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1. Introduction 
 

The study of the application of nanotechnology in the 

construction industry and building structures is one of the 

most prominent priorities of the research community. The 

outstanding chemical and physical properties of 

nanomaterials enable several applications ranging from 

structural reinforcement to environmental pollution 

remediation and production of self-cleaning materials. It is 

known that concrete is the leading material in structural 

applications, where stiffness, strength and cost play a key 

role in the high attributes of concrete.  

With respect to the analysis of concrete structures, to 

investigate the seismic behavior of connections composed 

of steel reinforced ultra high strength concrete (SRUHSC) 

column and reinforced concrete (RC) beam, six interior 

strong-column-weak-beam connection specimens were 

tested by Yan et al. (2010) subjected to reversal cyclic load. 

the seismic behavior of short circular reinforced concrete 

columns was studied by Zong-Cai et al. (2014) testing 

seven columns retrofitted with prestressing steel wire 

(PSW), subjected to combined constant axial compression 

and lateral cyclic load. Nominal moment-axial load 

interaction diagrams, moment-curvature relationships, and 

ductility of rectangular hybrid beam-column concrete 

sections were analyzed by El-Helou and Aboutaha (2015) 

using the modified Hognestad concrete model. A novel 

optimization approach for reinforced concrete (RC)  
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biaxially loaded columns is proposed. Since there are 

several design constraints and influences, a new 

computation methodology using iterative analyses for 

several stages was proposed by Nigdeli et al. (2015). A new 

structural damage index for seismic fragility analysis of 

reinforced concrete columns was developed by Kang and 

Lee (2016) based on a local tensile damage variable of the 

Lee and Fenves plastic-damage model. Finite element (FE) 

method based Numerical investigation for evaluation of 

axial strength of SSWM strengthened plain cement concrete 

(PCC) and reinforced cement concrete (RCC) columns was 

presented by Kumar and Patel (2016). Simplified P-M 

interaction curve model for reinforced concrete columns 

exposed to standard fire was studied by Lee et al. (2017). 

The nonlinear buckling of straight concrete columns armed 

with single-walled carbon nanotubes (SWCNTs) and SiO2 

nanoparticles resting on foundation was investigated by 

Jafarian Arani et al. (2016) and Zamanian et al. (2016). The  

nonlinear  buckling  of  straight  concrete  columns  

armed  with  single-walled  carbon  nanotubes 

(SWCNTs) resting on foundation was investigated by Safari 

Bilouei et al. (2016). Stress analysis of concrete pipes 

reinforced with AL2O3 nanoparticles was presented by 

Heidarzadeh et al. (2016) considering agglomeration 

effects. Buckling of horizontal concrete columns reinforced 

with Zinc Oxide (ZnO) nanoparticles was analyzed by 

Arbabi et al. (2017). 

For the first time, dynamic response of NFRP 

strengthened concrete columns subjected to seismic 

excitation is studied in the present research. The concrete 

column is modeled by applying SSDT and the effective 

material properties of the NFRP layer are obtained based on 

Mori-Tanaka model. The dynamic displacement of structure  
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Fig. 1 A schematic figure for concrete columns with NFRP 

layer under seismic load 

 

 

is calculated by HDQM in conjunction with Newmark 

method. The effects of different parameters such as NFRP 

layer, geometrical parameters of column, volume fraction 

and agglomeration of nanofibers and boundary conditions 

on the dynamic response of the structure are shown. 

 

 

2. Formulation 
 

In this section, the governing equations of the NFRP 

strengthened concrete columns are derived by applying 

SSDT to analyze the dynamic behavior of the structure. Fig. 

1 illustrates a hollow circular concrete column subjected to 

the earthquake loads with outer radius of R0, inner radius of 

Ri and thickness of hc which strengthened by a NFRP layer 

with thickness of hf. 

