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Abstract. This work presents an assessment of the computational performance of a vector-parallel
implementation of probabilistic model for concrete cracking in 3D. This paper shows the continuing
efforts towards code optimization as reported in earlier works Paz, et al. (2002a,b and 2003). The
probabilistic crack approach is based on the direct Monte Carlo method. Cracking is accounted by means
of 3D interface elements. This approach considers that all nonlinearities are restricted to interface elements
modeling cracks. The heterogeneity governs the overall cracking behavior and related size effects on
concrete fracture. Computational kernels in the implementation are the inexact Newton iterative driver to
solve the non-linear problem and a preconditioned conjugate gradient (PCG) driver to solve linearized
equations, using an element by element (EBE) strategy to compute matrix-vector products. In particular
the paper analyzes code behavior using OpenMP directives in parallel vector processors (PVP), such as
the CRAY SV1 and CRAY T94. The impact of the memory architecture on code performance, and also
some strategies devised to circumvent this issue are addressed by numerical experiment.

Keywords: high performance computing; openMP directives; vector-parallel performance analysis; non linear
analysis; probabilistic discrete cracking in concrete; 3D finite elements; size effects; heterogeneity material.

1. Introduction

Many researchers made significant contributions about fracture mechanics of concrete and size

effects in the last decades: Bazant (1976), Hillerborg (1976), Peterson (1981), Carpinteri (1986),

Elices, et al. (1989), Planas, et al. (1989), Hu (1991), Mihashi, et al. (1991), Tschegg, et al. (1992),

Guinea, et al. (1994), Wittmann (1995). The advance of the computational technique made possible

the simulation of heterogeneous materials as found in: Carpinteri, et al. (1994, 2003), Bazant (1997,

2002); Rossi, et al (1994), Fairbairn, et al (1999), Paz, et al. (2002a,b and 2003), Van Mier, et al.

(2003). The probabilistic crack approach, based on the direct Monte Carlo method was developed

by Rossi and co-workers (1987), in a 2D framework.

This work presents the continuing efforts towards code optimization as reported in earlier works

by Paz, et al. (2002a,b and 2003). A probabilistic crack approach, based on the Monte Carlo method, is

fully parallelized in a 3D finite element code. The cracking scheme used is discrete crack in nature,
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i.e., it is by of 3D interface elements. In this approach, the heterogeneity of the material is taken

into account by considering the properties to vary spatially according to a normal distribution.

The optimized implementation of probabilistic model for the simulation of cracking in concrete

structures was presented. This model is based on the assumption that some particularities of the

cracking behavior of concrete, such as strain softening, cracking evolution and size-effects are

derived from the heterogeneous characteristics of the material. 

The probabilistic methodology presented in this paper corresponds to the 3D analysis of a strongly

nonlinear material that develops cracking. In addition, the finite elements analysis must be called

several times within a Monte Carlo simulation. The examples presented in this paper show that the

model is capable of simulating the crack opening and the crack pattern.

Performance analyzes were carried out for the two implementations (original and modified version

of the code), both in the CRAY SV1 and CRAY T94. The computational performance will be made

in uniaxial tension test (dog-bone shaped). In this example the size/scale effects on fracture of

concrete will also be studied.

This work presents FPST (four-point shear test with one notch) a large example which was only

possible to analyze with the modified version, as described herein, of the original code. In this

example the behavior of the problem and parallel-vector performance were analyzed.

Due to the complexity of the example (FPST) that involves large number of interface elements,

non-linearity behavior of the problem is increasing. It was not possible to obtain the performance

results for a single CPU for the original version of the code. The job time with original code

exceeded a practical limit on CRAY SV1 in single CPU.

The remaining of this work is organized as follows: in sections 2 and 3 the work briefly describes

respectively the probabilistic model and the 3D interface element; section 4 describes the

computational strategies employed; section 5 addresses the numerical examples used in the

performance experiment; section 6 presents computational performance results; Section 7 closes

presenting some conclusions drawn from the computational experiments.

