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1. Introduction 
 

In the context of increasing demand to ensure the 

stability of concrete structures against the threat of bombing 

terror, understanding the behavior of RC structures 

subjected to blast loading is an important research topic. 

Accordingly, numerous studies ranging from modelling 

concrete material properties to analysis of RC structures 

subjected to blast loading have been carried out (Hao et al. 

2012, Zhang et al. 2014). Under blast loading conditions, 

concrete shows different behavior from that in a quasi-static 

condition, and this difference becomes greater as the strain 

rate increases (Cusatis 2011). Moreover, concrete develops 

a broad distribution of internal micro-cracks preceding 

crushing and cracking in the process of fracture and exhibits 

different behavior according to the combinations of stress 

states (Kwak and Song 2002). Hence, the characteristics of 

concrete caused by strain rate and multi-axial effects must 

be considered to predict the response of concrete structures 

under blast loading. 

Mathematical concrete models such as the CSC 

(Continuous Surface Cap), HJC (Holmquist Johnson Cook), 

and K&C (Karagozian & Case) models (Holmquist and 

Johnson 1993, Schwer and Malvar 2005, Murray 2007), 

which consider both the strain rate effect and the confining 

pressure effect, are widely used in the numerical analyses of 

concrete structures subjected to blast loading. Upon the 

adoption of a mathematical concrete model, blast analyses 

for concrete structures are conducted. Since the blast  
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loading usually causes nonlinear deformations induced by 

the cracking of concrete, the blast analyses of concrete 

structures must be based on the use of a crack model. To 

this end, a smeared crack model, representing cracked 

concrete as an elastic orthotropic material with a reduced 

elastic modulus in the direction perpendicular to the crack 

plane, is widely used to describe the nonlinear behavior of 

concrete structures because of its simplicity and 

computational efficiency. Nevertheless, it has a major 

drawback of mesh-size and mesh-bias dependency in 

numerical results (Cevera and Chiumenti 2006), and this 

drawback is not limited to the quasi-static conditions but is 

observed identically in high strain rate conditions such as 

blast and impact loadings (Georgin and Reynouard 2003). 

The numerical results of concrete structures consequently 

may vary depending on the change in the FE mesh size 

(Kwak and Gang 2015), and the accuracy of numerical 

results may not be guaranteed. In efforts to resolve this 

mesh dependency problem, various studies have been 

carried out, from the introduction of a viscoplastic model 

(Sluys and De Borst 1992) to the adoption of a mesh-free 

method (Rabczuk and Eibl 2006). 

Nevertheless, no guideline or criterion to reduce the 

mesh dependency of numerical results in simulations of 

concrete structures subjected to high strain rate loading has 

been introduced. As a result, the FE mesh size is entirely 

determined by the empirical judgement of the researchers. 

In contrast with the impact loading by a projectile, where a 

guideline or criterion related to the compression failure has 

been recognized as a significant issue (Kwak and Gang 

2015), blast loading warrants greater attention with respect 

to the tension failure of concrete structures. In this context, 

since the target structures mainly investigated in this paper 

are RC beam subjected to blast loading, the stress-strain  
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(a) compression region 

 
(b) tensile region 

Fig. 1 Stress-strain relation of concrete 

 

 

relation under tensile failure is of primary interest. Upon 

this background, this paper introduces a tension failure 

criterion to minimize the mesh-dependency of simulation 

results based on the fracture energy theory, and the 

corresponding tensile failure (ultimate) strain value in the 

stress-strain relation is calculated by the criterion whenever 

the FE mesh size is changed. Moreover, the introduced 

tensile failure criterion is implemented into the nonlinear 

elastic orthotropic model (Gang and Kwak 2017), which 

was proposed to depict the structural response of concrete 

subjected to blast or impact loading, and the reliability of 

the proposed criterion is examined by comparing the 

numerical prediction with experimental results (Seabold 

1970, Magnusson and Hallgren 2003) obtained by blast 

tests of RC beams. 

