and the contact 

stiffness (𝐾𝑐) may be estimated as 

𝐾𝑐 = (
4
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where RI, EI 
and vI 

are radius, elastic modulus and poison’s 

ratio of impactor, respectively; EP 
and vp are elastic modulus 

and poison’s ratio of structure, respectively. 

The motion equations can be derived based on 

Hamilton’s principle as follows 
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Substituting Eqs. (12), (17) and (20) into Eq. (25) yields 

the CST motion equations as follows 

2

0 2
: ,xxx

NN u
u I

x R t




 
 

  
 (26) 

2

0 2
: ,xN N Q v

v I
x R R t

  


  
  

  
 (27) 

 

2 22

2 2 2

2 2 4 4

0 2 42 2 2 2 2 2 2

: 2

,

xxx
b

b s b b

M M NM
w q

x R R x R

w w w w
I I I

t t t x R t

  
 



 
   

   

      
       

        

 
(28) 

 

2 22

2 2 2

2 2 4 4

0 3 42 2 2 2 2 2 2

: 2

,

xxx xx
s

b s s s

S S FS F
w q

x R R x x R

w w w w
I I I

t t t x R t

  
  



   
    

     

      
       

        

 (29) 

However, combining Eqs. (13)-(16), (26)-(29), the 

motion equations may be obtained in terms of mechanical 

displacement as. 
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2.4 Solution 
 

For harmonic wave propagation, the solution of 

equations of motion can be written in complex form as 

(Narendar and Gopalakrishnan 2012)  

  1 2( )

0, , , , , ,i k x k y t

b sd x y t d e d u v w w    (41) 

where d0, ω, k2 and k1 are the amplitudes of the wave 

motion, the circular frequency, the wave number in y-

direction and the wave number in x-direction, respectively 

and 1i   . By applying Eq. (41) into Eqs. (30)-(33), we 

have 
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 (42) 

Finally, in order to obtain frequency, it is necessary to 

calculate the determinant of matrix and set it equal to zero. 

Finally, the velocity may be calculated from above relation. 

 

 

3. Experimental test 
 

As shown in Figs. 2(a)-2(c), three square concrete 

samples (70 cm×70 cm) are considered with 2 geophone 

with the distance of 10 cm for recording the velocity 

induced by the impact.  

In Figs. 2(a)-2(c), 5, 4 and 3 impact points with the step 

of 10 cm are assumed where the distance of geophone 2 

from the right side of the boundary is 5 cm, 15 cm and 25 

cm, respectively. In three cases, a steel particle with the 

diameter of D=125 mm is released from height of H=20 cm 

on the sample. The main objective of these tests is obtaining 

the maximum velocity which is discussed in the next 

section (Pourghasemi Sagand 2015).  

 

 

4. Numerical results and discussion 
 

The material constants used in the calculation are: 

concrete cube with elastic modules of Em=20 GPa and 

Poisson’s ratio of vm=0.3 and SiO2 nanoparticles with 

elastic modules of Er=75 GPa and Poisson’s ratio of 

vr=0.27. Based on the proposed method in section 2 and 

experimental test, the velocity of the structure is calculated. 

 

4.1 Experimental results  

 
(a) 

 
(b) 

 
(c) 

Fig. 2 The situation of geophones and impact points for 

experimental tests (a) case 1 (b) case 2 (c) case 3 

 

 

Fig. 3 Theoretical and experimental maximum velocity for 

different impact points of case 1 

 

 

In case 1 (Fig. 2(a)), the geophones are near the left 

boundary in the symmetric line. The maximum velocities 

related to 5 impact points are shown in Fig. 3. As can be  
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Fig. 4 Theoretical and experimental maximum velocity for 

different impact points of case 2 

 

 

Fig. 5 Theoretical and experimental maximum velocity for 

different impact points of case 3 

 

 

seen, the maximum velocity is decreased from impact point 

1 to impact point 4 while it enhances at the impact point 5. 

It is since the impact point 5 is near the boundary of the 

structure and the reflected wave can increase the velocity of 

this point. In addition, the maximum velocity recorded by 

geophone 2 is higher than geophone 1 since the distance of 

geophone 2 from the left boundary is lower than that of 

geophone 1 and hence, the reflected wave from the 

boundary can amplify the maximum velocity.  

In order to more accurate study of this problem, cases 2 

and 3 (Figs. 2(b) and 2(c)) are considered where the 

distances of geophones from the left boundary are 15 cm 

and 25 cm, respectively. The maximum velocity related to 

cases 2 and 3 is illustrated in Figs. 4 and 5, respectively. It 

can be seen that in the impact points of 1 and 2, the 

maximum velocity recorded by geophone 2 is lower than 

that of geophone 1. It is due to the fact that in cases 2 and 3, 

the geophone 2 is further from the structure boundary and 

hence the effect of reflected wave and boundary decreases. 

