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1. Introduction 
 

At present, prestressed concrete bridges (PCBs) play a 

significant role in the transport networks globally. However, 

potential safety hazards are raised through the widely used 

prestressed concrete bridges. Several bridge failures have 

been reported due to failures in the prestressing system and 

have caused large losses, such as the collapse of Koror-

Babeldaob Bridge (Bazant et al. 2012). Prestressed concrete 

beams can incur a loss in the prestress force (PF) as a result 

of elastic shortening, creep and shrink of concrete, steel 

relaxation and frictional loss between tendon and concrete, 

which in turn would reduce the strength of the beam, 

shorten the lifecycle of the bridge or even lead to 

catastrophic failures. It is hence crucial to monitor the 

magnitude of the PF in the prestressed concrete beam to 

ensure that it remains within a safe range.  

Unfortunately, PF in an existing PCB is not easy to 

evaluate. The most basic and easiest way to estimate 

whether there are PF losses is through visual inspection 

(Weischedel 1985, Choquet and Miller 1988, Geller and 

Udd 1992, Weischedel and Hoehle 1995). Generally, in 

these methods, it is assumed that the prestressed tendons 

would have lost some of the PF if cracks occur around the 

tendons, and the presence of visible damage such as kinks, 

nicks, severed wires, extensive yielding and unraveling to 

the exposed strands that can lead to a significant loss of the 

PF. However, it is quite possible that a tendon could exhibit  
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none of these physical attributes of damage and still loses 

the PF value seriously. As a result, these visual inspection 

methods are not reliable in prestress force identification 

(PFI). 

Some studies pointed out that Ultrasonic wave can 

assess the stress level in prestressed components directly 

because it reveals substantial subsurface flaws in materials 

(Lozev et al. 1996, Pei and Demachi 2011, Hussin et al. 

2015). But these studies were limited to laboratory 

applications, and are time-consuming and sometimes 

hazardous. Further, the required instruments are costly and 

often not reliable for long term monitoring. 

To overcome limitations in visual inspections and non-

destructive testing methods, different indirect identification 

approaches have been proposed since the middle of the 

1990s. The PF could be examined on the basis that the loss 

of the PF in the structure is related to the change in 

structural stiffness which can be estimated by monitoring 

changes in vibration characteristics of the structure (Kim et 

al. 2003).  

Some researchers studied the relationship between the 

PF and modal characteristics and tried to detect PF via 

natural frequencies of PCBs (Saiidi et al. 1994, Dall’asta 

and Dezi 1996, Miyamoto et al. 2000, Materazzi et al. 

2009, Ni et al. 2012). However, these methods faced the 

issue of insensitivity of modal parameters against PF and 

their variation tendency changes distinctly through different 

prestressing techniques: PF introduced by the prestressing 

tendon reduces the natural frequency of PCB, but the 

prestressing tendon itself increases the flexural rigidity and 

hence the natural frequency (Lu and Law 2006). The 

change of natural frequency depends on these dual effects 

and hence can be hardly predicted for different cases. These 

methods were therefore not effective for detecting the 

existing PF in structures.  
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More recently, some methods to assess PF inversely 

were derived using measured dynamic responses such as 

strains or accelerations (Law and Lu 2005, Lu and Law 

2006, Vélez et al. 2010, Xu and Sun 2011), but the lack of 

computational stability and accuracy hindered their wide 

application. Besides, all these methods require a known 

exciting force which in practice is inconvenient because 

bridges need to be closed during testing, otherwise passing 

vehicles may affect the excitation.  

To overcome these problems, a synergic identification 

method was recently proposed by the authors to determine 

the PF and the excitation force in a prestressed concrete 

member simultaneously using its dynamic response (Xiang 

et al. 2015, Xiang et al. 2016). Case studies by means of 

numerical simulations were conducted and the results 

showed that the proposed method was capable of 

identifying both the PF and moving force simultaneously 

while being robust to measurement noise. However, the 

proposed method was formulated for simply supported 

beams, while in practice; many PCBs are box-girder 

bridges. The ability of this method to be applied for 

prestressed box-girder bridges deserves further validation. 