 

 

2. Material properties 
 

To predict the nonlinear behavior of reinforced concrete 

(RC) structures subjected to blast loading, the definition of 

the stress-strain relation must be preceded. Among the 

numerous mathematical models currently used in defining 

the stress-strain relation of concrete, this paper adopts the 

monotonic uniaxial stress-strain relation proposed by Scott 

et al. (1982) which can describe nonlinear strain hardening 

before peak strengths of fc and ft, respectively and then 

linear softening up to the failure (ultimate) strain of εu (see 

Fig. 1). In this model, failure will occur when the strain 

exceeds the ultimate strain values of εcu or εtu. Differently 

from concrete in the compression region where crushing is 

considered, if any strain of two principal strains exceeds the 

ultimate strain value, concrete in tension is assumed to lose 

its resistant capacity in the orthogonal direction to the 

developed crack only. Concrete in tension maintains its 

resisting capacity until the strains in the both the principal 

strain axes exceed the ultimate strain values of εtu. The 

corresponding ultimate strain values of εcu and εtu are 

determined by the compressive failure criterion proposed by 

Kwak and Gang (2015) and the tensile failure criterion 

introduced in this paper respectively. 

Upon the description of the monotonic envelope curve, 

the unloading-reloading paths must be defined to depict the 

hysteretic behavior of concrete. Although unloading and 

reloading follow nonlinear paths, which together from a 

hysteretic loop, this paper does not take into account these 

nonlinear paths because of their minor influence on the 

hysteretic response of the structure but rather adopts a 

straight unloading-reloading path parallel to the secant 

modulus in the compression and tension region for 

computational convenience (see Fig. 1) (Fujikake et al. 

2009). 

Under blast loading conditions, concrete material 

properties are quite different from that in a quasi-static 

condition. Due to the lateral inertia confinement and the 

change of the crack pattern (Gang and Kwak 2017), 

significant increases in the compressive and tensile 

strengths fc and ft together with increases of εc0 and εt0 are 

expected. More details of concrete material properties at 

high strain rates can be found in previous studies (Li and 

Meng 2003, Lu and Li 2011). In order to estimate these 

changes in the material properties of concrete according to 

the strain rate, various mathematical models (Shkolnik 

2008, Tu and Lu 2010) have been introduced and used in 

the numerical analyses of RC structures. Nevertheless, 

simple equations have been used in this paper to determine 

the uniaxial dynamic compressive and tensile strengths of 

concrete on the basis of the relations used by Gang and 

Kwak (2017) and the CEB-FIP Model Code (1993) 

respectively, as shown in Eqs. (1) and (2). The dynamic 

compressive and tensile strength fc
dyn and ft

dyn determined 

from Eqs. (1) and (2) will replace the static compressive 

and tensile strength fc and ft in Fig. 1. 
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(2) 

where A, B, C, and N are material constants determined by a 

SHPB (Split Hopkins Pressure Bar) test for strain rates 

ranging from 100/s to 800/s. fc
dyn and ft

dyn represent the 

dynamic compressive and tensile strength in MPa, and fc 

and ft represent the static compressive and tensile strength 

in MPa, respectively. Moreover, δ=(1+8fc/10Mpa)-1, 

logβ=6δ−2, 6 110t s    and dyn

c  and dyn

t  denote 

the corresponding compressive and tensile strain rates. 

More details including equations and material constants can  
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Fig. 2 Stress-strain relation of steel according to the strain 

rate 

 

 

be found in the CEB-FIP model code (1993) and a previous 

study (Gang and Kwak 2017).  

Since reinforcing steel generally presents identical 

material properties for compression and tension region, the 

same stress-strain curve has been adopted to trace the 

behavior of reinforcing steel under compression and 

tension. The changes in material properties of reinforcing 

steel with strain rate are similar to those of concrete. The 

yield strength and the ultimate strength of steel increases 

with increasing strain rate (Lin et al. 2008). Among many 

dynamic stress-strain relations of steel proposed on the 

basis of experimental studies (Sung et al. 2010, Peirs et al. 

2011), the relation in Fig. 2 is used in this paper because of 

its simplicity (Lim et al. 2013), where 
0.662( ) 0.0746( 0.00285)q     , 0.0755( ) 0.184( 0.0015)m    , 

and fr(ε) denotes the stress at the semi-static strain rate of 
10.003r s  . More details of the stress-strain relation 

can be found in a previous study (Lim et al. 2013). 