By applying SSDT, the displacements fields are defined 

as below (Thai and Vo 2012) 
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where u, v and w are the respective translation 

displacements of a point at the mid-plane of the beam in the 

longitudinal x, transverse y and thickness z directions. Also, 

ψ denotes the rotation of the cross section area and f is the 

shape function of the beam which is considered as follows 
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in which h=hf+hc. However, the strain-displacement 

relations of the structure are given as below 
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The constitutive equations of the orthotropic beam are 

considered as below 

,11 xx

c

xx C    (5) 

,44 xz

c

xz C  
 

(6) 

where C11 and C44 are the elastic constants of the concrete 

column. Also, the constitutive equations of the NFRP layer 

are defined as follows 

,11 xx

f

xx Q    (7) 

,44 xz

f

xz Q  
 

(8) 

in which Q11 and Q44 are the elastic constants of the NFRP 

layer. To obtain the effective material properties of the 

NFRP layer and to consider the agglomeration effect, Mori-

Tanak model is employed which is introduced in the next 

section. 

 

 

3. Mori-Tanaka model 
 

In this section, material properties of resin epoxy 

polymer reinforced by carbon nanofibers are obtained based 

on micro-mechanical approach. Em and vm are considered as 

Young’s modulus and Poisson’s ratio of the polymer, 

respectively. The stress-strain relations of the equivalent 

composite material are given as below (Mori and Tanaka 

1973) 
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(9) 

where k, l, m, n andp are known as Hill’s elastic moduli so 

that, k is plane-strain bulk modulus normal to the fiber 

direction, n is the uniaxial tension modulus in the 

longitudinal direction of the fiber, l is the associated cross 

modulus, m and p are the shear moduli in planes normal and 

parallel to the fiber direction, respectively. It should be 

noted that the mentioned constants depends on the elastic 

constants of the material. For example, Q11=k+m. By 

applying Mori-Tanaka model, Hill’s elastic moduli can be 

obtained as follows (Mori and Tanaka 1973) 
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in which kr, lr, nr, pr and mr are Hill’s elastic moduli of the 

reinforcing phase of the composite material. Finally by 

substituting Eq. (10) into Eq. (9), the stiffness matrix can be 

obtained. The experimental results show that the uniform 

distribution of the nanofibers is rarely achievable (Shu and 

Xue 1997). It is observed that the most of the nanofibers 

centralized in the regions throughout the matrix. These 

regions are assumed to be in spherical shapes which known 

as “inclusions” with different material properties from the 

surrounding regions. Vr is the total volume of nanofibersand 

is defined as 

,inclusion m

r r rV V V   (11) 

in which 
inclusion

rV  and 
m

rV  represent the volume of the 

CNTs inside the inclusion and polymer matrix, respectively. 

The agglomeration effect can be considered based on the 

micro-mechanical model by introducing the two following 

parameters 
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The average volume fraction Cr of nanofibers in the 

composite material is given as follows 
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The volume fraction of nanofibers inside the inclusion 

and the matrix (concrete) can be defined as 
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We assume that nanofibers are transversely isotropic and 

the orientation of them is randomly. Hence, the inclusion is 

considered to be isotropic and the effective bulk modulus K 

and shear modulus G may be written as below 
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in which Kin and Kout are the effective bulk modulus of the 

inclusion and the matrix outside the inclusion, respectively. 

Also, Gin and Gout are the effective shear modulus of the 

inclusion and the matrix outside the inclusion, respectively 

and are given as follows 
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where χr, βr, δr
 
and ηr can be obtained as 
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Km and Gm are the bulk and shear moduli of the matrix 

phase which are defined as below 

 
,

3 1 2

m
m

m

E
K





 (27) 

 
.

2 1

m
m

m

E
G





 

(28) 

Morever, α and β in Eqs. (17) and (18) are given as 

follows 
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Therefore, the effective Young’s modulus E and 

Poisson’s ratio v of the composite material are given by 
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4. Energy method 
 

To derive the governing equations of the structure by 

employing energy method and using Hamilton’s principle, 

the work done by external forces is equated to the strain 

energy and kinetic energy stored in the structure. The 

potential strain energy stored in the structure is given as 

follows 

    ,
c

f

c c f f

xx xx xz xz c xx xx xz xz f
V

V

U dA dx dA dx           
 
(34) 

where Ac and Af are the cross section area of the concrete 

column and NFRP layer, respectively. By substituting Eqs. 

