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Fuzzy methodology application for modeling uncertainties
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Abstract. Chloride ingress is a common cause of deterioration of reinforced concrete located in coastal
zone. Modeling the chloride ingress is an important basis for designing reinforced concrete structures and for
assessing the reliability of an existing structure. The modeling is also needed for predicting the deterioration
of a reinforced structure. The existing deterministic solution for prediction model of corrosion initiation
cannot reflect uncertainties which input variables have. This paper presents an approach to the fuzzy
arithmetic based modeling of the chloride-induced corrosion of reinforcement in concrete structures that takes
into account the uncertainties in the physical models of chloride penetration into concrete and corrosion of
steel reinforcement, as well as the uncertainties in the governing parameters, including concrete diffusivity,
concrete cover depth, surface chloride concentration and critical chloride level for corrosion initiation. There
are a lot of prediction model for predicting the time of reinforcement corrosion of structures exposed to
chloride-induced corrosion environment. In this work, RILEM model formula and Crank’s solution of Fick’s
second law of diffusion is used. The parameters of the models are regarded as fuzzy numbers with proper
membership function adapted to statistical data of the governing parameters instead of random variables of
probabilistic modeling of Monte Carlo Simulation and the fuzziness of the time to corrosion initiation is
determined by the fuzzy arithmetic of interval arithmetic and extension principle. An analysis is implemented
by comparing deterministic calculation with fuzzy arithmetic for above two prediction models.

Keywords: corrosion initiation time; service life; fuzzy; reinforced concrete; Monte Carlo simulation;
probabilistic.

1. Introduction

The chloride induced corrosion of steel reinforcement embedded in concrete is the major cause to

deterioration and reducing its related service life of RC structure.
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In normal environment case, concrete protects steel reinforcement from corrosion by forming a

passive film around the steel due to the high alkalinity of the concrete pore solution. However

when chloride ions from the origin such as deicing salts or seawater penetrate into the concrete

and reach the steel surface, they disrupt the passive film and initiate corrosion. The corrosion of

steel reinforcement will start immediately after the chloride content of concrete near the

embedded steel reaches a critical level, which defines the resistance of steel to corrosion.

Consequently, the onset of corrosion is governed by the surface chloride concentration, concrete

diffusivity, concrete cover depth of the steel, corrosion critical level, as well as moisture level in

terms of the pore solution, and the availability of oxygen. Herein, the prediction of the onset of

corrosion is very important in order to reduce life cycle costs and enlarge the service life of RC

structure as earlier stated. Thus, a reliable prediction model of chloride penetration into reinforced

concrete structures is critical for predicting the time to onset of corrosion of steel reinforcement

(AIJ 2004 and Lounis 2001).

Mathematical models of chloride ingress currently being developed are primarily based on

chloride diffusion, which can be used as starting points in the development of service life prediction

tools and performance-based specifications. Even if chloride ingress into concrete is complex,

models are constructed around Fick’s second law of diffusion and the error function solution by

Crank. Fick’s second law of diffusion concerns the rate of change of concentration with respect to

time as follows:

 

(1)

with boundary condition of Cx = 0 at t = 0 and 0 < x < ∞ or Cx = C0 at t = 0 and 0 < x < ∞ .

It can be noted from Eq. (1) that the determination of time to corrosion initiation requires the

values of Deff, C0, Cx and x. These variables of the deterministic prediction model assume the

uncertainty associated with governing parameters such as exposure condition, type and quality of

concrete, and quality of construction.

Where Deff = apparent diffusion coefficient of concrete

Co = surface chloride concentration

Cx = chloride concentration at the concrete cover depth from the concrete surface

x = concrete cover thickness

However, existing physical deterministic models for the time of corrosion initiation by chloride

ingress provide point estimates (or fixed values) to determine a possible prediction time. This is

generally not sufficient to identify predominant contributory prediction time that accounts for the

uncertainties identified earlier. Therefore, the model needs to be further developed to include

uncertainties in order that the ‘probability’ or ‘possibility’ of corrosion initiation time can be

quantified. Possible approaches for doing this are Monte Carlo simulations, first order reliability

methods and possibilistic analysis using fuzzy arithmetic (Do 2004).