Upon the definition of the dynamic stress-strain relation 

of steel, the unloading-reloading paths need to be defined as 

well, and a straight unloading-reloading path parallel to the 

elastic modulus has been assumed because of its minor 

effect on the maximum response in a RC beam subjected to 

blast loading. 

 

 

3. Definition of strength envelope 
 

In order to describe the multi-axial behavior of concrete 

under blast loading, not only the uniaxial stress-strain 

relation of concrete but also the strength envelope of 

concrete should be defined, and many mathematical 

concrete models such as the CSC (Continuous Surface Cap) 

and HJC (Holmquist Johnson Cook) are currently used to 

simulate the multi-axial behavior of concrete with the 

strength envelope. However, all the models are plastic 

based models, which cannot adequately trace the strain 

softening behavior of concrete beyond the peak stress. 

Because of the limitation of plastic based models in 

describing the strain softening behavior of concrete, an 

elastic based orthotropic model (Gang and Kwak 2017) was 

proposed by the authors and has been adopted to simulate 

the multi-axial behavior of RC beams subjected to blast 

loading in this paper. 

Since the strength enhancement of concrete in biaxial 

stress states is attributed to both the strain rate and the 

lateral confining pressure, both factors should be considered 

in the strength envelope of concrete in biaxial stress states. 

Based on correlation studies between experimental results 

(Yan and Lin 2007) and associated parametric studies, 

Gang and Kwak (2017) introduced the simple expression in 

Eq. (3) to evaluate the dynamic strength of concrete in a 

biaxial compressive stress state. 

   
32
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   

 

 
(3) 

where fd  and fs are the dynamic strength of concrete in a 

biaxial stress state and the uniaxial strength of concrete 

under quasi-static loading, α=ζ1/ζ2  1 2   is the 

principal stress ratio, and P1, P2, and P3 represent 

parameters associated with material properties. By fitting to 

the test data, P1, P2, and P3 were determined as -0.446, 

1.446 and 6.42, respectively, and Eq. (3) shows good 

agreement with the test data for the change of the strain rate 

(Gang and Kwak 2017). 

The strain rate effect was considered while defining the 

dynamic uniaxial compressive strength, and the HJC model 

of   * *( ) 1 ln( )   Ng A BP C  is adopted in this paper 

upon determining the material constants A, B, C, and N 

through an experiment that consists of the SHPB (Split 

Hopkins Pressure Bar) test for strain rates ranging from 

100/s to 800/s, where ( ) g the dynamic increase factor 

for the uniaxial compressive strength (see Fig. 3), * P

normalized pressure for uniaxial stress state, and * 

normalized strain rate (Gang and Kwak 2017). The equation 

defined in the HJC model has only been used to determine 

the dynamic uniaxial compressive strength of concrete with 

respect to the change of the strain rate. The use of the HJC 

model makes it possible to accurately estimate the dynamic 

compressive strength of concrete because the four material 

constants of A, B, C, and N depending on the used material 

can uniquely and directly be determined through the SHPB 

test. Since the HJC model with the material constants used 

in this paper shows good agreement with the CEB-FIP code 

formulated on the basis of the experiment in a range from 

10-5/s to 100/s, the HJC model has been adopted instead of 

the CEB-FIP code to trace the uniaxial strength of concrete 

in a higher range of strain rates (Gang and Kwak 2017). 

Upon verifying the biaxial strength envelope and the 

stress-strain relation for the two principal stress components 

ζ1 and
 
ζ2, the other stress component ζ3 must additionally 

be considered to represent the complete three-dimensional 

strength envelope. Gang and Kwak (2017) introduced 

another function h(ζ3/fc) given as Eqs. (4) and (5) to take 

into account the triaxial stress effect. 

3
3( , ) 3.13 1c

c

h f
f


   3( 0)   (4) 

3
3( , ) 7.137 1c

c

h f
f


   3( 0) 
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Fig. 3 Triaxial strength envelope of strain rate dependent 

orthotropic model 

 

 

Accordingly, the multiplication of h(ζ3/fc) by the 

equation for the biaxial strength envelope 
( , ) ( ) ( )f g R      finally represents the triaxial 

strength envelope of concrete in the triaxial compression 

region (see 
3 3( , , / ) ( / ) ( , )c cs f h f f        in Fig. 

