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Crack propagation simulation of concrete
with the regular triangular lattice model
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Abstract. This paper discusses 2D lattice models of beams for simulating the fracture of brittle materials.
A simulation of an experiment on a concrete beam subjected to bending, in which two overlapping cracks
occur, is used to study the effect of individual beam characteristics and different arrangements of the beams
in the overall lattice. It was found that any regular orientation of the beams influences the resulting crack
patterns. Methods to implement a wide range of Poisson’s ratios are also developed, and the use of the lattice
to study arbitrary micro-structures is outlined. The crack patterns that are obtained with lattice are in good
agreement with the experimental results. Also, numerical simulations of the tests were performed by means of
a lattice model, and non-integer dimensions were measured on the predicted lattice damage patterns.
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1. Introduction

Since concrete is a highly heterogeneous material and concrete cracking is a localized phenomenon

(resulting in stress redistributions during cracking), the implementation of concrete cracking into

finite element codes is not straightforward (Bazant 1995). Iterative calculation techniques have to be

adopted for correct predictions of the highly non-linear material behavior (Walraven 1980). In this

respect two main approaches to modeling concrete can be distinguished, namely by continuum or
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discrete methods. When a continuum model is adopted for “predicting” fracture processes in

concrete, the macro-level is usually chosen as the level of modeling. When, on the other hand, the

material’s micro-level is addressed, and the material is treated as three phase material (aggregate,

matrix and interface between matrix and aggregates), a brittle constitutive relation seems satisfactory. In

spite of the individual elastic-brittle behavior of the material constituents, non-linearity will be

observed at the macro-level (Carpinteri 1994). In the model presented in this paper, the second

(discrete or lattice) approach is used for modeling concrete cracking at the meso-level. In such a

model the material is discredited by a network of beams or trusses, and cracking is modeled by

removing a beam from the mesh. Through the years, considerable attention has been given to lattice

models. Lattice type models were first developed in theoretical physics. The original model

proposed by Herrmann incorporated a regular square lattice illustrated in Fig. 1a. For simulating

concrete fracture the regular triangular lattice (Fig. 1b) was proposed by Schlangen and Van Mier

(1993). A random lattice, proposed by Moukarzel and Herrmann, has been used for similar

purposes. In this random lattice, the connectivities of the beams are determined by the Voronoi

construction of a set of nodes. The random lattice is illustrated in Fig. 1c. Most of the simulations

of concrete fracture presented in this paper were carried out with the regular triangular lattice that

was mentioned before.

2. Principle of the lattice model

In the adopted lattice model directly beam elements with three degrees of freedom are used. The

constitutive relation of an element is linear-elastic, and the stress in an element is calculated as a

combination of the normal force and the bending moments acting on the element (Vervuurt 1997).

This “effective” stress causes failure as soon as the strength of the beam element is exceeded.

Because of the linear-elastic behavior of the lattice, the failure load of a beam is calculated within a

single step of a finite element analysis. This procedure of loading the mesh and consequently

removing an element is repeated until complete failure of the lattice has been obtained. In order to

reduce the computational effort, generally only the area of the specimen where cracks are expected

to grow is modeled with a lattice (Van Mier 1995). The remainder of the specimen is modeled with

continuum elements. The simulations presented in this paper are carried out with the finite element

package DIANA, mainly because of the availability of several types of continuum elements besides

the beam elements required for the lattice. At the boundary between lattice and continuum elements,

Fig. 1 Lattice types: regular square lattice (a), regular triangular lattice (b) and random lattice(c)
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the beam nodes are the nodes of the continuum elements. In order to reduce the computer time, the

lattice model is currently being implemented as a “special” module in the DIANA finite element

code. Although each individual element in a lattice fails brittle, the (global) softening behavior of

heterogenous materials like concrete can be simulated with the model. When a regular lattice (Fig.

1b) is used, heterogeneity has to be implemented in the model in order to obtain realistic crack

patterns observed in concrete experiments. Heterogeneity is introduced by varying the Young’s

modulus and the strength of the beam elements. Considering the material structure of concrete, a

realistic strength and stiffness distribution strength and stiffness of the distinctive phase are assigned

to the beams falling inside the aggregates (A), in the matrix (M) or at the interfacial zone between

the aggregate and the matrix (bond, B).

3. Parameter determination

The advantage of the lattice model is that is a simple and transparent model. Only a few, single

valued parameters are required in the model. These parameters can be divided in two groups: i.e.,

parameters according to the global elastic behavior of the mesh and parameters needed in the

fracture law.

3.1. Parameters related to the elastic behavior

To describe the global elastic behavior of the lattice, the Young’s modulus (E) and Poisson’s ratio

(ν) of the material which is to be modeled are available as input. They have to correspond to the

global behavior of the lattice, which can be adjusted by changing the geometrical properties (height

h and thickness (t) and the global Young’s modulus of the beams (Ebeam). For two dimensional

simulations, it seems obvious to choose the beam thickness equal to the thickness of the simulated

specimen. When a regular lattice is adopted, the remaining beam properties (h and Ebeam) can be

determined in a very straightforward manner, since the Poisson’s ratio of the lattice is directly

related to the height over length ratio of the beams. For a regular triangular lattice without particle

Fig. 2 Aggregate structure projected on top of a lattice (a) definition of aggregate, bond and matrix beams (b)
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overlay and consisting of prismatic beams it was found that: 
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Fig. 3 Relation between ν and h/lavg for a triangular lattice with varying Pk
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where l is the length of a beam in modeling , l = 1/12t·h3 , and A is the cross sectional area h·t.