2. Probabilistic modeling of concrete cracking 

The heterogeneity governs the overall cracking behavior and related size effects on concrete

fracture. The probabilistic crack approach, based on the direct Monte Carlo method and developed

by Rossi, et al. (1987, 1994 and 1997), in a 2D framework, takes this stochastic process into

account by assigning in the finite element model, randomly distributed material properties, such as

tensile strength ( fct) and Young’s modulus (Ec) to both solid and contact elements interfacing the

former, that is, a discrete crack approach. This approach considers that all nonlinearities are

restricted to interface elements modeling cracks. Therefore, the stochastic process is introduced at

the local scale of the material, by considering that cracks are created within the concrete with

different energy dissipation depending on the spatial distribution of constituents and initial defects.

The local behavior is assumed to obey a perfect elastic brittle material law. Thus, the random

distribution of local cracking energies can be replaced by a random distribution of local strengths.

The present probabilistic model involves a number of mechanical properties of the material to be

determined, which constitutes the modeling data. From a large number of uniaxial tensile tests, it

was found that a normal law describes rather well the experimental distribution of the relevant

material data (Rossi, et al. 1994). These characteristics are the means of the tensile strength ( fct, μ)
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and of the Young’s modulus (Eμ); the standard deviations of the tensile strength ( fct,σ) and of the

Young’s modulus (Eσ). The following analytical expressions were proposed:

fct, μ = 6.5 · C · (VT /Vg)
−a;        fct,σ = 0.35 · fct,μ(VT/Vg)

−b  (1)

(2)

where VT is the volume of the two finite elements contiguous to an individual contact element of

the mesh; Vg is the volume of the coarsest aggregate; E is the mean value of the Young’s modulus

which does not exhibit significant volume effects; and a, b, c constants related to cylinder

compressive strength fc

 (3)

 (4)

 (5)

with C=1 MPa. In these expressions, the compressive strength fc represents the quality of the

concrete matrix, while the volume of the coarsest aggregate Vg, refers to the elementary material

heterogeneity.

Fig. 1 shows, in a double logarithmic space, the tensile strength domain as a function of the

volume ratio Vt /Vg for a concrete of compressive strength fc=60 MPa, calculated from Eq. (1). The

figure shows that the smaller the scale of observation (respectively the modeling scale), the larger

the fluctuation of the local mechanical properties, and thus the (modeled) heterogeneity of the

matter. In other words, the finer the mesh, the greater the modeled heterogeneity in terms of

Young’s modulus and tensile strength. In this way, the probabilistic approach aims at modeling size

Eμ E  ;= Eσ E⁄ 0.15 Vt Vg⁄( ) c–
=

a 0.25 3.6 10
3–

 fc C⁄( ) 1.3 10
5–

 fc C⁄( )2⋅+⋅–=

b 4.5 10
2–⋅ 4.5 10

3–
 fc C⁄( ) 1.8 10

5–
 fc C⁄( )2⋅+⋅+=

c 0.116 2.7 10
3–

 fc C⁄( ) 3.4– 10
6–

 fc C⁄( )2⋅⋅+=

Fig. 1 The tensile strength domain of concrete according to the probabilistic crack approach, Rossi, et al.
(1987)
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effects by bridging the gap between the strength theories and linear fracture mechanics: for small

volume-ratios, the strength criteria are enriched by the randomness of material strength (Weilbull

1939); for larger sizes, both the mean value and the standard deviation decrease, i.e., the Weibull-

type statistical size effects decrease. This is in agreement with Bazant’s (1997) asymptotic analysis

of quasi-brittle fracture. Provided that the elementary material volume (i.e. volume of the solid finite

element VT) remains small with respect to the structural volume, the numerical results are mesh

independent (Rossi, et al. 1996).

The mesh has ν volume elements (tetrahedral element) and i interface elements. Each interface

element follows an elastic-brittle constitutive law characterized by an individual tensile strength fct, i.