3). As shown in previous research (Gang and Kwak 2017), 

the triaxial strength envelope used in this paper presents 

good agreement with experimental data. 

Although a unique strength envelope has been 

introduced to define the compression-compression region 

on the basis of experimental data, no experiments have been 

carried out to define the triaxial strength envelope in the 

compression-tension and tension-tension regions. In this 

context, as was adopted in the compression-tension region 

under a biaxial stress state (Gang and Kwak 2017), the 

linear relation connecting the dynamic uniaxial compressive 

strength and the tensile strength has been used in this paper 

(see Fig. 3). Since no change of the strength envelope has 

been assumed in the triaxial tension region, the dynamic 

uniaxial tensile strength has been used to define the triaxial 

tension region. Fig. 3 shows the finally constructed triaxial 

strength envelope (Gang and Kwak 2017). 

 

 

4. Development of tensile failure criterion 
 

Fracture in concrete depends to a large extent on the 

material properties in tension and the strain-softening 

behavior induced by the occurrence and propagation of 

internal micro-cracks. In this process of fracture in concrete, 

microcracks develop and form a fracture process zone 

which manifests as strain softening. This strain softening 

behavior leads to fracture of concrete when the microcracks 

coalesce to form a single continuous macrocrack and stress 

in the zone reduces to zero. This distribution pattern of 

internal microcracks varies depending on the size of the 

specimens. When the size of the specimen is small, the 

microcracks are uniformly distributed in the specimen, 

while the microcracks are concentrated in a smaller cracked 

region of the specimen when the size of the specimen is 

relatively large (Kwak and Filippou 1990). This means that 

development of fracture patterns may vary depending on the 

change in the size of the specimens even in the same type of 

concrete, and these characteristics must be considered in the  

 
(a) Configuration 

 
(b) Idealization 

Fig. 4 Expression of fracture energy 

 

 

numerical analyses of RC structures whose cracking 

behavior has been described based on the smeared crack 

model (Cervera and Chiumenti 2006). 

In order to simulate this strain softening behavior of 

concrete in tension, many models have been proposed and 

used in the analyses of concrete structures subjected to blast 

loading which accompanies the tension failure (Hillerborg 

et al. 1976, Bažant and Oh 1983). Failure strains 

determined by these proposed models have been used in the 

analyses of concrete structures and show very satisfactory 

results when the FE mesh size is relatively small. However, 

the results of numerical analyses are quite different from 

experimental data when the FE mesh size becomes large. 

The reason for this numerical error is that the proposed 

models assume a uniform distribution of microcracks over 

the fracture zone in an element while microcracks are in 

fact concentrated in a much smaller cracked region of the 

element. 

Upon this background, a new tensile failure criterion 

that can reduce numerical error caused by the mesh-

dependency problem has been introduced in this paper, and 

its formulation starts from the fracture energy theory. As 

shown in Fig. 4(a), the fracture energy of concrete can be 

divided into two parts, the continuum fracture energy 

corresponding to the strain hardening region and the local 

fracture energy corresponding to the strain softening region 

and more attention is given to the local fracture energy of 

concrete in the tension region. The local fracture energy Gf 

defined as the amount of energy dissipated to crack one unit 

of area in a continuous crack can be expressed as the area 

under the strain softening region in Fig. 4(a). 

f fG dw   (6) 
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Fig. 5 Assumed distribution of micro-crack in an element 

 

 

where w represents the sum of the opening displacements of 

all microcracks within the fracture zone and can be 

expressed as the accumulated crack strain in the smeared 

crack model, which means nnw dn  . If it is assumed 

that the micro-cracks are uniformly distributed across the 

fracture zone, this equation can be reduced to w=b·εnn and 

the fracture energy can be expressed as Gf=gf·b, where b 

denotes the FE mesh size, and the area 
fg  under the curve 

in Fig. 4(b) can be expressed as 
f f nng d   . 

