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1. Introduction 
 

Engineered steel fibres are currently the most popular 

unconventional type of concrete reinforcement. The first 

modern fibre reinforced concrete was patented in 1874 

(Maidl 1995). Its concept was based on ancient ideas 

(Egyptian and Babylonian) of modifying brittle materials by 

fibre addition. For the first decades after patenting fibre 

reinforced concrete was not a popular construction material. 

This neglect was caused by two main factors: lack of proper 

engineered steel fibre and problems with workability of 

steel fibre reinforced concrete (SFRC) fresh mixes. In the 

late 1950s and early 1960s first engineered steel fibre 

started to be produced on industrial scale (Maidl 1995). At 

the same time plasticizers became popular in concrete 

industry. The above facts enabled production of 

commercially feasible SFRCs. Along the production of 

SFRC extensive research programmes were conducted. It 

was proven that the addition of fibre mainly influences 

tensile strength, flexural strength and all dynamic properties 

of concrete (Nawy 1996, Maidl 1995). It has been also 

demonstrated that substitution of traditional bar and stirrup 

reinforcement is possible (Katzer and Domski 2013). The  
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Fig. 1 Examples of geometric shapes of commonly used 

steel fibres 

 

 

current global consumption of steel fibre for concrete 

reinforcement is equal to 300,000 tons and is growing every 

year by 20%. In over 90% it consists of engineered (shaped) 

fibre. There are produced steel fibres with deformed ends 

(coned, spaded, with end paddles or buttons etc.), surface-

textured, twisted, crimped and hooked. All types of 

commercially available fibres are varied by length, 

geometry of a cross-section and area of a cross-section. 

Examples of different geometric shapes of commonly used 

types of steel fibre are presented in Fig. 1. 

Among engineered steel fibres, the hooked fibres 

represent over 65% of the market. Half of all types of 

hooked steel fibre available on the global market are  

 
 
 

Fast classification of fibres for concrete based on multivariate statistics 
 

Paweł K. Zarzycki1a, Jacek Katzer
2 and Jacek Domski3b 

 
1Department of Environmental Technologies and Bioanalytics, Faculty of Civil Engineering, Environmental and Geodetic Sciences, 

Koszalin University of Technology, Śniadeckich 2, 75-453 Koszalin, Poland 
2Department of Construction and Building Materials, Faculty of Civil Engineering, Environmental and Geodetic Sciences, 

Koszalin University of Technology, Śniadeckich 2, 75-453 Koszalin, Poland 
3Department of Concrete Structures and Technology of Concrete, Faculty of Civil Engineering, Environmental and Geodetic Sciences, 

Koszalin University of Technology, Śniadeckich 2, 75-453 Koszalin, Poland 

 
(Received August 25, 2016, Revised February 17, 2017, Accepted May 11, 2017) 

 
Abstract.  In this study engineered steel fibres used as reinforcement for concrete were characterized by number of key 

mechanical and spatial parameters, which are easy to measure and quantify. Such commonly used parameters as length, 

diameter, fibre intrinsic efficiency ratio (FIER), hook geometry, tensile strength and ductility were considered. Effective 

classification of various fibres was demonstrated using simple multivariate computations involving principal component 

analysis (PCA). Contrary to univariate data mining approach, the proposed analysis can be efficiently adapted for fast, robust 

and direct classification of engineered steel fibres. The results have revealed that in case of particular spatial/geometrical 

conditions of steel fibres investigated the FIER parameter can be efficiently replaced by a simple aspect ratio. There is also a 

need of finding new parameters describing properties of steel fibre more precisely. 
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Table 1 ID labels of investigated engineered steel fibres 

used for PCA calculations 

Steel 

fibre ID 

Producer 

(10) 

Nominal 

Length (mm) 

Nominal 

Diameter (mm) 

Code name 

(10) 

1 B 60 1.00 B/1.00 

2 D 30 0.55 D/0.55 

3 D 60 0.75 D/0.75 

4 E 50 0.65 E/0.65 

5 E 50 0.80 E/0.80 

6 E 50 1.00 E/1.00 

7 S 50 0.80 S/0.80 

8 S 50 1.00 S/1.00 

 

 

characterized by the aspect ratio ranging from 45 to 63.5 

(Katzer and Domski 2012). These fibres are used for 

composition of a wide variety of different types of fibre 

reinforced concretes including ordinary concretes (Domski 

2016, Havlikova et al. 2015), self-compacting concretes 

(Pająk and Ponikiewski 2013, Ponikiewski et al. 2014), 

roller compacted concretes (Neocleous et al. 2011) and 

concretes based on waste aggregates (Ghorpade and 

Sudarsana 2010, Xie et al. 2015). So far classification of 

different types of fibres have been done using basic 

geometrical and mechanical parameters such as length, 

aspect ratio and tensile strength. Harnessing fibre reinforced 

concretes for more and more demanding applications 

(Colajanni et al. 2012, Spinella 2013) creates a need for 

more complex but at the same time fast and reliable method 

of their classification. In author’s opinion a method based 

on multivariate statistics involving multiple geometric and 

mechanical parameters of a given fibre would be the best 

solution of the fibre classification problem.  