The volume elements are elastic and have individual Young’s modulus referenced by Eν.

Following Rossi, et al. (1994) the individual local tensile strengths and Young’s modulus are

represented by normal distributions having the densities:

(6)

(7)

where gf ( fct) and gE(E) are density functions for the tensile strength fct and the Young’s modulus E,

respectively; while xμ and xσ denote the mean and standard deviation of the distribution of quantity

x. For the problem at hand, it is possible to find a sample of i values fct,i, each value corresponding

to an interface element i, and v values Eν, each value corresponding to a volume element v, by

using a standard routine for generation of random numbers for a given normal distribution (Press, et

al. 1992).

The solution for this probabilistic approach is obtained by means of a Monte Carlo simulation. A

number of n samples are generated for a given normal distribution and some characteristic

responses of the structure are computed; for example, stress crack-width σ − w curve or load

displacement P-δ curve. This direct Monte Carlo procedure is sketched in Fig 2. Let the jth sample

correspond to the jth P-δ curve. This jth P-δ curve is composed of discrete values,  and ,
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Fig. 2 Monte Carlo simulation
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where the superscript j indicates the sample and the subscript k the discrete value of the P-δ curve.

The same number of discrete δ-value is assumed. The mean curve composed by pairs ( )

then simply reads

 (8)

The Monte Carlo simulation is stopped when

 (9)

where tol is the prescribed tolerance to check the convergence of the procedure. With the

convergence of the procedure, the total number of samples is set to n=j. This total number of

samples n, corresponding to a Monte Carlo converged simulation, clearly depends on tol, which is a

measure of the precision required by the analysis. It also depends on the heterogeneity of the

material represented by the standard deviation. The more heterogeneous the material is the greater is

the number of samples to obtain a converged solution. Experience indicates that 15 to 30 samples

are sufficient to obtain a converged P-δ curve.

For a given normal distribution characterized by the mean and standard deviation of the tensile

strength, the described direct Monte Carlo procedure delivers a P-δ mean curve which is

characterized by the  and  values.

3. Three-dimensional interface elements for modeling discrete cracking 

The finite element cracking model is a discrete model for which volume elements are assumed

elastic and cracking only occurs in elastic-brittle interface elements (Fig. 3b) placed between two

neighboring surfaces of the volume elements. The three dimension interface elements depicted in

Fig. 3(a) can be thought as triangular base prisms connecting adjacent faces of neighboring

Pk
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Fig. 3 (a) An interface element and its degrees of freedom in a local system and (b) elastic-brittle contact law
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tetrahedra. These elements are formulated to represent relative displacements between the triangular

faces to simulate crack opening. The formulation of the interface element was developed by Paz, et al.

The constitutive law of the 3D interface element is defined by Eq. (10) for non cracked elastic

state characterized by σn < fct,i. When the tensile strength is reached the elements attains the cracked

stage and modulus Ec and Gc are set to zero (Fig. 3b).

 (10)

In Eq. (10) the subscript n stands for normal, while s and t indicate tangential direction respective

to the crack plane, w are the relative displacements between the two faces of the interface element,

h is the width of interface element, Ec and Gc are respectively the normal (Young’s) and the shear

modulus along crack plane.

Eqs. (10) and Fig. 3(b) define the elastic-brittle constitutive behavior. The thickness h plays the

role of a penalization parameter and should be conveniently chosen not to affect the solution. 

In order to select the element we define the ratio ξ e;

(11)

where the superscript e indicates an interface element;  is the normal stress to the crack plane,

and  tensile strength for interface element. At each iteration only the element presenting the

largest is allowed to develop a crack, i.e., Ec=Gc=0. The remaining interface elements for

which  are kept with the last non zero Ec and Gc. This approach renders a robust equilibrium

path until reaching the limit load.

The kinematic relation for the interface element is;

 (12)

where

 (13)

Δw is the crack opening incremental and  is the vector incremental nodal displacements for the

interface element.