In recent years, there has been much study about processing the uncertainty of the variables by

using Monte Carlo (MC) simulation, by which the parameters of the models are modeled as random

variables and the distribution of the time to corrosion initiation and probability of corrosion are

determined. MC simulation proves to be well applicable but it is very difficult to be manually

calculated because it generates the relevant random values of a number of variables (Abebe 2000

and Lounis 2001).

In this paper, a possibilistic approach based on the fuzzy method is pursued to include
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uncertainties in prediction models. The uncertainties of the deterministic model associated with

various conditions are treated by fuzzy arithmetic which is a successful tool to solve engineering

problems with uncertain parameters. The shape of variable derived from measured data is modeled

as the standard form of triangular fuzzy numbers (TFN) which are just a rough approximation of

the really existing uncertainty (Hanss 2000 and 2002). The prediction capability of fuzzy variable

treated-prediction model is illustrated in a case study of a reinforced concrete building structure in

coastal environment.

2. Uncertainty in prediction model and its process methodology

2.1. Classification of existing prediction models

There are a variety of mathematical models explicitly predicting corrosion initiation time in a

quantitative way. These existing prediction models can be usually made a divide between physical

and empirical models as described below.

1) Physical models: Physical models are based on theories on how transport of different

substances takes place in a material. 

2) Empirical models: Empirical models are based on observations of response from structures,

exposed either in field or in laboratory. The observations are used to derive and quantify the

parameters in the models. 

There is a danger to use observations from already built structures, which is the case with empirical

models, since they are influenced both by the materials, environments and the workmanship during

construction. Thus, it is necessary to consider that the results from a prediction model never better

quality than the input data (Ciampoli 1999).

Fig. 1 Schematic representation for chloride ingress into concrete
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As mentioned earlier, reinforcement in concrete is normally in a passive state due to the properties

of the surrounding cement paste (high alkalinity). When the reinforcement is in the passive state the

rebars are protected with thin layer of iron oxide. This passive state can be changed in main ways

of the chemical process of reinforcement corrosion. It is normally divided into two different periods,

initiation and propagation. The initiation period is the time during which changes in the concrete

takes place, in interaction with the exposure environment, until a limit is reached and damage starts

to propagate. The propagation period begins when certain defined event occurs, e.g., initiation of

corrosion, and it goes on until a specified limit state is reached. During the initiation period the

reinforcement steel is depassivated due to ingress of chloride ions into the concrete. A simple, but

useful, model to predict the lifetime of a concrete structure, exposed to chloride ingress, is

proposed. The model is shown in Fig. 2 (Tutti 1982).

2.2. Uncertainties existing in prediction models

To achieve reliable results for the numerical solution of the deterministic prediction problem,

exact values for the parameters for the problem equations should be available. In practice, however,

exact values can not be provided. The model parameters exhibit variability, e.g., due to both

irregularities in manufacturing when considering the physical properties of a material and

uncertainties in measuring when considering the environmental condition.

Theses uncertainties can be grouped into aleatoric uncertainty and epistemic uncertainty. The

aleatoric uncertainty arises from the physical or inherent uncertainty identified with the random

nature of the basic parameters that govern the chloride penetration and corrosion mechanisms. This

uncertainty is associated with variability of the concrete cover depth, uncertainty of the chloride

concentration at the surface, and uncertainty of the chloride diffusion coefficient. 

The epistemic uncertainty arises from the uncertainty in the models for chloride transport and

corrosion initiation. The model uncertainty results from the use of a simplified physical model of

the actual phenomenon, such as assumption of chloride transport mechanism governed by diffusion,

use of simplified models of the diffusion coefficient and driving chloride concentration and use of

simplified chloride critical level to define the corrosion resistance of steel reinforcement. The

epistemic uncertainty also arises from statistical uncertainty due to estimating statistical representative

Fig. 2 Model for reinforcement corrosion, with a division into initiation and propagation periods (Tutti 1982)
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value of an average from a limited sample size. Thus, it is clear that a deterministic prediction

model can be quite improper in predicting the actual structural response to environmental condition

(Lounis 2001 and Thoft-Christensen 2001).