Exploration and analysis of large data sets combining a 

number of objects (or observations),  which are 

characterized by many parameters and variables, is difficult 

for humans (Chen et al. 2015). In spite of the fact that a 

human brain may record and process huge amount of 

signals from different sources, its ability to efficiently 

analyse of more than three or four factors presented 

simultaneously, is strongly limited. It should be highlighted 

that univariate characterization of complex data sets is 

usually restricted and difficult to perform due to the 

multifactor nature of the samples and experimental setup 

performed (Zarzycki and Portka 2015). For that reason, the 

first approach to large or very large data sets exploration 

should be based on multivariate techniques such as 

principal component analysis (PCA), projection to latent 

structures (PLS) and/or related calculations (Soroush et al. 

2015, Tutmez 2014). The concept of data dimensionality 

reduction as well as determination of the latent information 

that may exist in the initial data sets was invented at the 

beginning of the 20
th

 century by Pearson (Pearson 1901). 

The main idea was that the small set of uncorrelated 

variables (derived by specific computations from raw large 

data set) is much easier to interpret and particularly to use 

for the further analysis than dealing with initial large data 

containing huge number of correlated variables (Perez and 

Escandar 2016). Particular data handling (e.g., PCA) allows  

 

Fig. 2 Scheme of a geometric shape of a hooked steel fibre 

 

 

to extract, with minimum loss of information, the principal 

information that exist in a number of original variables and 

subsequently transform a large table into a much smaller set 

of new latent factors. Since the original set of variables is 

linearly transformed into a small set of uncorrelated new 

“virtual” variables, the relationships between investigated 

objects can be visualized on simple two- or three 

dimensional plots. Such plots can be easily analysed and 

interpreted by researchers. Particularly, PCA that is a 

special case of factor analysis (FA), allows effective data 

reduction and to determine the latent information from 

initial large data sets. Presently, PCA concept is considered 

as one of the successful implementation of linear algebra 

and has numerous applications in data analysis and signal 

processing. For many years this methodology was 

frequently used in chemistry, separation, environmental and 

material science (Pereira et al. 2016, Pereira et al. 2010, 

Zarzycki et al. 2010). Popularity and flexibility of the 

methodology is based on the convenient processing and 

interpretation of large and multivariate data sets.  

In this paper the authors proposed a new approach (from 

the construction and building materials point of view) for 

classification of engineered steel fibres. Quantitative 

mechanical parameters and geometrical properties of 

different hooked steel fibres were inspected using 

multivariate analysis based on principal component 

analysis. In contrary to an univariate approach, which is 

commonly applied for assessing the engineered steel fibres, 

the described methodology allows fast and robust objects 

classifications as well as a selection of a minimum number 

of key parameters (variables reduction), which should be 

used for accurate steel fibres classification, with a minimum 

experimental setup. 

 

 

2. Experimental setup 
 

All analysed steel fibres (investigated objects) were 

commercially available on the European market during the 

research programme. Their specification data, measurement 

methodology and applied testing protocols as well as 

experimentally determined mechanical properties were 

thoroughly described and discussed in our previous paper 

(Katzer and Domski 2012). Briefly, eight individual hooked 

fibre types were investigated originating from four 

producers (Table 1).  

Such properties as: length L (EN 14889-1 2009), 

diameter d (EN 14889-1 2009), aspect ratio (l/d), fibre 

intrinsic efficiency ratio (FIER) (Soulioti et al. 2011), hook 

geometry (Soetensa et al. 2013), tensile strength (EN ISO 

6892-1 2009) and ductility (EN 10218-1 1994) were taken 

into consideration as quantitative data. A scheme of a  
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Fig. 3 Steel fibre prepared for tensile strength test 

 

 

Fig. 4 Steel fibre prepared for ductility test 

 

 

geometric shape of a hooked steel fibre with all the 

considered dimensions annotated is presented in Fig. 2. 