Therefore, in this paper, the synergic identification method 

is extended to estimate the PF and excitation force 

simultaneously in prestressed concrete box-girder bridge 

through the dynamic response induced by this excitation. 

Several modifications are made for the extension including 

a reasonable assumption on the simulation of the box-girder 

bridge by two-dimensional beam elements. A 

comprehensive laboratory test program is then carried out 

for experimental validation purposes. 
 

 

2. Method 
 

This section describes the synergic identification 

method to simultaneously determine the PF and the 

excitation force. The method is first formulated for a simply 

supported beam and then extended to a prestressed concrete 

box-girder bridge with a reasonable assumption. 
 

2.1 Forward problem   
 

The inspiration of this method comes from the Virtual 

Distortion Method (VDM) that estimates the structural 

damage and the exciting force (Zhang et al. 2012). As PF, 

similar to structural damage, changes the stiffness of the 

structure, VDM can be implemented to identify the PF to 

some extent. 

The VDM is a quick reanalysis method conceptually 

similar to the initial strains approach(Kołakowski et al. 

2008), which represents the modification in structural 

response under equivalent pseudo-loads that are applied to 

its degrees of freedom (DOFs). Thus, the response of the 

modified structure can be efficiently obtained without a full 

structural simulation, merely by adding the response caused 

by these pseudo-loads to the original response. In this way, 

the PF in a structure can be transformed to pseudo-loads, 

and the prestressed structure under an excitation can then be 

considered as the original structure (without PF) subjected 

to certain pseudo-loads and the same external excitation. 

These two structures share the same dynamic responses. 

In Finite Element Method (FEM), a prestressed two-

dimensional beam element is described as 

 (1) 

 (2) 

where {Pi} and {x}i are the nodal force and displacement in 

the local coordinate system, iK  is the local stiffness 

matrix and can be composed of Kn,i and Kg,i, which are 

respectively the local stiffness matrix of a normal beam 

element without PF and the geometrical stiffness matrix 

containing the information of PF (Lu and Law 2006). 

Therefore, the local nodal force in Eq. (1) can be 

represented by the nodal force { }n

iP  of original structure 

element (normal beam element without PF) and the nodal 

force { }e

iP  relevant to the geometrical stiffness matrix 

(shown in Eq. (3)), which in this paper is called the local 

pseudo-load. The pseudo-load is presented in Eq. (4) in 

which T is the PF amplitude and η is the length of the 

element. 

 
(3) 

 
(4) 

In VDM, the local pseudo-load modifies the element in 

the form of virtual forces. And all these forces follow the 

modified element’s own vibrational behaviour, which 

means the virtual forces will act exactly the same way as 

the nodal forces of the element (Xiang et al. 2016). In this 

case, there are three components of virtual distortions, 

which correspond to the three states of deformation. Based 

on the orthogonal analysis, the deformation states: axial 

distortion, pure bending, and bending plus shear terms are 

obtained through the solution of the Eigenproblem of the 

element stiffness matrix (Zhang et al. 2010). Relevantly, 

there are three components of virtual forces: the axial force, 

shear force and bending moment. In addition, we should 

note that these three forces do not exist perpetually but 

occur depending on the vibration situation.  

Thus, the local pseudo-load can be written as a 

combination of its virtual forces applied to each element, 

where { }e

ikp  is the kth virtual force caused by the ith virtual 

distortion. 

 (5) 

In the case of this paper, the simply supported beam is 

subjected to a vertical excitation as shown in Fig. 1. Thus, 

only shear force and bending moment are produced, k=2. 

Assembling the virtual forces in global coordinates, the 

global pseudo-load {P} containing the PF can be calculated  
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Fig. 1 Simply supported prestressed concrete beam model 

 

 

by global displacement {x} of the prestressed structure 

which is measurable. 

 

(6) 

It should be mentioned that T is a time-dependent 

variable because both of the matrixes in Eq. (6) have the 

dimension of time. Therefore, theoretically, a successful 

identification will produce a time history of T, which can 

then be averaged to give the final identified values of PF. 

Therefore, for a simply supported prestressed beam 

subjected to a moving force as shown in Fig. 1, the equation 

of motion, Eq. (6) is rewritten to the equation of non-

prestressed beam subjected to the excitation force (moving 

load) and global pseudo-load Eq. (7). 