To solve this limitation, the application of fuzzy set theory proves to be a practical approach.

More specifically, the uncertainties in the model parameters can be taken into account by

representing the effects of scatter by fuzzy numbers with their shape derived from statistical data

(Hanss 2002).

The elementary mathematical operations like addition, multiplication, etc. must then be carried out

using generalized versions of the operations that ensure the handling of fuzzy numbers. By this

technique, one can demonstrate how initially assumed uncertainties are processed through the

calculation procedure leading finally to fuzzy results that reflect the reliability of the problem

solution. Additionally, the fuzzy results allow the computation of a crisp value as the most likely

result for the problem which in general differs from the result achieved by an initially non-fuzzy

approach using only crisp parameters.

3. Presentation of methodology to apply fuzzy numbers concept in this study

3.1. Definition of fuzzy number and fuzzy arithmetic

To qualify as a fuzzy number, a fuzzy set A on real numbers must be normal and convex. The

fuzzy set must be normal, since the concept of a set of “real numbers close to a given real number

R” is fully satisfied by R itself; hence the membership grade of R in any fuzzy set that attempts to

capture a fuzzy number must be 1 (George 1995).

The bounded support of a fuzzy number and all its α-cuts for α ≠ 0 must be closed intervals to

allow definition of arithmetic operations on fuzzy numbers in terms of standard arithmetic

operations on closed intervals. Since α-cuts of any fuzzy number are required to be closed intervals

for all α∈ [0, 1], every fuzzy number is a convex fuzzy set. A fuzzy number is represented as an

ordered set of confidence intervals, each of them providing the related numerical value at a given

presumption level α∈ [0, 1]. 

These confidence intervals should comply with the relation α1 > α2 ⇒ ⊂ . where

α1 > α2 ∈ [0, 1] and ,  are the confidence intervals at presumption levels α1 and α2

respectively.

The four basic arithmetic operations on fuzzy numbers (addition, subtraction, multiplication, and

division) can be described as sequences of operations among confidence intervals. In particular, let

A and B be fuzzy numbers and let  be a generic arithmetic operator. 

The fuzzy number A B is obtained by computing the operation αA αB for each α ∈ [0, 1],

where  αA and αB are the confidence interval of A and B at presumption level α. It was proved that

this approach complies with the extension principle of Zadeh as 

(2)
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As an example of employing the above explanation, consider two triangular fuzzy numbers A and

B defined as follows:

            A(x): =                                                 B(x): =

                             

 0             if x 1–≤( ) x 3>( )∧

 
x 1+( )

2
--------------     if 1– x 1≤<

 
3 x–( )

2
--------------     if 1 x 3≤<

 0               if x 1≤ x 5>∧

 
x 1–( )

2
--------------       if 1 x 3≤<

 
5 x–( )

2
--------------       if 3 x 5≤<

Fig. 3 Illustration of arithmetic operations on fuzzy number
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Their α-cuts are:

αA = [2α − 1, 3 − 2α]
αB = [2α + 1, 5 − 2α]

Using fuzzy interval arithmetic, we can obtain

α(A + B) = [4α, 8-4α]                                      for α ∈ (0.1]
α(A − B) = [4α − 6, 2 − 4α]                              for α ∈ (0.1]

α(A · B) = 

α(A / B) = 

The resulting fuzzy numbers are then Fig. 3.

3.2. Formulation with Triangular Fuzzy Number (TFN)

To include uncertainties into the solution procedures of deterministic prediction model, the fuzzy

numbers that are used to represent the uncertain model parameters was implemented in a standard

form of TFN due to those simplicity in both calculation and just three components (Hanss 2000).

Considering a definite uncertain parameter A, measured data for the parameter are assumed to be

available from which a normalized distribution function NA(x) can be derived that expresses the

frequency of occurrence of a certain measured value x for the parameter A within the interval Δx. In

most cases, these data approximately show Gaussian distribution, i.e., normal distribution. The

uncertainty in the parameter A can then be approximately modeled by a fuzzy number  with the

membership function A(x) of Eq. (3), which has the support of 2 × 2σa set up for around 95%

confidence interval of a normalized distribution function Na(x).