However, the relation between Gf and gf should be 

modified when a relatively large finite element size is used 

for numerical analyses. In order to consider that the 

microcracks are concentrated in a fracture process zone that 

may be small compared to the size of the finite element, a 

function f(x) that represents the distribution of microcracks 

across the element width is introduced in this paper (see 

Fig. 5). On the basis of the introduction of the function f(x), 

the relation between the fracture energy Gf and the area 

under the entire softening stress-strain curve gf can be 

expressed as ( )f f

b

G g f x dx   . This can then be 

expressed by Eq. (7) with an assumption of linear strain 

softening behavior in concrete, as shown in Fig. 4(b), where 

εt0 and εtu are the strains corresponding to the tensile 

strength of concrete ft, and a failure condition that 

characterizes the end of the strain softening region when the 

microcracks coalesce into one continuous macrocrack. 

0

1
( ) ( ) ( )

2
f f tu t t

b b
G g f x dx f f x dx         (7) 

The distribution function is defined with a general 

exponential function f(x)=α·eβ·x to represent the 

concentration of microcracks near the crack tip when the 

finite element mesh size becomes fairly large (Kwak and 

Filippou 1990) (see Fig. 5). The use of boundary conditions 

f(0)=1.0 and f(b/2)=(b0/b)γ produces the following equation 

for the distribution function 

02/ ln( / )
( )

b b b x
f x e

   
  (8) 

where b=the element width, b0=the reference value for the 

maximum element width at which a uniform distribution of 

micro-cracks can be expected, and b0=6 mm is used in this 

paper on the basis of the experimentally determined value 

(Vonk 1993). Moreover, γ represents an experimental  

 

Fig. 6 Experimental load-extension curves of specimens 

(Carpinteri and Ferro 1994) 

 

 

constant obtained from the tensile fracture test of concrete 

specimens. The substitution of Eq. (8) into Eq. (7) gives the 

following equation for the tensile failure strain εtu. 

0
0

0

0

2 ln( )

1

f

tu t

t

b
G

b

b
f b

b





 

  

 
  
    
   

 
(9) 

In Eq. (9), the experimental constant   has been 

determined through a regression analysis of the 

experimental data (Carpinteri and Ferro 1994, Van Vliet and 

Van Mier 2000, Roesler et al. 2007). A description of the 

load-extension curve obtained from the fracture test is 

provided in Fig. 6. In order to find the value of the tensile 

failure strain with respect to the specimen size, load versus 

extension curves in Fig. 6 should be converted to stress-

strain curves and then normalized for the test data 

corresponding to b=50 mm. The normalization process was 

carried out in order to exclude the effect caused by the 

strength of the specimen and to reflect only the size effect 

on the proposed failure criterion. The same procedure has 

also been peformed for the test data obtained by Van Vliet 

and Van Mier (2000). Finally, the converted failure strains 

εtu and tensile strengths ft corresponding to each specimen 

of concrete are given in Table 1. A scatter diagram for the 

tensile failure strain εtu according to the specimen size can 

be constructed as shown in Fig. 7 and then a regression 

analysis has been performed to determine the material 

constant γ. Since the experiment results show that Gf/ft can 

be considered as a constant value regardless of the size of 

the concrete specimens (Wittmann et al. 1988), the 

constructed function εtu in Eq. (9) may be considered to be 

independent of the concrete type. Fig. 7 shows the scatter 

diagram and corresponding regression relation for εtu 

introduced in this paper. The reference value for the critical 

strain εt0 is assigned as εt0=0.00015, and tensile strength 

ft=4.25 MPa and fracture energy Gf=0.083 N/mm have been 

used for the regression analysis. In advance, as shown in 

Fig. 7, the material constant γ=2.1 has been determined by a 

regression analysis for the tensile fracture test of concrete 

specimens (Carpinteri and Ferro 1994, Van Vliet and Van 

Mier 2000, Roesler et al. 2007) to be the most suitable 

value. If b is equal to 6 mm, then a uniform distribution of  

5



 

HanGul Gang and Hyo-Gyoung Kwak 

 

Table 1 Measured failure strains and material constants of 

specimens (Carpinteri and Ferro 1994, Van Vliet and Van 

Mier 2000, Roesler et al. 2007) 

Specimen width (mm) Tensile strength (MPa) Failure strain 

21 4.15 0.001398 

30 2.17 0.000782 

50 4.25 0.000415 

60 2.23 0.000521 

100 3.78 0.00029 

120 2.48 0.000351 

200 3.64 0.000187 

240 2.37 0.000229 

 

 

microcracks across the finite element width is assumed, and 

hence the expression of εtu can be simplified as 

0
3

f

tu t

t

G

f
  


. With an increase of the finite element 

mesh size, however, the value of εtu is decreased. This 

approach for defining εtu renders the analytical solution 

insensitive to the mesh size and improves the accuracy of 

the numerical results. 