FIER has been defined as the ratio of bonded lateral 

surface area of fibre, to its cross sectional area (Naaman 

2003). It is calculated for the length L (see Fig. 2) of a given 

fibre according to the Eq. (1). 

FIER = (Ψ·L)/A (1) 

Where: Ψ-perimeter of the fibre; A-cross sectional area 

of the fibre; L-see Fig. 2. 

Tensile strength test was conducted with increase of 

force at constant rate (see Fig. 3).  

Ductility test was performed on the end diameter before 

deformation. The steel was bent over a cylindrical support. 

The radius of the support was ranging from 1.75 to 2.5 mm 

depending on fibre diameter. A photo of a fibre mounted on 

the apparatus and prepared for bending over a cylindrical 

support is presented in Fig. 4. 

Geometric characteristics of the hooked ends was the 

second geometric parameter analysed during this research 

study. It is commonly known that mechanical clamping of 

the hook in concrete matrix significantly increases the pull-

out energy (Kim et al. 2008). In majority of cases the hook 

of the fibre is straightened out during the pull-out process 

without any matrix failure. A hook contribution to pull-out 

resistance is directly associated with its geometry. 

Parameter l+(a
2
+h

2
)

0.5
 was chosen to describe hook 

geometry. The parameter was successfully used by other  

 
Fig. 5 Univariate statistical characterization (mean and 

standard error values; n=28) of selected parameters 

measured experimentally with represented confidence 

intervals estimated at 95% 

 

 

researchers (Kim et al. 2008) and fibres described by the 

highest value of the parameter are recognized as the most 

efficient. 

The research programme was executed on the 

populations of 28 randomly chosen fibres for each test. 

Fibre sampling was performed with the help of table of 

random numbers to guarantee full impartiality of the test. 

Outliners from all fibre populations were identified and 

rejected using Dixon’s Q test (Ellison 2009). Kolmogorov-

Smirnov Test, also known as K-S Test (Corder and Foreman 

2009), was used to assess the normal (Gaussian) 

distribution of the achieved populations of results. The 

described properties represent all parameters commonly 

used to characterize steel fibre. Usually, only two or three of 

these parameters are given simultaneously for developing 

fibre reinforced concrete mix. Quantitative data concerning 

investigated steel fibres were inspected with PCA procedure 

using XLSTAT-Pro/3DPlot statistical and visualization 

package (version 2008.2.01) provided by Addinsoft (Paris, 

France) and working with Microsoft Excel 2002. The 

appropriateness of multivariate calculations for our data 

was assessed by performing the Bartlett’s sphericity test. 

 

 

3. Results and discussion 
 

The results of statistical study concerning mechanical 

and spatial properties of fibres in question were presented 

and thoroughly discussed by Katzer and Domski (2012). 

For the purpose of this investigation 28 individual fibres 

(objects) from each steel fibre type were randomly selected 

and measured. Statistical characteristics of selected fibres 

populations concerning key geometrical and mechanical 

parameters (variables) including FIER, hook geometry, 

tensile strength and ductility was summarized on the graphs 

presented in Fig. 5. 

So far, classification of engineered steel fibres was very 

basic and limited to fibre length and aspect ratio. Usually, 

factors associated with mechanical and physical parameters 
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reflecting properties of a given material at nanoscale level 

were omitted (Katzer and Domski 2012, Soetensa et al. 

2013, Soulioti et al. 2011). Such a situation was caused by 

used equipment for fibre concrete production and utilized 

mix designing methods. For concrete producers fibre length 

is a crucial factor influencing feasibility of fibre reinforced 

concrete production. If fibres are short enough it is possible 

to harness ordinary mixers, conveyer belts, vibrators etc. 

which are used for production of ordinary concrete. On the 

other hand all existing designing methods of fibre concrete 

mix are based on fibre aspect ratio in one way or another. 

The main advantage of using those two parameters is the 

fact that they are very easy to measure. They are also 

intuitively understood by all engineers and technicians 

involved in creating of a fresh fibre mix and erecting a fibre 

reinforced concrete structure. For the last 60 years, this 

limited approach to fibre classification has influenced 

applications of fibre reinforced concretes and development 

of mix designing methods. Multiple researchers have been 

aware of this problem and have proposed other parameters 

(Soetensa et al. 2013, Soulioti et al. 2011) to characterize 

steel fibre like FIER, hook geometry, tensile strength and 

ductility. Surprisingly, new characteristics of fibre has not 

improved fibre classification and mix designing. As it can 

be seen in Fig. 5, the univariate approach applied for 

analysis of a particular set of parameters is ineffective in 

terms of the objects classification for a given type of 

engineered steel fibres. In addition, evident fibre 

classification may be still difficult even considering 

additional geometrical parameters such as fibre length, 

diameter and aspect ratio. It should be highlighted that 

parameters listed above combine nanoscale (e.g., elements 

composition, crystals shape and size) and macroscale (e.g., 

fibre geometry) properties of fibres. Therefore, for effective 

steel fibre classification, multivariate approach involving 

principal component analysis (PCA) should be applied. 
Generally, PCA can be efficiently used for reducing the 