This phenomenon is converse for the impact points of 3 and 

4 in case 2 and impact point of 3 in case 3 so that the 

maximum velocity recorded by geophone 2 is higher than 

geophone 1. It is because the mentioned impact points are 

near the boundary of the structure and the effect of reflected 

wave will be increased.  

 

Fig. 6 The effect of SiO2 nanoparticles on the maximum 

velocity versus structure length 

 

 

Fig. 7 The effect of structure width on the maximum 

velocity versus structure length 

 

 

However, the distance of geophones forms the boundary 

and the step of the impact points are important parameters 

which improve the accuracy of the results. 

 

4.2 Validation 
 

Before presenting the theoretical results, we should 

validate the applied model and the obtained results. 

However, considering the geometrical parameters of the 

structure as well as impactor diameter and height the same 

as experimental test, the maximum velocity of the structure 

is calculated. The results of present work are shown in Figs. 

3-5 and compared with the experimental datas. It can be 

observed that the theoretical results are in a good agreement 

with the experimental datas. However, it can be concluded 

that the proposed method and solution method are 

appropriate for this problem.  

 

4.3 Theoretical results 
 

In this section, the effect of different parameters such as 

SiO2 nanoparticles volume percent, situation of the impact, 

length, width and thickness of the model as well as velocity, 

diameter and height of the impactor are shown on the 

maximum velocity of the model. 
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Fig. 8 The effect of structure length on the maximum 

velocity versus structure length 

 

 

Fig. 9 The effect of impactor velocity on the maximum 

velocity versus structure length 

 

 

In order to show the effect of SiO2 nanoparticles volume 

percent in the maximum velocity versus the thickness of the 

structure, Fig. 6 is plotted. It is shown that with increasing 

the thickness of the structure, the maximum velocity 

decreases due to increase in the stiffness of the structure. It 

can be found that with increasing the volume percent of 

SiO2 nanoparticles, the maximum velocity decreases. It is 

due to the fact that with increasing volume percent of SiO2 

nanoparticles, the stiffness of structure increases. However, 

the SiO2 nanoparticles can improve the reaction of the 

structure in contact with the impact load. 

The effects of the width and length of the structure on 

the maximum velocity versus the thickness of the structure 

are demonstrated in Figs. 7-9, respectively.  

As can be seen, increasing the length and width of the 

structure causes to increase in the maximum velocity of the 

concrete structure. It is due to the fact that increasing the 

length and width of the structure leads to lower stiffness in 

the structure. 

Figs. 10 and 11 present the effects of the velocity, 

diameter and height of the impactor on the maximum 

velocity versus the thickness of the structure, respectively. 

It is shown that the maximum velocity increases with 

increasing the velocity, diameter and height of the impactor. 

It is due to the fact that with increasing the velocity,  

 

Fig. 10 The effect of impactor diameter on the maximum 

velocity versus structure length 

 

 

Fig. 11 The effect of impactor high on the maximum 

velocity versus structure length 

 

 

Fig. 12 The effect of impact point situation on the 

maximum velocity versus structure length 

 

 

diameter and height of the impactor, the kinetic energy of 

the impactor increases. 

The effect of the impact point situation, Fig. 12 is 

plotted where the maximum velocity changes with the 

thickness of the structure. It can be seen that the maximum 
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velocity for the points near the boundaries is higher than 

that of the middle point. It is physically reasonable since in 

the points near the boundaries, we have the effect of the 

reflected wave and hence the maximum velocity increases. 

 

 

5. Conclusions 
 

Theoretical an experimental wave propagation analysis 

in concrete plates were presented in this article. The 

structure was simulated with SSDT mathematically and the 

corresponding governing equations were derived using 

energy method and Hamilton’s principle. Another novelty 

of this work was considering the effect of SiO2 

nanoparticles volume percent effect on the wave 

propagation behaviour of the structure based on Mori-

Tanaka model. Based on exact solution, the maximum 

velocity of the structure was obtained and compared with 

the experimental datas. The effect of different parameters 

such as SiO2 nanoparticles volume percent, length, width 

and thickness of the model as well as velocity, diameter and 

height of the impactor were shown on the maximum 

velocity of the model. Results indicate that the theoretical 

results were in a good agreement with the experimental 

datas. It was found that the maximum velocity for the 

impact points near the boundaries is higher than other 

points due to the effect of the reflected wave. It can be 

found that with increasing the volume percent of SiO2 

nanoparticles, the maximum velocity decreases. Increasing 

the length and width as well as decreasing the thickness of 

the structure causes to increase in the maximum velocity of 

the concrete structure. In addition, the maximum velocity 

increases with increasing the velocity, diameter and height 

of the impactor. Finally, it is hoped that this work open a 

new field in the mining engineering for mathematical 

modelling of the structure in order to predict the impact and 

blast response of them.  
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