 
(7) 

 (8) 

where {x}, { }x  and { }x  are the displacement, velocity 

and acceleration vectors, respectively; M, C and K are the 

mass, damping and global stiffness matrices of the 

prestressed girder, respectively; {f} is the excitation force 

vector, while B is its mapping matrix; K is the global 

stiffness matrix of the beam without PF (i.e., the original 

structure). 

The synergic identification of excitation force and PF, 

therefore, turns into the identification of the excitation force 

and the global pseudo-load, and the global pseudo-load is 

presented in the form of local virtual forces in each node. 

 

2.2 Inverse problem 
 

With the assumption of zero initial conditions, the 

dynamic response is obtained by the convolution of all 

external forces and their impulse response functions. The 

matrix form of Duhamel integral is shown as follows, 

 (9) 

where Yj is the discrete response measured by the jth sensor. 

F and Pik are the discrete excitation load and virtual force  

 
(a) 2D 3 degrees of freedom beam element 

 
(b) 3D 6 degrees of freedom beam element 

Fig. 2 Different beam element geometry 

 

 

vector respectively. n is the element number of the beam. Hj
 

and Dik 
are matrices composed of impulse response 

functions between the jth sensor with F and Pik respectively. 

Based on the definition of Duhamel integral, the impulse 

response functions are obtained by the Dirac delta functions 

acted upon the positions of the real forces and hence 

distinguish these different forces. Therefore, this method 

requires awareness of the application points of the unknown 

loads in advance. In order to have a unique solution of this 

matrix, the responses should not be lesser than the number 

of the unknowns, which means the number of the sensors 

should be equal to at least nk+1. 

During the inversion of Eq. (9), the ill-conditioned 

problem will occur because of the singularity of the system 

matrix. Moreover, it is computational costly in the cases of 

long sampling duration or dense time discretization. Typical 

regularization solutions for the ill-conditioned problem are 

the truncated singular value decomposition (TSVD) and 

Tikhonov method (Jacquelin et al. 2003), but it requires 

additional works.  

The authors have already introduced the Load shape-

function (LSF) in previous research and efficiently 

overcame these drawbacks without causing additional 

computational effort (Xiang et al. 2016).  

LSF is a fitting approach which treats the load as a 

‘beam’ and simulates load record by the shape-function of 

beam element as Eq. (10). 

 
(10) 

where N is the LSF matrix and α is its relevant coefficient. 

Because the number of columns in N  is far less than 

number of rows, it makes α much smaller in dimension than 

F. The calculation effort of Eq. (9) is therefore reduced. In 

addition, because the estimated load is smoothed via LSF to 

some degree, the influence of noise will be minimized even 

without regularization (Zhang et al. 2008). The enhanced 

Duhamel integral is  

 (11) 
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where αF is the relevant coefficient of the moving load and 

αik is the coefficient for the kth virtual force caused by the 

ith local pseudo-load.  

Therefore, the excitation force and local virtual force 

can be identified by solving 

 (12) 

 

(13) 

 (14) 

At last, PF is determined in the global coordinate 

through Eq. (6). 
 

2.3 Application to prestressed box-girder bridge 
 

As there is no specific theory for box-girders, 

researchers usually use beam or plate based theories to  

 

 

approach the vibration of box-girders. As mentioned earlier, 
the synergic identification method has already been 
developed for a 2D simply supported beam; it is extended 
for the application in box-girder bridges by changing the 
cross section of the rectangular girder to a box-girder. 
Several significant differences are generated by this change. 
As box-girder is a 3D structure, 3D beam element should be 
introduced in the FE analysis. Compared to the 2D three 
degrees of freedom beam element used in the 2D beam 
which contains translational displacements in the Y and Z 
directions as well as the rotation in X direction, the 3D 
beam element has six degrees of freedom which is a 
translational displacement and a rotation in and about the 
directions of X, Y and Z respectively. Relevantly, the nodal 
forces in each node of this element are the shear forces and 
moments in the three directions respectively (as shown in 
Fig. 2).  