Applying a standard displacement based F. E. formulation, the resulting tangent stiffness matrix

for the interface element is given is:

 (14)

The interface elements are generated contiguous to the faces of selected tetrahedra elements. This

selection is performed by the user, defining a 3D box inside the mesh that contains the target

elements.
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3.1. Three-dimensional interface elements mesh generation

Fracturing is modeled by 3D interface elements generated in a previously defined cracked region.

This selection is performed by the user defining a 3D box inside the mesh that contains the target

elements. Once having a 3D mesh (either structured or not) of tetrahedra, the cracking region is

defined by a bounding box. The interface elements then are generated contiguous to the faces of the

tetrahedra within the cracking region (developed by Paz, et al.)

The procedure initially establishes the neighborhoods of the faces, then it maps how many

elements share each node. Later it creates the nodes necessary to the interface elements, all nodes

having the same coordinates of the neighboring node. After this all nodes with the same coordinates

are visited, and the first element of the loop takes the existing node of the initial mesh of tetrahedra

(see Fig. 4a) and, for the other elements that share this node, a new node numbering (see Fig. 4b) is

introduced. Later connectivities are created, introducing the interface elements according to an

ordering previously established.

Interface elements with collapsed nodes provide continuity to the elements outside the cracked

region (see Fig. 4c). These elements are implemented using an artifice that allows the use of

elements with six nodes. This artifice consists of multiple references for the same collapsed nodes

duplicating the node numbering for the elements outside the 3D box.

4. Computational strategies 

In this work we employ the Inexact Newton Method (Kelley 1995) to solve the resulting

Fig. 4 Interface element mesh generation
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nonlinear set of equations at each load or displacement increment. In the Inexact Newton Method,

at each nonlinear iteration, a linear system of finite element equations is approximately solved by

the preconditioned (nodal block diagonal) conjugate gradient method (PCG). The outline of the

nonlinear solution algorithm is presented in Box 1.

Note that in  we account for nodal forces, body forces and prescribed displacements and

stresses . The total internal forces vector  is the sum of the tetrahedra element vector

internal forces  plus the interface element internal forces vector .

The computational kernel for a PCG driver is the matrix-vector products Ap where A is global

stiffness and p is the vector of residuals (Kelley 1995). In our implementation, following the EBE

approach of Hughes (1987), the global matrix A is never assembled when used as a linear operator.

Taking each element contribution to this product, considering both solid and interface elements, the

products Ap can be recast as follows:

 (15)

Fext

k

U σ, Fint

i

Fint

i( )Tetra Fint

i( )Intf

Ap KTetra pi( )
i 1=

Ntetra

∑ KIntf pj( )
j 1=

NIntf

∑+=

Box 1 Inexact Newton algorithm
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where, Ntetra is the number of tetrahedra, Nintf is the number of interface elements, KTetra and KIntf are

respectively element matrices for the tetrahedra and interface; pi and pj are the components of p

restricted to the degrees of freedom of each element type. 

Stiffness matrices for tetrahedra are computed and stored at the beginning of the analysis since

they are elastic, while the stiffness matrices for interface elements are updated at every nonlinear

iteration. These arrays are stored accounting for the symmetric and rank deficiency of the

unassembled element matrices yielding 78 stored coefficients for tetrahedral and for the interface

element only 18 coefficients are stored, exploring the particular structure of the discrete gradient

operator. The mesh coloring algorithm of Hughes (1987) was extended to block both solid and

interface elements into disjoint groups thus enabling full vectorization and parallelization of the

operations involved in Eq. (15). An approximate solution is obtained when the Inexact Newton

termination criterion is satisfied, that is.

  (16)

Tolerance ηi may be kept fixed throughout the nonlinear iterations or may be adaptively selected

as the iterations progress towards the solution. Our choice for ηi follows the criteria suggested by

Kelley (1995).