(3)

where m are the mean value of the normal distribution in Fig. 4 and a and b is lower bound

and upper bound that obtained from lower and upper bound of 5% of the normal distribution in

Fig. 4.

Considering an uncertain parameter B showing lognormal distribution, similarly to an uncertain

parameter A of normal distribution, a triangular form of membership function is identified as shown

in Fig. 5.
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Fig. 5 Lognormal distribution of any parameter and its adaptation to membership function of triangular fuzzy
number

Fig. 4 Normal distribution of any parameter and its adaptation to membership function of triangular fuzzy
number
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4. Case study (calculating the prediction model by fuzzy arithmetic method detailed
previously)

4.1. Preparation of input parameters and related uncertainties

Fig. 6 illustrates the calculation procedure of fuzzy arithmetic for prediction model of RILEM

model and Crank’s solution. In implementing fuzzy arithmetic for RILEM model and Crank’s

solution, the method treating input variables with fuzzy numbers is same. Just a difference stems

from selecting deterministic formula.

The mean value and standard deviations of all parameters which are used to apply fuzzy

Fig. 6 Calculation procedure of fuzzy arithmetic for prediction model of RILEM model and Crank’ solution
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arithmetic to solving corrosion prediction problems with uncertain parameters are listed in Table 1,

where cover thickness, diffusion coefficient and surface chloride concentration among input parameters

was prepared with the measured data from the actual reinforced concrete building structure located

at coastal environment or in reference to literature survey. 

1) Surface chloride concentration: Between about 10 and 20 mm, the chloride concentration

reaches a maximum value and is be relatively constant, so called, considered to quasi-constant

after an initial time (Martin-Perez 1999). This depth varies depending on concrete quality and

exposure condition, with a value usually taken as 12.7 mm (Weyers, et al. 1993). In this study

surface chloride concentration is characterized by the measured data located 12.7 mm below

the surface of specimen extracted from the object. The surface chloride concentration is

identified by being best described by lognormal distribution having a mean value of 3.09 and a

standard deviation of 0.44.

2) Effective cover depth: As explained above, the effective cover depth is taken as the concrete

cover depth less the depth of maximum chloride concentration. The chloride ingress is

therefore modeled as a Fick’s second law over the effective cover depth, which is thought to be

best described by normal distribution having a mean value of 4.51 and a standard deviation of

Table 1 Statistic properties of all parameters in corrosion prediction model

Parameter Cover 

thickness:

Mean value 4.51 Surface

concentration

Mean value 3.09

Standard variation 1.59 Standard variation 0.44

Probability 
density function 

and 

Probability 
distribution 

function

Lower bound:1.89, Mode: 4.51, Upper bound:7.13 Lower bound:2.54, Mode: 2.98, Upper bound:3.96

Parameter Critical
concentration

Mean value 1.25 Diffusion
coefficient

Mean value 1.26

Standard variation 0.23 Standard variation 0.37

Probability 
density function 

and 

Probability 
distribution 

function

Lower bound:0.87, Mode: 1.25, Upper bound:1.63 Lower bound:0.79, Mode: 1.16, Upper bound:1.99
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1.59.

3) Apparent diffusion coefficient: The diffusion coefficient of concrete is known to depend on the

pore structure, which is related to the water/cement ratio, kind of cement, mix proportion and

quality. The two variables recognized to have the most influence on the coefficient of diffusion

were the water-cement ratio and the presence of mineral admixtures (Weyers, et al. 1994).

Supposed water-cement ratio of concrete used is 0.5, the apparent chloride diffusion coefficient was

estimated by using Eq. (4) (JSCE 2002).

 (4)

The coefficient of variance (COV) and distribution function was regarded as 30% and lognormal

function in reference to literature survey (Weyers, et al. 1994), respectively. 