This difference influences the implement of VDM. As 
we know, the pseudo-load is represented as virtual forces at 
each node, and the virtual forces follow the same form of 
the real nodal forces. Therefore, the pseudo-load in the 
model of prestressed concrete box-girder bridge is 
composed of the virtual forces in the directions of X, Y, and 
Z, the k in Eq. (5) equals to 6, which increases the 
computational work dramatically at the same time.  
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(a) Translational displacement in X direction (b) Translational displacement in Y direction 

 

 

(c) Rotation about X direction (d) Rotation about Y direction 

 

 

(e) Translational displacement in Z direction (f) Rotation about Z direction 

 

Fig. 3 Displacement responses of prestressed box-girder bridge 
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Fig. 4 Cross-section of the model 

 

Table 1 Prestressing tendon arrangement 

Longitude 

(mm) 
0 500 1000 1500 2000 2500 3000 

Distance 

(mm) 
235 209 184 163 146 134 130 

 

 

To overcome this problem, an investigation is conducted 

to compare the displacement responses at several points 

along the central axial axes of the box-girder bridge with 

different levels of PFs subjected to an excitation force (by 

means of simulation). From the displacement of the center 

of mid-span shown in Fig. 3, it is found that the 

translational displacements in the directions of X and Z are 

far less than that in direction Y. The same also happens for 

the rotations in about the direction of X and Y in 

comparison with that about the Z direction. Moreover, the 

change in PF causes no difference in the translational 

displacement in the X direction and very small difference in 

the Z direction, while the change in PF results in almost no 

difference in the rotations about the Y and Z directions 

(same situations occur at other points). This shows that 

under the present loading scenario, the dynamic behaviour 

of the nodes along the central axis of the box-girder bridge 

is similar to that in a two-dimensional beam, and the 

influence of PF is mainly reflected in the translational 

displacement in the Y direction and rotation about the X 

direction which are also similar to the two-dimensional 

beam element. Therefore, it is reasonable to assume that we 

can use the virtual forces in 2D beam element to 

approximately simulate the points along the central axis of 

the box-girder bridge. And under the loading scenario of 

vertical excitation force, the nodal forces of these 2D beam 

elements are assumed to be translational displacement in the 

Y direction and rotational angel around the X direction, 

which means in Eq. (5), k equals to 2. 

In the aspect of LSF implemented Duhamel integral, the 

integral can be applied to all linear system; there is no 

difference between the 2D beam and 3D box-girder bridge 

as long as the girder is considered as being linear.  

In conclusion, the synergic identification is promising in 

the application of prestressed concrete box-girder bridge. 

The potential will be experimentally verified in the next 

section. 
 

 

3. Laboratory test 
 

3.1 The prestressed box-girder bridge details 
 
A 6-meter-long single cell box-girder bridge whose  

 

Fig. 5 Excitation load record 

 

 

Fig. 6 Sensor arrangement 

 

Table 2 Case setting 

Case No. PF (kN) 
Measuring time 

(s) 

Response record 

No. 

1 171.277 3 1.1 

2 284.009 3 2.1 

3 284.009 10 2.2 

4 378.293 3 3.1 

5 378.293 10 3.1 

 

 

cross-section is described in Fig. 4 was constructed in the 

laboratory. Two unbounded tendons each of 15.2 mm 

diameter were utilized in the box-girder bridge with each 

tendon embedded into the concrete through a 20 mm 

diameter duct in order to apply different levels of PFs by a 

hydraulic mono jack. The tendon profile was selected as 

parabolic with eccentricity; the distance of the tendon to the 

bottom slab along the longitudinal direction is shown in 

Table 1.  

Grade 32 concrete was selected to construct the box-

girder. Sufficient longitudinal and shear reinforcements 

were provided; the longitudinal steel bar ratio and lateral 

steel bar ratio were 0.01134 and 0.01161 respectively.  