(3) and (4) into Eq. (34) we have 
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By defining the in-plane stress resultants as follows 
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Eq. (35) can be rewritten as below 
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By substituting Eqs. (5)-(8) into Eqs. (36)-(39), the 

stress resultants of the column take the following form 
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The kinetic energy of the structure are defined as below 
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2
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(52) 

By substituting Eq. (1) into Eq. (52) we have 
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.
2

u w w
K z f dV

t x t t t

         
                  


 

(53) 

By defining the inertia moment terms as 
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where ρc and ρf are concrete and NFRP densities, 

respectively. Eq. (53) can be rewritten as below 
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 (55) 

The external work due the earthquake can be calculated 

as follows 

( ( )) ,

SeismicF

W ma t wdx 
 

(56) 

where m and a(t) are the mass and acceleration of the earth, 

respectively. To extract the governing equations of motion, 

Hamilton’s principle is expressed as follows  
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(57) 

where δ denotes the variational operator. By considering 

Eqs. (40), (55) and (56), the motion equations of the 

structure are obtained as follows 
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(60) 

Also, the boundary conditions of the structure are 

considered as below 

• Clamped-clamped supported 
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• Clamped-Simply supported 
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• Simply-Simply supported 
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5. Solution procedure 
 

In this study, HDQM is applied to examine the dynamic 

behavior of the structure. In this numerical method, the 

governing differential equations of the structure turn into a 

set of first order algebraic equations by applying the 

weighting coefficients. According to HDQ method, a 

derivative of a function at a given discrete point will be 

approximated as a weighted linear sum of the function 

values at all discrete points chosen in the solution domain. 

The one-dimensional derivative of the function can be 

expressed as follows (Kolahchi et al. 2016a , b) 
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(64) 

Where f(x) is the mentioned function, N denotes number 

of grid points, xi is a sample point of the function domain, fi 

is the value of the function at ith sample point and Cij 

indicates the weighting coefficients. So, choosing the grid 

points and weighting coefficients is an important factor in 

the accuracy of the results. The grid points are considered 

by Chebyshev polynomials as follows 

1
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Based on Chebyshev polynomials, the grid points are 

closer together near the borders and in distant parts of the 

borders they aw y from each other. The weighting 

coefficients may be calculated by the following simple 

algebraic relations 
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in which 
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Also, the higher-order derivatives are considered as 
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(68) 

By distributing the grid points in the domain based on 

Eq. (65) and by substituting Eq. (64) into the governing 

equations, we have  
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Fig. 2 Acceleration history of Kobe earthquake 

 

 

in which [KL], [KNL] and [M] indicate linear part of the 

stiffness matrix, nonlinear part of the stiffness matrix and 

the mass matrix, respectively. Also, {db} and {dd} denote 

boundary and domain points, respectively. To obtain the 

time response of the structure subjected to the earthquake 

loads Newmark method (Simsek 2010) is applied in the 

time domain. Based on this method, Eq. (69) is considered 

in the general form as below 
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(70) 

where subscript i+1 denotes the time t=ti+1, K*(di+1) and Qi+1 

are the effective stiffness matrix and the effective load 

vector which are given as  
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where (Simsek 2010) 
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(73) 

where γ=0.5
 
and χ=0.25. By applying the iteration method, 

Eq. (70) is solved at any time step and modified velocity 

and acceleration vectors are computed as follows 

,)( 32101 iiiii ddddd    
 

(74) 
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(75) 

Then for the next time step, the modified velocity and 

acceleration vectors in Eqs. (64) and (75) are applied and all 

the mentioned procedures are repeated. 

 

 

6. Numerical results 
 

In this section, the effect of various parameters on the 

dynamic response of the NFRP strengthened concrete 

column under seismic load is examined. The outer radius  

 

Fig. 3 Convergence and accuracy of HDQM 

 

 

Fig. 4 Comparison of analytical and numerical results 

 

 

and the inner radius of the concrete column are R0=205 mm 

and Ri=56 mm, respectively and the length of the column is 

L=3 m. The elastic moduli of concrete, epoxy resin and 

carbon nanofiber are Ec=20 Gpa, Ef=25 Gpa and Er=1 TPa, 

respectively. In this study, the influences of NFRP layer, 

carbon nanofiber volume fraction, geometric parameters 

and boundary conditions on the dynamic displacement of 

the structure are investigated. The earthquake acceleration 

is considered based on Tabas earthquake that the 

distribution of acceleration in 30 seconds is shown in Fig. 2. 