 Critical chloride concentration: The critical chloride concentration indicates the chloride threshold

level which is the concentration of chlorides necessary to break down the protective passive film on

the reinforcing steel surface and initiate corrosion. As for the parameters discussed earlier, chloride

thresholds proposed in the literature cover a wide range of values. Some investigations (Miyagawa,

et al. 1985 and Otsuki, et al. 1985) show that the chloride threshold level to initiate corrosion of

steel in concrete is ordinarily considered to be 1.2 to 2.5 kg/m3. In this study, the mean value and

COV of critical chloride concentration was regarded as 1.2 and 18%, respectively and was supposed

to be normally distributed.

All characteristics of input parameters described above are listed in Table 1.

 

4.2. Calculation of Tcorr based on RILEM model

As stated earlier, the prediction model by Fick’s 2nd law like Eq. (1) has been widely used due to

its simplicity.

To calculate the deterministic prediction model by using fuzzy arithmetic in this study, the

approximation model of Crank’s solution of Fick’s second law presented by RILEM like Eq. (5) is

used (Rilem report 14 1996).

(5)

Eq. (6) is rewritten as follows:

(6)

When Eq. (6) is calculated by fuzzy arithmetic, it needs to stop it in specific point since a linear

approximation of simple TFN become function of higher degree and too difficult. Thus fuzzy

arithmetic is applied to calculate the time Tcorr to initiation of reinforcement corrosion separated into

two parts like Eq. (7). Normally, in stochastic model by Monte Carlo Simulation (MC simulation),

all parameters of Eq. (6) are taken into consideration by modeling them as random variables which

logDeff 3.9 w c⁄( )2– 7.2 w c⁄( ) 2.5–+=

Ccr C0 Cinit–( ) 1
x

3D Tcorr⋅
------------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫2

Cinit+⋅=

Tcorr
x
2

12D
----------

1

1
Ccr

Co

-------–

------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞2

⋅=
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have probabilistic density functions (PDF) that are obtained from field measurements or from the

survey analysis but in this study, they are treated as fuzzy variables with proper core and support by

conforming to the procedure illustrated in Figs. 4 and 5. 

Overall procedure of calculating the time Tcorr to initiation of reinforcement corrosion by Eq.(6)

based on fuzzy arithmetic is represented in Fig. 7. Crisp value of time to corrosion initiation is

acquired by multiplying the defuzzified value of membership function of  by the crisp value

of  calculated by inserting the defuzzified value of , where each membership

function is defuzzified by fuzzy centroid method, i.e., Center of Area(CoA), by way of the

following Eq. (7). 

(7)

In this study, arithmetic operation of addition, subtraction, division, and multiplication on fuzzy

numbers is carried out by using fuzzy interval arithmetic. As mapping fuzzy numbers via functions,

the extension principle is applied to those transformations. 

Fig. 8 represents the shape of membership function of fuzzy number  and  as well as the

fuzzy arithmetic procedure of   based on fuzzy interval arithmetic and extension principle. 

Fig. 9 represents the membership function of fuzzy number  and , and also those transformations

x̃
2

12D̃⁄
1 1 C̃cr C̃o⁄–( )⁄[ ]

2

C̃cr C̃o⁄

y
A y( )∫ ydy⋅

A y( ) yd∫
-------------------------=

C̃cr C̃o

C̃cr
C̃

o⁄

x̃ D̃

Fig. 7 Calculation procedure of time to corrosion initiation based on RILEM model
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Fig. 8 Membership function of fuzzy number critical chloride concentration (Ccr) divided by fuzzy number
surface chloride concentration (Co) and its square root (RILEM model)

Fig. 9 Membership function of cover thickness (x) and diffusion coefficient (C), and transformation to
0.632(cover thickness)2 based on extension principle (RILEM model)
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via each function. They show that mathematical operation of division increases the variability that

each parameter possesses.

As shown in Fig. 8, the defuzzification of  with the Center of Area (CoA) leads to the

crisp value

which can be considered as the representative value for . 