Upon defining the tensile failure strain, the strain rate 

effect must additionally be considered to introduce a tensile 

failure criterion that can minimize the mesh-dependency in 

the numerical analyses of concrete structures subjected to 

blast loading that accompanies strain rate deformation. As 

shown in previous experimental studies (Zhang et al. 2009), 

an increase of the strain rate causes an increase of the  

 

 

Fig. 7 Regression analysis for εtu 

 

 

tensile strength of concrete ft as well as an increase of the 

local fracture energy Gf. 

To take into account the strain rate effect, the DIF 

(Dynamic Increase Factor) equation for Gf/ft has been 

adopted from the experimental data (Zhang et al. 2009). 

Sine DIFs for tensile strength and fracture energy have 

respectively been expressed as the function of strain rate, as 

shown in Eqs. (10) and (11), the substitution of DIF into the 

equation of the tensile failure strain εtu in Eq. (9) finally 

represents the tensile failure criterion to be used in the 

numerical analyses of concrete structures subjected to blast 

loading. However, because of the limitation of the test 

specimen in obtaining Eqs. (10) and (11), the use of the 

introduced Eqs. (12) and (13) should be restricted to a finite 

element mesh size larger than 20 mm. 

 

Fig. 8 The solution procedure of the strain rate dependent orthotropic model 
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Table 2 Material properties of the RC beams 

Specimens fc (MPa) fy (MPa) Ec (GPa) Es (GPa) Reinforcement 

WE5 27 470 27.8 200 2 No.7 / 2 No.9 

B40-D1 43 604 31.5 210 5ϕ16 mm 

 

Table 3 Information of blast loadings 

Specimens Q (kg) pr (MPa) i (kPa s) 

WE5 - 414 - 

B40-D1 1.1 650 3.76 

 Mass of explosive charge Maximum reflected pressure Impulse density 
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5. Solution procedure 
 

Upon defining the tensile failure strain and the triaxial 

ultimate strength envelope, the sequential solution steps of 

the orthotropic concrete model (Gang and Kwak 2017) 

should be introduced for application of the proposed failure 

criterion to blast analyses. A summary of the solution 

procedure for the evaluation of stresses is presented in Fig. 

8 and more details of the solution steps along with the 

corresponding operations can be found in a previous study 

(Gang and Kwak 2017). The description in Fig. 8 is related 

to the application of the failure criterion within an element. 

 

 

6. Numerical analysis 
 

To verify the accuracy of the proposed criterion in 

predicting structural behavior under blast loading, 

numerical analyses have been conducted for the WE5 RC 

beam tested by Seabold (1970) and B40-D1 tested by 

Magnusson and Hallgren (2000) using LS-DYNA 971 

(2007) along with a comparison of the numerical results to 

the concrete damage models CSC (Type 159 in LS-DYNA) 

and HJC (Type 111 in LS-DYNA) and an orthotropic model  

 

Fig. 9 Geometric configuration of WE5 RC beam 

 

 

Fig. 10 Loading history of WE5 RC beam 

 

 
(a) t=2ms 

 
(b) t=3ms 

Fig. 11 Initial stress distribution during blast analyses 

 

 

(Gang and Kwak 2017) that adopts the introduced tensile 

failure criterion. The material properties of the specimens 

are summarized in Table 2 and information of the applied 

blast loadings used in the numerical analyses is presented in 

Table 3. More details including the experimental setup can 

be found elsewhere (Magnusson and Hallgren 2000). 

The geometric configuration and the loading history of 

the WE5 RC beam are represented in Figs. 9 and 10. Blast 

loading is assumed to be applied to the RC beam as a  
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Fig. 13 Geometric configuration of B40-D1 RC beam 

 

 

uniformly distributed loading. The numerical prediction of 

the time-displacement relation at the mid span of the RC 

beam has been compared with experimental results. 