 

6.1 Convergence of HDQM 
 
Fig. 3 shows the convergence of HDQM in evaluating 

the maximum deflection of the structure versus time. As it 

can be seen, with increasing the number of grid points N, 

the maximum deflection of the structure decreases. It can be 

found that by increasing the number of grid points, the 

decay ratio of the dynamic deflection decreases as far as at 

N=15 the dynamic deflection converges.  

 

6.2 Validation of results 
 
Given that no similar work has been done to validate the 

present study, so, it has been tried to examine the results 

without considering the nonlinear terms of the governing 

equations and by comparing the linear dynamic response of 

the structure which obtained by two various solution  
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Fig. 5 The effect of NFRP layer on the dynamic deflection 

of the structure 

 

 

Fig. 6 The effect of nanofibers volume percent on the 

dynamic deflection of the structure 

 

 

methods. The results of the analytical and numerical (HDQ) 

methods are depicted in Fig. 4. As it can be observed, the 

results of numerical and analytical methods are identical 

and therefore, the obtained results are accurate and 

acceptable. 

 

6.3 Effects of different parameters 
 
Fig. 5 illustrate the effect of NFRP layer on the dynamic 

deflection versus time and various thicknesses of the NFRP 

layer. As it can be observed, the structure without NFRP 

layer has a greater dynamic deflection with respect to the 

concrete column covered with a NFRP layer. The reason is 

that the NFRP layer increases the stiffness of the structure.  

As mentioned in the previous sections, the NFRP is 

reinforced by carbon nanofibers instead of macro fibers. In 

this section, the effect of nanofibers volume percent on the 

dynamic response of the structure is studied. Fig.6 shows 

the dynamic deflection of the structure versus time for 

different values of nanofibers volume fraction. It can be 

seen that with increasing the nanofiber volume fraction, the 

displacement is decreased. So it can be concluded that with 

increasing the volume fraction of nanofibers, the dynamic 

deflection of the system decreases and it is because of the 

increasing of the stiffness of the structure. 

 

Fig. 7 The effect of nanofibers agglomeration on the 

dynamic deflection of the structure 

 

 

Fig. 8 The effect of column length on the dynamic 

deflection of the structure 

 

 

Fig. 9 The effect of boundary conditions on the dynamic 

deflection of the structure 

 

 

The agglomeration effect of nanofibers on the dynamic 

deflection of the structure versus time is illustrated in Fig. 7. 

As it can be observed, by considering the agglomeration 

effect, the stiffness of the structure reduces while the 

dynamic displacement increases. Since during the process 

of nanocomposite manufacturing, the uniform distribution 

for nanofibersin the matrix is impossible, so the results of 

this figure can be very remarkable. 
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Fig. 8 presents the effect of the column length on the 

dynamic deflection of the structure versus time. It can be 

found that with increasing the length, the displacement of 

the structure increases. It is because of the reduction of the 

stiffness of the system when the column becomes longer.  

Fig. 9 illustrate the effect of various boundary 

conditions on the dynamic response versus time. Four 

boundary conditions including clamped-clamped, clamped-

simply, simply-simply and free-simply supported are 

considered. The minimum dynamic deflections of the 

structure are related to clamped-clamped, clamped-simply 

supported and simply-simply supported boundary 

conditions.  

 

 

7. Conclusions 
 

Seismic response of concrete columns covered by NFRP 

layer was studied in this paper. The SSDT was used for 

obtaining the motion equations. Mori-Tanaka model was 

utilized for considering agglomeration effect of nanofibers. 

Based on HDQM and Newmrk method, the dynamic 

deflection of the structure was calculated. The effects of 

different parameters such as NFRP layer, geometrical 

parameters of column, volume fraction and agglomeration 

of nanofibers and boundary conditions on the dynamic 

response of the structure were shown. The structure without 

NFRP layer has a greater dynamic deflection with respect to 

the concrete column covered with a NFRP layer. It can be 

seen that with increasing the nanofiber volume fraction, the 

displacement was decreased. Considering the agglomeration 

effect, the stiffness of the structure reduces while the 

dynamic displacement increases. It can be found that with 

increasing the length, the displacement of the structure 

increases. In addition, the minimum dynamic deflections of 

the structure were related to clamped-clamped boundary 

condition with respect to clamped-simply supported and 

simply-simply supported boundary conditions. 
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