 

3.2 Case setting 
 

The prestressed box-girder bridge model was excited by 

a sinusoidal force applied to the center of mid-span. The 

loading period is around 100 s, which is partly shown in 

Fig. 5. The synergic method was validated in this test for 3 

levels of PF. Vertical displacements and longitudinal strain 

responses were measured from the test at a sampling rate of 

2000 Hz. The sensor arrangement is shown in Fig. 6, with 

all the sensors installed along the bottom central axis along 

the longitudinal direction of the bridge according to the  
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(a) Case 1 (b) Case 2 

  
(c) Case 3 (d) Case 4 

 
(e) Case 5 

 

Fig. 7 Excitation identification results 
 

 

proposed assumption. The impulse response and dynamic 

influence matrixes were formulated by the updated FE 

model. 

During the dynamic test, the excitation was applied 

twice at each stage of PF. Thus 5 series of response records 

including displacements and strains are measured, which 

are numbered by the PF level and test sequence, for 

example, the response record measured in the first test of 

first PF level is 1.1. Considering the variation of measuring 

time, a difference of excitation (excitation forces generated 

by the loading frame have slight difference each time), and 

changes of PF amplitude, the case setting is listed in Table 

2. Note that for the sake of clarity and to be representative, 

the time periods are selected starting from 31.5 s (Case 1, 2, 

4 and 5) or 61 s (Case 3). 

 

3.3 Results and discussion 
 

In this section, synergic identification results of all cases 

are discussed. Excitation estimation and PF prediction are 

shown separately. The impact of measuring time, excitation 

force and PF amplitude in this method are studied.  

In Fig. 7, excitation force identification results are 

presented, which show very good agreement with the actual 

force except for some small errors at peaks. Moreover, 

small fluctuations in factual force records are smoothed in 

the results, as the measurement noise as well as the minor 

waves has been eliminated by using LSF. Thus, it is 

predicted that this method has a great robustness to  

 
(a) Case 1 

 
(a) Case 1 

Fig. 8 Overall PFI results in Cases 1 and 3 

 

Table 3 Average of T function in each node 

Node Case 1 Case 2 Case 3 Case 4 Case 5 

2 
181.49 

190.01 

311.21 

300.04 

310.80 

299.91 

391.06 

397.82 

391.16 

399.92 

3 
180.64 

181.19 

298.85 

297.12 

299.02 

297.26 

391.13 

390.78 

391..05 

391.25 

4 
178.63 

180.71 

294.12 

291.66 

294.03 

291.72 

389.07 

390.73 

389.09 

390.71 

5 
174.77 

179.15 

290.06 

288.88 

289.86 

289.11 

384.87 

388.93 

384.85 

389.07 

6 
180.35 

181.08 

292.51 

291.03 

292.45 

291.03 

391.20 

391.34 

391.21 

391.22 

7 
180.51 

185.48 

297.36 

295.18 

297.31 

295.04 

390.39 

394.83 

390.40 

395.12 

8 
181.26 

192.60 

299.56 

299.67 

299.56 

302.90 

391.61 

402.79 

391.58 

402.96 

Average 182.00 296.23 296.43 391.90 392.11 

True 171.28 284.01 378.29 

Error 6.25% 4.30% 4.37% 3.59% 3.65% 

*Values in each cell are listed as PF identified by virtual 

shear force and by virtual moment 

 

 

measurement noise. 

In addition, from Fig. 7(c) showing Case 3, the linear 

decrease force, as well as the sinusoidal force is also 

identified precisely. The capability of this method to 

determine different types of forces is hence validated.  

The overall identified PFs in Cases 1 and 3 are selected 

to demonstrate in Fig. 8. The T functions which represent 

the PF values are calculated from global virtual forces in 9 

nodes via Eq. (5), thus 18 results (8 from vertical  
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displacements and 8 from rotations) are shown in each 

picture.  

The results of each node in Case 4 are demonstrated in 

Fig. 9 for clarity. These T functions have then been 

averaged to give the final identified values of PF and listed 

in Table 3. 

In Table 3, the nodes at supports have been removed as 

they obviously cannot provide the true value. The results 

show that the PF values of all cases are determined with 

good accuracy; errors are limited to 6.25%.  