raw data matrix to a smaller number of uncorrelated 
variables and to determine possible latent information, 
which is difficult to recognize considering the initial data 
set. This technique may also capture the essential data 
patterns that are specific to the initial large data set. It also 
allows investigated objects classification. In this study the 
starting point for principal component analysis was data 
matrix consisting of 1578 measurements. The matrix 
consisted 224 objects (8 fibre types×28 individual fibres) 
characterized by 7 variables including: length (variable 1), 
diameter (variable 2), aspect ratio (variable 3), FIER 
(variable 4), hook geometry (variable 5), tensile strength 
(variable 6) and ductility (variable 7). The number of 
principal components characterizing this data set was 
determined by considering eigenvalues that were calculated 
as follows: 3.002, 1.816, 1.135 0.773, 0.254, 0.015 and 
0.004. An optimal number of factors to retain was selected 
using the Kaiser criterion, in which only factors with 
eigenvalues greater than 1 should be retained. According to 
this criterion, the first three factors (F1, F2 and F3) were 
selected and they “explain” over 85% of total variability 
(factors F1, F2 and F3 account for 42.8, 25.9 and 16.2% of 
the variance, respectively). To investigate, which studied 
parameters are responsible for the steel fibres group 
clustering, the factor loadings data was analysed and the  

 

Fig. 6 Principal component analysis-projection of variables 

set in 2D factor loading space (variables labelling described 

in the text and in Tables 2A-D) 
 

Table 2A Factor loadings 

Variable ID F1 F2 F3 

Var1 (Length) 0.182 0.969 -0.078 

Var2 (Diameter) -0.656 0.721 0.079 

Var3 (Aspect ratio) 0.928 0.240 -0.201 

Var4 (FIER) 0.931 0.269 -0.134 

Var5 (Hook geometry) -0.482 0.276 -0.681 

Var6 (Tensile strength) 0.699 -0.204 -0.246 

Var7 (Ductility) 0.300 0.328 0.735 

 
 

results were presented in form of a graph in Fig. 6 (F1 vs 
F2) as well as in Table 2A consisting numerical data for F1, 
F2 and F3.  

Computed data revealed that all variables impart the 

most important information and may significantly 

contribute to the further objects classification. It has also 

been revealed that aspect ratio and FIER parameters 

(variables 3 and 4) carry approximately equal information. 

In case of analysed fibre types, which were all characterized 

by circular cross-section the value of FIER is proportionally 

associated with aspect ratio. We may hypothesize that if the 

population of analysed fibre types was differentiated by 

shape of a cross-section, this parameter would carry 

different information than aspect ratio. It is also worth 

noticing that diameter (variable 2) and strength (variable 3) 

are almost contrariwise. Considering values of the factor 

loadings and contribution of the variables (listed in Tables 

2A and 2B, respectively) the most contributing variables for 

main factor F1 are aspect ratio, FIER and tensile strength.  

Those three variables contribute together 73.8%. In case 

of factor F2 length and diameter are the most influential and 

they contribute together 80.4%. Hook geometry and 

ductility mainly contribute to factor F3 (together 88.4%). 

The detailed contribution of all variables to the main PCA 

factors is presented in Table 2B (most important according 

to contribution of the variables criterion were marked as 

bold and labelled with asterisk). 

Variables (axes F1 and F2: 68.82 %)
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Table 2B Contribution of the variables (%) 

Variable ID F1 F2 F3 

Var1 (Length) 1.097 51.761* 0.541 

Var2 (Diameter) 14.321 28.621* 0.550 

Var3 (Aspect ratio) 28.718* 3.182 3.559 

Var4 (FIER) 28.861* 4.000 1.576 

Var5 (Hook geometry) 7.741 4.208 40.825* 

Var6 (Tensile strength) 16.255* 2.297 5.333 

Var7 (Ductility) 3.006 5.932 47.616* 

 

Table 2C Squared cosines of the variables 

Variable ID F1 F2 F3 

Var1 (Length) 0.033 0.940** 0.006 

Var2 (Diameter) 0.430 0.520** 0.006 

Var3 (Aspect ratio) 0.862** 0.058 0.040 

Var4 (FIER) 0.866** 0.073 0.018 

Var5 (Hook geometry) 0.232 0.076 0.463 

Var6 (Tensile strength) 0.488 0.042 0.061 

Var7 (Ductility) 0.090 0.108 0.541** 

 