By inserting the above expected value of  into , the crisp value is as

follow:

Fig. 10 represents the membership function of 7.589 ×  and its cumulative distribution

function, and  defuzzified by CoA is as follow:

Finally, the defuzzification of the time Tcorr to initiation of reinforcement corrosion determined is

as follows:

Herein from the result of fuzzy arithmetic for RILEM formula, it can be understood the time to

corrosion initiation ranges from 2.9 years to 16 years and the representative value of that

distribution is about 9.9 years. 

C̃cr C̃o⁄

C̃cr C̃o⁄ 0.637=

C̃cr C̃o⁄
C̃cr C̃o⁄ 1 1 C̃cr C̃o⁄–( )⁄

1 1 C̃cr C̃o⁄–( )⁄[ ]
2

7.589=

x̃
2

12D̃⁄( )
7.589 x̃

2
12D̃⁄( )×

7.589
x̃
2

12D̃
----------

0.632 x̃
2⋅

D̃
---------------------→× 9.912=

Tcorr
x̃
2

12D
2

------------⎝ ⎠
⎛ ⎞ 1

1
C

cr
˜

C̃o

-------–

------------------ 

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞2

× 9.912= =

Fig. 10 The membership function of 0.632 x̃
2

D̃⁄⋅ Fig. 11 The cumulative curve of 0.632 x̃
2

D̃⁄⋅
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It means that reinforcement corrosion will be initiated after 2.9 to 16 years under given boundary

condition and cover thickness in case of be calculated by using RILEM model.

And also the cumulative curve of the time to corrosion initiation is generated in Fig. 11. This

cumulative curve is generated by representing the ratio of cumulative area of function to total area

in given limitation of 2.9 to 16.

The crisp value of 9.9 years is interpreted to have the membership degree of about 0.9 in function

shown in Fig. 10 is about 0.9. In other words, in view of cumulative curve of Fig. 11, it means that

the possibility that reinforcement corrosion is initiated after 9.9 years can be estimated about to

50%. At about 16 years the occurrence of corrosion initiation is estimated to be 1.0, which it can be

understood that corrosion of the embedded steel bar occur at 16 years after construction in case of

the exposed environment.

4.3. Calculation for Tcorr based on Crank’s solution of Fick’s second law

To calculate the prediction model by using fuzzy arithmetic, here the second model is Crank’s

solution of Fick’s second law as follows;

(8)

where C(x, t) : chloride ion concentration at a time t and a depth x in kg/m3, Co: boundary chloride

concentration in kg/m3, x : concrete cover depth in cm and erf : statistical error function as follows;

C x t,( ) Co 1 erf  
x

2 D t⋅
----------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Co erfc 
x

2 D t⋅
----------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

erf z( ) 2

π
------- exp t

2
–( ) td

 z

 ∞

∫=

erfc 1 erf–=

Fig. 12 Membership function of C̃cr C̃o⁄
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The corrosion of steel reinforcement must be activated as the chloride content of concrete near the

embedded steel reach a chloride threshold, i.e., critical corrosion level.

Thus to acquire the time to corrosion initiation Eq. (8) is rewritten as follows:

    with    (9)

The prediction model used in this chapter is slightly different with RILEM formula in that

RILEM formula is empirical solution while Crank’s solution of Eq. (8) is based on diffusion. 

The calculation procedure implementing fuzzy arithmetic for Crank’s solution of Fick’s second

law of diffusion shown in Eq. (9) is illustrated in Fig. 6. 

The input variable is firstly prepared in order to implement fuzzy arithmetic for Crank’s solution,

which obtained from the result of best curve fitting to the collected data from literature survey and

field measurements. Secondly, the input variable is treated with triangular fuzzy number with proper

core and support as a method represented in Figs. 4 and 5. 

The ready input data of fuzzy number is substituted for each variable in Eq. (9) and fuzzy

arithmetic is implemented using fuzzy interval and extension principle.

Definitely, fuzzy arithmetic is implemented as parted with two. First is to find the mapping of the

inverse error function to the defuzzified value of  and second is to implement the fuzzy

arithmetic to  in Fig. 13 in order to get the final output, where fuzzy arithmetic is

implemented through fuzzy interval and extension principle and each membership function is

defuzzified by fuzzy centroid method, i.e., Center of Area(CoA), by way of the following Eq.(8).