• Influence of different PF levels 
Fig. 8 shows the PFI results obtained at different nodes, 

PF in each node is demonstrated not by a constant T (shown 
in Eq. (6)) but as a time-related T function, which has been 
predicted in section 2.1. It is easy to see that the T functions 
indicate the PF value at different levels clearly even with 
some fluctuations, which confirms that the proposed 
procedure works well for box-girder bridges. This is 
possible with an identification error limited to around 6%, 
when the responses along the central longitudinal axes are 
measured and virtual forces are considered as vertical nodal 
forces and bending moment similar to 2D beam elements. 
The identification results are more accurate in the nodes 
close to mid-span, while the results of nodes at support are 
subjected to larger error. The reason causing this error is 
that the dynamic influence matrix is formulated from the FE  

 
 

model assumed as simply supported (the translational 
displacements at supports are restrained as 0) while the 
laboratory model (and also real structures in practice) might 
not be fully simply-supported and the vertical 
displacements at supports might therefore not be zero.  In 
terms of the magnitude of the PF, we find that a higher PF 
value is predicted more accurately, because the virtual 
forces contribute a bigger proportion to the response and are 
easier to determine. When the PF is increased from 178.28 
kN to 378.29 kN, the error is reduced from 6.25% to 3.65%. 
Nevertheless, the difference is not large, and according to 
the authors’ previous paper (Xiang et al. 2016), the error 
should be considered acceptable for the practical range of 
PF value.  

• Influence of excitation  

In the comparison of Case 2 and 3, the changes in 

excitation force such as the minor difference in the 

amplitude and the variation in trend (Case 3 includes the 

sinusoidal and linear period) have no significant impact on 

the PFI; only a 0.07% difference is obtained between the 

errors of these two cases. It means that the excitation has no 

significant influence on PFI. 

• Influence of measuring time 

Cases 4 and 5 with the measuring times of 3s and 10s 

successfully predict the PF, and the error of longer 

measuring time is slightly higher than the error of shorter 

   

(a) Node 1 (b) Node 2 (c) Node 3 

   

(d) Node 4 (e) Node 5 (f) Node 6 

   

(g) Node 7 (h) Node 8 (i) Node 9 

 

Fig. 9 PFI results of each node in Case 4 
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time. This results from the measurement noise; larger errors 

are introduced to the results with the increase of time 

duration. However, the inaccuracy is minor as 0.06%; the 

method is therefore proved to be useful for the synergic 

identification of PF and static excitation in very short time 

duration.  

• Influence of other uncertainties 

In addition, large fluctuations are observed in T 

function, which resulted from measurement noise and 

system uncertainties; and the impact tends to be larger at the 

location of mid-span node (node 5) where excitation 

applied. This symptom is reasonable as virtual force and 

excitation act in this node simultaneously and have greater 

effect on each other. However, due to the enhancement of 

LSF, the error only leads to some roughness of the T 

function as expected, which is acceptable and can be further 

eliminated by some signal processing strategies such as data 

averaging (i.e., calculating the mean value).  

Observing the T functions calculated from the virtual 

shear force and virtual moment of each node in Fig. 9, we 

can also find that most of the time the functions from virtual 

shear force have better performance than from virtual 

moment. This can be attributed to the identification 

accuracy of virtual force and moment. As rotation at the 

node is more difficult to be measured practically, the nodal 

angles in this experiment are calculated from vertical 

response data, which is obviously subject to larger error. 

However, after averaging values in Table 3, the final PFI 

results calculated by virtual moments are improved and 

have no serious impact on the accuracy. 

 

 

4. Conclusions 
 

In this paper, the synergic identification method is 

extended successfully to determine the PF and excitation in 

a prestressed concrete box-girder bridge, with the proposed 

assumption which confirms the box-girder bridge can be 

approximately simulated by two-dimensional beam 

elements for a certain loading scenario. A comprehensive 

laboratory test has been conducted with considerations of 

the PF amplitude, excitation type, measuring time and 

uncertainties. Results show that the method can successfully 

determine the two unknown forces with an error less than 

6.25%. In excitation identification, both sinusoidal and 

linear forces are both determined successfully. On the other 

hand, with the PFI, changes in the PF and excitation, as well 

as the measuring time have almost no impact on the 

accuracy; while the measuring uncertainties form the most 

significant influence factor, which causes large local 

fluctuations to the T function, especially to the ones 

calculated by virtual moments. However, the identification 

error has been shown to be alleviated through applying 

common signal processing techniques such as data 

averaging. 
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