Several preconditioner options are available ranging from the nodal block diagonal up to

incomplete factorizations. In this work, we restricted to nodal block diagonal.

According to the above algorithm, an approximate solution is obtained when the Inexact Newton

termination criterion is satisfied, that is, when,

The selection for ηi follows Kelley (1995), based on a measure of how far the nonlinear iteration

is from the solution, that is,

(17)

And finally ηi = max( ) Kelley (1995) has shown general convergence properties when Eq.

(17) is used. 

Our experience indicates that selecting ηmax, =0.1 and 10−3
≤ ηmin ≤ 10−6 for utol and rtol in the

usual range, that is, 10−3 tol, is enough for practical engineering computations.

4.1. Code parallelization the implementation made extensive use of the OpenMP
directives

The !$OMP PARALLEL directive creates (i.e. opens) the parallel region and the !$OMP END

PARALLEL directive destroys (i.e. closes) the parallel region. Each variable inside this parallel

region may have one of the following three basic attributes: SHARED single storage location in

memory for the duration of the parallel construct, PRIVATE multiple storage locations in memory

for duration of the parallel construct and REDUCTION for both private and shared storage

behavior.

In the modified code, critical regions were restructured in order to circumvent the bottle-necks

that inhibit parallelism, and in those cases using CRAY libraries. 

In order to illustrate the modifications introduced, the pseudo-code fragment of internal forces

evaluation for interface element is listed in Box 2. Our experience indicates that to increase
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robustness of nonlinear solution process we have to limit only one interface element to “crack” at

each nonlinear iteration.

The search algorithm was divided into two loops: the first evaluates the all element stresses

(All_stress(iel)); the second points out the maximum stress (stress_max) and the correspondent

element is pointed out with the aid of routine wheneq subroutine from Cray/F90 library. This

procedure avoids critical memory references accomplishing the internal force correction outside the

referred parallel loop.

Parallel performance was assessed using Atexpert tool. According to Atexpert tool this subroutine

appears to be 99.8 percent parallel and 0.2 percent serial. In the evaluation of the subroutine

Amdahl’s Law predicts of was achieve a 11.9 times speed-up on 12 CPU’s and A 10.7 speed-up is

predicted with 12 CPU’s on a dedicated system.

4.2. Memory access strategies in the PVP machine

This work assesses the behavior of the code in two PVP machines: a) the CRAY T94, which has

Box 2 Pseudo code fragment of the modified code: Subroutine for computing internal force for the interface
elements
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4 CPU’s and peak performance for a single CPU of 1.8 Gflop/s, b) the CRAY SV1, which has 12

CPU’s and 1.2 Gflop/s per CPU’s. However, memory architecture is different: CRAY SV1 has

cache-memory hierarchy, while T94 has not. 

In order to improve the strategies for memory access, several alternatives were tested, and the

following changes have been consolidated:

To optimize memory access it was necessary to reorganize the mesh data trying to improve data

locality for the EBE computations. The mesh generation for tetrahedra and interfaces is done in

distinct generators. For that reason an arbitrary node numbering is formed. To overcome this

problem the Reverse Cuthill-McKee algorithm RCM (1972) was used to reorder the nodal graph

(implemented in modified code, show in Box 3). 

A well known fact in an EBE interative driver is that the most time consuming computational

kernel is the matrix-vector product. In the implementation adressed herein, these kernels are

implemented by the routines Smatv-intf and Smatv-tetra, (original code, show in Box 4)

respectively for the interface and tetrahedra, as suggested by Eq. (15).

In previous works (Paz, et al. 2002a,b and 2003) it was observed that the matrix-vector products

routines are most time consuming. The strategy of the operations was changed, these routines have

been modified partitioning each routine in two, as for tetrahedral as for interface elements, Smatv1-

tetra, Smatv1-intf and Assemb-tetra and Assemb-intf. Shown in Box 5 and 6 to follow:

As can be observed, there occurred switching array dimension and splitting the original loops into

two loops: one exclusive for the matrix-vector products and another for the assembly phase.