Fig. 14 illustrates the fuzzy number  divided by the fuzzy number  and the defuzzification

of  leads to the crisp value

and the inverse of complementary error function to the defuzzification value of  returns

0.5802.

Finally the membership function of  is plotted in Fig. 14 and its defuzzification value

is about 11.6 years. 

From the result of fuzzy arithmetic for Crank’s solution of Fick’s law of diffusion, it can be

Tcorr

x
2

4D γ
2⋅

---------------= γ erfc
1– Ccr

C0

-------⎝ ⎠
⎛ ⎞=

C̃cr C̃o⁄
x̃
2

1.348D̃⁄

C̃cr C̃o

C̃cr C̃o⁄

C̃cr C̃o⁄ 0.419=

C̃cr C̃o⁄

x̃
2

1.348D̃⁄

Fig. 13 Membership function of x̃
2

1.348D̃⁄ Fig. 14 Cumulative curve of x̃
2

1.348D̃⁄
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understood the time to corrosion initiation ranges from 3 years to 19 years and the representative

value of that distribution is about 11.6 years.

It means that reinforcement corrosion will be initiated after 3 to 19 years under given boundary

condition and cover thickness in case of be calculated by using Crank’s solution. And also the

cumulative curve of the time to corrosion initiation is generated and is shown in Fig. 15, from the

cumulative distribution function, membership degree of 11.6 to membership function shown in Fig.

15 is about 0.5. In other words, in view of cumulative curve it means that the possibility that

reinforcement corrosion is initiated after 11.6 years can be estimated about to 50%. From this, it is

understood that corrosion of the embedded steel bar occur at 11.6 years after construction in case of

the exposed environment, because the occurrence of corrosion at 11.6 years is calculated to be 1.0.

4.4. Comparison of deterministic solution and fuzzy arithmetic solution

Fig. 15 is to plot each membership function of the time to corrosion initiation (Tcorr) calculated by

fuzzy arithmetic for RILEM model and Crank’s solution and the result of its deterministic solution.

And also Fig. 16 illustrates the cumulative curve of the fuzzified output of Tcorr obtained from fuzzy

arithmetic for RILEM model and Crank’s solution, respectively. 

The defuzzification value of Crank’s solution is higher than that of RILEM model and also the

defuzzification value of each model formula is well coincident with the solution value of

deterministic calculation using a mean as the representative value.

The result of fuzzy arithmetic for RILEM model shows the corrosion initiation time prior to that

of Crank’s solution, which can interpret RILEM model as more conservative expression than

Crank’s solution.

5. Conclusions

This paper presented the application of a fuzzy arithmetic approach for the modeling and prediction of

reinforcement corrosion in building structures that are subjected to coastal environment. The

approach will take into account the uncertainties in the physical modeling, and variability of the

Fig. 15 Comparison of RILEM model and Crank’s
solution (Membership function and deterministic
solution)

Fig. 16 Comparison of RILEM model and Crank’s
solution (Cumulative curve and deterministic
solution)
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material and structural parameters affecting the corrosion process, in addition to the statistical and

decision uncertainties. 

Of the prediction model for corrosion initiation used in this work, RILEM model is more

conservative than Crank’s solution and both models show good coincidence with deterministic

solution. The fuzzy arithmetic-based prediction model can output the stochastic result and it make it

possible for users to make more rational decision about the time to corrosion initiation and

predicting service life. Thus, the proposed fuzzy arithmetic-based prediction model will overcome

the shortcomings of existing deterministic prediction models. The implementation of this tool will

provide more extensive predictions and will enable decision-makers to select cost-effective repair

strategies.

6. Future study

This paper is concerned with presenting a fuzzy theory-based methodology for modeling the

uncertainties in prediction model of time to corrosion initiation of RC structure. Even if it proved to

be more extensive than a deterministic solution in that the occurrence of corrosion is numerically

calculated, more case studies should be carried out to validate this method
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