Furthermore, to examine efficiency of the proposed failure 

criterion in reducing the mesh dependency of the numerical 

results, six different size of cubic solid elements with 

dimensions of 10 mm (Mesh A), 20 mm (Mesh B), 30 mm 

(Mesh C), 40 mm (Mesh D), 50 mm (Mesh E), and 60 mm 

(Mesh F) are applied for the FE discretization of concrete, 

Furthermore, the reinforcing steel placed in concrete is 

modelled with a one-dimensional truss model constrained in 

solid elements, which is usually adopted in the modeling of 

reinforcing steel (Unosson and Nilsson 2006). Figs. 11(a)-

(b) show the initial stress distributions of the reinforced 

beam obtained from the blast analyses. The color of the 

fringe indicates the level of tensile stress distribution 

(principal stress) during the blast analyses. For concrete in 

tension, when the color of the fringe is close to red, it means 

that the concrete is cracking. As can be seen, the cracks of 

the concrete beam initiate in the center area on the bottom 

surface, and then they propagate quickly with cracks found 

in the support area on the bottom surface (Lin et al. 2014). 

Figs. 12(a) to (f) present a comparison of the 

experimental results with the numerical predictions of the 

time-displacement relation at the mid-span of the WE5 RC 

beam. Numerical results of this study in Fig. 12 are  

 

 

Fig. 14 Loading history of B40-D1 RC beam 

 

 

obtained by the use of the orthotropic model, which adopts 

a tensile failure strain value determined by the proposed 

criterion. As shown in these figures, the CSC model shows 

good agreement with the experimental data when a 

relatively small mesh size is used for the numerical 

analyses. Meanwhile, numerical results of the orthotropic 

model (Gang and Kwak 2017) that adopts the introduced 

failure criterion gives satisfactory agreement with the 

experimental results through the entire range of the FE 

mesh size considered in this study.  

The second beam is B40-D1 and the geometric 

configuration and the loading history of a RC beam for 

B40-D1 are respectively represented in Figs. 13 and 14. A 

shock wave of blast loading propagated uniformly through 

the shock tube, because the tube prevented the wave from 

expanding spherically (Magnusson and Hallgren 2003). In 

this context, blast loading is assumed to be applied to the 

RC beam as a uniformly distributed loading. 

Numerical analyses of the same procedure have been 

carried out for the B40-D1 RC beam. Figs. 15(a) to (f) 

present a comparison of the experimental results with the 

numerical predictions of the time-displacement relation at 

the mid-span of the B40-D1 RC beam. As shown in these  

   

(a) Mesh A (b) Mesh B (c) Mesh C 

   
(d) Mesh D (e) Mesh E (f) Mesh F 

Fig. 12 Time-displacement relation of WE5 RC beam 
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figures, application of the orthotropic model that adopts the 

introduced failure criterion to the blast analyses gives not 

only very satisfactory agreement between the numerical and 

the experimental results but also shows less sensitivity to 

the variation of the FE mesh size used in the numerical 

analyses. Upon the obtained results for the blast analyses of 

concrete structures, it can be concluded that the proposed 

tensile failure criterion can effectively be used to trace the 

structural responses of RC structures that accompany strain 

rate dependent deformation regardless of the FE mesh size 

that is used. 
 

 

7. Conclusions 
 

This paper introduces a tensile failure criterion that can 

minimize the mesh dependency in numerical analyses of 

RC structures based on the fracture energy theory. The 

introduced criterion is applied to blast analyses to examine 

its efficiency in reducing the mesh dependency of the 

numerical results, and its accuracy in tracing the behavior of 

a RC beam subjected to a blast loading. A Comparison 

between the numerical and the experimental results shows 

that the numerical error caused by the mesh-dependency 

problem is reduced substantially and the accuracy of the 

simulation results is reliable when the tensile failure strain 

value determined by the introduced criterion is applied to 

blast analyses. In conclusion, the introduced failure 

criterion can effectively be used in blast analyses to obtain 

reliable results regardless of the FE mesh size that is 

employed. 
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