Box 3 A pseudo code fragment of the modified code: Subroutine Reverse Cuthill-McKee

Box 4 A pseudo code fragment of the original code: Subroutines Smatv-tetra and Smatv-intf
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5. Numerical examples 

In order to validate de implemented code, this work employed two cases: the first case of the

uniaxial tension tests on dog-bone shaped concrete specimens by Carpinteri, et al. (2003); and the

other case of the four-point shear test with one notch by Carpinteri, et al. (2003).

5.1. Uniaxial tension test: dog-bone shaped specimen

The first case (Carpinteri, et al. 2003. Fig. 5) dog-bone shaped geometric characteristics are with

unstructured three meshes (Fig. 6a, b, c and Table 1). A uniform displacement field is applied in 30

incremental steps, at the top surface as shown in Fig. 5. Concrete with maximum aggregate

diameter of 8.00 mm was used (to compute Vg the volume of coarsest aggregate Eqs. 1-2).

The curves stress-strain for meshes A, B and C show in Figs. 7(a), (b), (c) concern with Monte-

Carlo simulations using 20 samples. Fig. 8 presents the comparison of numerical results; Curves

Box 5 A pseudo code fragment of the modified code: Subroutines Smatv1-tetra and Smatv1-intf

Box 6 A pseudo code fragment of the modified code: Subroutines Assemb-tetra and Assemb-intf
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means Monte Carlo simulations and Carpinteri, et al. (2003): Stress vs. strain. Fig. 9 presents the

crack configuration for a given sample at a stage corresponding to the softening branch of the

stress-strain curve (Mesh B).

The following conclusion based on the results presented in this example: Size-scale effect

experiments using dog-bone shaped concrete specimens have shown a decrease of nominal strength

with increasing specimen size. This model is able to predict the size effects even in tests where the

classical approach fails, e.g., the uniaxial tension test. Size effect in uniaxial tensile tests can

therefore be seen as consequence of the heterogeneous microstructure of concrete. The

Fig. 5 Uniaxial tension test specimens, dimensions and geometry, dog-bone shaped concrete specimen by
Carpinteri, et al. (2003)

Fig. 6 Representations of the computational meshes tetrahedra (black) and interface elements (gray):
(a) Mesh A, (b) Mesh B and (c) Mesh C

Table 1 Details of meshes and material

Uniaxial 
tension testes

Nº of total 
elements

Nº of 
tetrahedral

Nº of 
interface

Nº of 
nodes

Fct MPa Ec MPa

Mesh A 2040 1326 714 1232 4.5 42000

Mesh B 5987 4468 1519 2746 3.5 42000

Mesh C 33931 30292 3639 11815 2.5 42000
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heterogeneity governs the overall cracking behavior and related size effects on concrete fractures.

The determination of fracture properties of concrete by means of the uniaxial tension has been

described. The uniaxial tension test is the most fundamental test to determine the fracture proprieties

of a material. 

5.2.  Four-point shear test with one notch FSTP

In order to validate de implemented code, we employed the four-point shear test (FSTP) with one

notch. The case as reported in Carpinteri, et al. (2003), has regular geometric characteristics as

shown in Fig. 10. The Fig. 11 (Table 2) displays the unstructured computational mesh for the test. 

Fig. 8 Comparison of numerical results, Stress vs. strain: (a) Curves means Monte Carlo simulations and
(b) Carpinteri, et al. (2003)

Fig. 7 Results for the complete Monte Carlo simulation for uniaxial tension testes: Stress vs. strain.
(a) Mesh A, (b) Mesh B and (c) Mesh C
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A uniform displacement field is applied in 30 incremental steps, at the top surface as shown in

Fig. 10. Concrete with maximum aggregate diameter of 8.00 mm was used (to compute Vg the

volume of coarsest aggregate Eq. 1-2).