Table 2D Scaled contributions (relative variance 

contributions) (%) 

Variable ID F1 F2 F3 

Var1 (Length) 0.033 0.940** 0.006 

Var2 (Diameter) 0.430 0.520** 0.006 

Var3 (Aspect ratio) 0.862** 0.058 0.040 

Var4 (FIER) 0.866** 0.073 0.018 

Var5 (Hook geometry) 0.232 0.076 0.463 

Var6 (Tensile strength) 0.488 0.042 0.061 

Var7 (Ductility) 0.090 0.108 0.541** 

 

 

To inspect more strictly the PCA factors in terms of the 

relevant variables the squared cosines of the variables and 

scaled contributions (relative variance contributions) were 

calculated and presented in Tables 2C and 2D, respectively. 

For variables 4 and 5 (F1 column) the squared cosines 

are greater than 0.5. According to such criterion (David and 

Jacobs 2014), the real correlation may exist and these 

variables strongly contribute for PCA factor F1 (appropriate 

numbers are marked as bold and labelled as double asterisks 

within Table 2C). Considering scaled contributions values 

(Table 2D) related to the first PCA factor, the variables 3 

and 4 are responsible for 75.4% of information included in 

F1 (sum of data bolded and labelled as triple asterisks 

within F1 column). In case of PCA factor F2 the squared 

cosines and scaled contributions data confirm the analysis 

based on the factor loadings (Table 2A) and contribution of 

the variables (Table 2B) criteria. Basically, the fibres length 

(variable 1) and diameters (variable 2) are strongly 

contributing to F2. Nevertheless, considering data included 

in Tables 2C and 2D the ductility (variable 7) should be 

considered as the main variable contributing to PCA factor 

F3. 

 
Fig. 7 Principal component plot showing objects clustering 

(all individual steel fibres) in two dimensional space (F1 

and F2 factors scores)-numbers from 1 to 8 are related to 

particular types of engineered steel fibres (see Table 1) 

 

 
Fig. 8 Principal component plot showing relationships 

between objects investigated (all individual steel fibres) in 

three dimensional space (F1, F2 and F3 factors scores) - 

numbers from 1 to 8 are related to particular types of 

engineered steel fibres (see Table 1) 

 

 

The principal component plot showing objects 

(individual fibres) clustering is presented in Fig. 7. 

According to data presented in the principal component 

plot, information that persists in studied mechanical and 

spatial parameters is sufficient for accurate fibres 

classification using the multivariate approach. As it may be 

observed, this technique allows precise classification of 

individual fibres taking into account two dimensional space, 

involving factors F1 and F2. Complete clusters separation 

(including fibre types 6, 8 and particularly 5 and 7) can be 
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performed considering three factors simultaneously, due to 

their location in three dimensional factor scores space (Fig. 

8).  

Observed on these PCA graphs individual steel fibres 

clustering and significant separation between clusters 

related to particular types of the fibres, strongly supports the 

hypothesis that parameters selected in this study contain key 

and almost complete information that may reveal the 

important differences between steel fibre types. 

Nevertheless, the calculations should be repeated using 

additional parameters such as pull-out strength etc. 

There is also a need to find new parameters describing, 

more precisely, properties of steel fibre that may improve 

accurate classification of such objects using multivariate 

computations. PCA factors, proposed in this study, may 

occur very valuable for modelling fibre reinforced concrete 

and identification of its properties (Sucharda et al. 2015). 

 

 

4. Conclusions 
 

Presented research has revealed that direct comparison 

of engineered steel fibres used as reinforcement for concrete 

via univariate approach may be strongly limited. It became 

clear that properties of tested fibre populations were 

significantly differentiated. Due to the nature of parameters 

commonly used for their characterization, resulting 

quantitative data may be treated as multivariate data set. 

The applied multivariate approach enables easy comparison 

of the parameters (variables) and to classify individual 

fibres for given type of engineered steel fibre. Utilized PCA 

calculations indicated that length/diameter ratio and FIER 

parameters may carry equal information in case of the fibres 

that are characterized by similar cross-section shape. The 

calculations should be repeated using additional parameters 

such as pull-out strength etc. The achieved results proved 

that there is a need of finding new parameters describing, 

more precisely, properties of steel fibre. New parameters 

may improve accurate classification of steel fibre using 

multivariate computations. 
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