The curves load vs. CMOD (crack mouth opening displacement) for beam FPST are shown in

Fig. 12(a) concern with Monte-Carlo simulations using 15 samples and Fig. 12(b) concern the

results of Carpinteri, et al. (2003). Fig. 13 presents the crack configuration for a given sample at a

stage corresponding to the softening branch of the load vs. CMOD curve

Fig. 9 Crack evolution for numerical simulation-Mesh B: (a) step 10, (b) step 20 and (c) step 30 

Fig. 10 Four-point shear test with one notch FSTP; specimen, geometry, dimensions: Carpinteri, et al. (2003)
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This work presents a large FPST example which was only possible to analyze with the modified

version of the original code as described herein. Due to the complexity of the example the four-

point shear test with one notch that involves large number of interface elements, increasing non-

linearity behavior of the problem.

6. Computational performance 

A comparative code performance was carried out for the two implementations (original and

modified version of the code), both in the CRAY SV1 and CRAY T94. The computational

performance was evaluated through the uniaxial tension test problem using the dog-bone shaped

Fig. 11 Representations of the computational mesh tetrahedra (black) and interface elements (gray) for the
simulation of a four-point shear test with one notch FSTP

Table 2 Details of the mesh and material

Nº of total
 elements

Nº of 
tetrahedra

Nº of 
interface

Nº of
nodes

fct MPa Ec MPa

Beam
FPST 25756 12373 13383 23401 2.0 40000

Fig. 12 (a) Results for the complete Monte Carlo simulation. load vs. CMOD (h = 0.20). (b) Results Capinteri, et
al. (2003) load vs. CMOD
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model with mesh C, as described in sec. 5.1.

Fig. 14 displays results for a single CPU run of the original and modified code on the CRAY

SV1, showing (Fig. 14a) the observed floating point operations rate (Mflop/s) for the two most

computationally intensive subroutines (Smatv1-intf and Smatv1-tetra) and for 1 sample with 30

steps the whole job, in Fig. 14b showing for subroutines the average time in seconds per call, in Fig

14(c) displays CPU time whole job. As expected, the most intensive subroutines implement the

EBE matrix-vector products for interface elements and tetrahedra. In conjunction they are

responsible for over 90% of the CPU time in the original code implementation.

Since the modified code implements the assembly and matrix-vector product in separate

subroutines, the values presented on Fig. 14(d) have to be added to the performance values obtained

for assembly subroutines namely Assem-intf and Assem-tetra respectively so as to evaluate the

speed-up over original code. It was observed an overall speed-up by a factor of 1.57-1.58

(respectively for the interface and tetrahedral) for the EBE computations. Overall code performance

results can be seen in Fig. 14(d), where Mflop/s and CPU time for the whole job are displayed. The

modified code achieved an overall speed-up of 1.64.

Fig. 13 Crack evolution for numerical simulation
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Figs. 14(e), (f) present results for a single CPU the fraction of CPU time (%), relative to the whole

job.

The same tests were carried out in the CRAY T94 Figs. 15(a)-(f) display equivalent results as the

previous Figs. 14(a)-(f) this time for the CRAY T94 platform. The performance results for the

modified code are equivalent to the results obtained in the CRAY SV1. It was observed an overall

speed-up by a factor of 1.69-1.67 (respectively for the interface and tetrahedra) for the EBE

computations. Overall code performance can be seen in Fig. 15(d), where Mflop/s and CPU time

for the whole job are displayed. The modified code achieved an overall 1.65 fold speed-up.

Figs. 15(e), (f) present results for a single CPU the fraction of CPU time (%), relative to the

whole job.

As observed in the experiments, the code modifications provided significant speed-up in a single

CPU (~1.7 on average for the whole job). It should be mentioned that the original code was already

developed for PVP machines.

Next, we present the performance analysis for the four-point shear test with one notch (FPST) test

problem. Due to the complexity of the example that involves large number of interface elements,

Fig. 14 Performance analysis in single CPU for CRAY SV1-Uniaxial tension test mesh C, for the original
and modified code. (a) The top subroutines and for 1 sample with 30 steps-whole job, (b) Average
time in seconds per call, (c) CPU time whole job, (d) Speed-up, (e) and (f) Single CPU (%) to the
whole job
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Fig. 15 Performance analysis in single CPU for CRAY T94- Uniaxial tension test mesh C, for the original
and modified code. (a) The top subroutines and for 1 sample with 30 steps-whole job, (b) Average
time in seconds per call, (c) CPU time whole job, (d) Speed-up, (e) and (f) Single CPU (%) to the
whole job

Fig. 16 Performance analysis in single CPU for CRAY-SV1 (modified code). Four-point shear test with one
notch FPST. (a) the top subroutines and 1 sample with 30 steps whole job (b) Average time (s) per
call, (c) CPU time (s) whole job and (d) Single CPU (%) to the whole job
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increasing non-linearity behavior of the problem, it was not possible to obtain the performance

results for a single CPU for the original version of the code. The job time with original code exceed

a practical limit on CRAY SV1 in single CPU. This work presents a large example which was only

possible to analyze with the modified version. Figs. 16(a)-(d) display equivalent results as the

previous Figs. 14(a), (b), (c), (f), these results for the CRAY SV1 platform. The CPU time of the

vectorized single processor run for CRAY SV1 is 2.32E+4 seconds for the whole job.

Parallel performance was assessed using CRAY’s Atexpert tool. The results for a test run for four-

point shear test with one notch (FPST) are shown in Table 3 and Fig. 17, for the top four routines.

Results displayed consider the amount of parallelism (%), the corresponding Speed-up predicted by

Amdahl’s and the expected speed-up on a dedicated run on a 12 CPU system, as predicted by

Atexpert tool.

According to Atexpert tool this program appears to be 99.0 percent parallel and 1.0 percent serial.

Amdahl’s Law predicts the program could expect to achieve a 10.8 times speed-up on 12 CPU’s

and a 10.1 speed-up is predicted with 12 CPU’s on dedicated system. Parallelism was not affected

by these modifications and predicted parallel speed-ups are encouraging.

The probabilistic methodology study in this paper corresponds to the 3D analysis of a strongly

nonlinear material that develops cracks. In addition, the finite elements analysis must be called

several times within a Monte Carlo simulation. The modified version of the code was optimized in

such a way that the simulation time did not exceed a practical limit.

Table 3 Summary of the ATEXPERT’s Report for the 4 dominant loops CRAY SV1

ROUTINES % Parallel Amdahl’s law
Speed-up

Predicted
Speed-up

Smatv1-intf 99.8 11.5 11.8

Smatv1-tetra 97.8 10.5 10.7

Assemb-intf 99.8 11.4 11.8

Assemb-tetra 100.0 11.4 12.0

Fig. 17 Parallel speed-up charts according to Atexpert tool: (a) Whole job (b) The top 4 subroutines
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7. Conclusions

This work presented the key issues regarding the implementation and optimization of a

computational code for three-dimensional analysis of probabilistic discrete cracking in concrete.

Basic guidelines for the implementation considered as target computational platforms shared

memory vector processors (PVP’s) such as Cray SV1 and Cray T94. Optimization techniques

included algorithm and data structure reorganization in order to allow the analysis of large scale

models. Two test problems were used to validate the model and access the implementation

performance. In both cases, the obtained results showed good agreement with results available in

literature. As observed in the experiments, the introduced code modifications provided significant

advance in more complex models, achieving good vector-parallel performance. As an attempt to

enhance data localization, a critical aspect in systems with memory hierarchy, data reorganization

was enforced in the implementation through a graph reordering technique (i.e. Reverse Cuthill-

McKee). However, performance bottlenecks related to data access in architectures with memory

hierarchy were still observed and techniques for circumventing this issue are currently under further

investigation.
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