This function is shown graphically in Fig. 3, with the results for the lattice with varying Pk (the

ratio of the aggregate volume to the total volume of the concrete). The Poisson’s ratios for the

lattices given in Fig. 3a are the average values resulting from calculations on 175 meshes measuring

50 × 50 nodes. When the height of the beams is fixed, the local Young’s modulus of the beams

(Ebeam) can be determined from the global stiffness of the lattice, which has to be coincident with

the stiffness of the material that is modeled. In Fig. 3b the relation between the ratios E/Ebeam and

h/s is shown by the five different value of the A. The stiffness of the lattice can be varied by

changing the Young’s modulus of the beams. The values of the ratios, however, must be kept

constant in order to maintain a linear relation between E and Ebeam.

3.2. Fracture law parameters

Next to the parameter related to the global elastic behavior of the mesh, parameters related to

fracture law are required. After generating the mesh and assigning the elastic properties to the

beams, the load is applied and a linear elastic analysis is performed. Then the parameter related to

the global elastic behavior of the mesh, parameters related to the fracture law is required. Cracking

is obtained by removing one beam from the mesh in each step of a lattice analysis. The choice of

the beam which has to be removed from the mesh is based on a very simple fracture law in which

the “effective” stress ( f ) is calculated following: 

(2)

where F is the normal force in the beam, A is the cross sectional area, Mi and Mj are the

moments in the two respective nodes of the beam and W=1/6·b·h2 is the sectional moment of the

beam. The parameter α is used to control the fracture mode: bending can either play a dominant
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Fig. 4 Load-deformation curves for three simulations with different values for α
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or a restricted role. Changing α affects the tail in the stress-deformation curve. However, the

influence of changing α is small. In Fig. 4 three curves for three different values for α are

shown. The curves have been scaled in such a way that the peak loads are equal. A small α gives

a long tail in the stress-deformation response, whereas a large α results in more brittle global

behavior.

The parameter β is implemented for fitting the curve, after the simulation is carried out, such

that the maximum load in the simulation is equal to the maximum load in the experiment. When

the effective stress of a particular beam exceeds its tensile strength ft, brittle fracture is simulated

by instantaneously removing the beam element from the lattice. This implies that an energy

package equal to  is released from the structure at each element removal (Van Mier

1999).

The Young’s moduli of aggregate, matrix and bond zones are given realistic values determined in

Ue ft

 2
2E⁄=

Fig. 5 (a) Calculated ultimate strength and global Young's modulus 2 = d = 8, Pk = 0.75, (b) A compared
mortar particle and modeling of Pk = 0.75 value
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experiments, whereafter the section dimensions are adjusted. For fracturing the beam elements a

different threshold for the tensile strength is specified for beams falling in the three different

material phases. The ratios of these strength values are of importance. They are 

and . These values imply a high strength aggregate in a lower strength matrix,

but the weakest link is formed by the interfaces. In all analyses α = constant = 0.005, which yields

the development of a long tail in the load-deformation diagram.

3.3. Particle distribution and properties 

Fig. 5(a) shows that the force that can be carried by the global lattice hardly varies with beam

length. This is indicates that, for the present example with Pk = 0.75, failure is governed by the

weakest elements, i.e., the bond beams, as will become clear further on. Also, Fig. 5(b) shows that

relationship modeling of Pk = 0.75 value and mortar particles.

Fig. 6 shows the variation of the different phases ‘matrix’, ‘bond’ and ‘aggregate’ as a function

of the beam length. A parameter Pk in the distribution function refers to the aggregate volume as

a ratio to the total volume. Realistic for concrete are values of Pk around 0.75. Fig. 6(a) shows

that the bond fraction approaches an asymptotic value with increasing beam length. At a certain

moment only the largest particles are present in the mesh. The number of such large-sized

particles is limited in the fuller distribution that was used. In Fig. 6(a) the phase fractions are

shown for a fuller-type distribution for varying Pk values. The beam length was equal to l = 1

mm. The actual Pk,lat (defined as the number of aggregate beams relative to the total number of

beams deviates from the theoretical values Pk used for generating the particle structures as

mentioned before). For example for Pk = 0.1, 0.4, 0.7 and 1.0, the actual values were Pk,lat = 0.03,

ftM ftA⁄ 5 10⁄=

ftB ftM⁄ 1.25 5⁄=

Fig. 6 (a) Phase fractions of bond, matrix and aggregate beams as a function of beam length, (b) Fraction of
bond, matrix and aggregate phases with varying Pk
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0.19, 0.34 and 0.48 respectively, as is shown by the circles in Fig. 6(b). The actual value of

Pk,lat = 0.48 is the maximum aggregate fraction that can be obtained for a system with round

aggregates, encircled with an interfacial transition zone of constant thickness (one beam length),

for a beam length l = 1 mm. The amount of matrix needed is bound by a minimum value, since

all open space between the spherical aggregates must be filled. With increasing Pk, Fig. 6(b)

shows an increase of both the bond and aggregate fractions. Around Pk = 0.6, the number of bond

beams exceeds the number of matrix beams, indicating a larger probability for exceeding the

percolation threshold of the bond beams.

 

4. Application of the lattice model

In order to apply to the lattice model, the model has been used for experiment test. The main

purpose of these calculations was to validate the model by means of comparing the numerical

results to those of experiments. In Table 1 the values of the input parameters giving the best fit with

the experiment are listed. A lattice with beam elements is loaded in bending. The Young’s modulus

Table 1 Input parameters for simulations

Beam elements l = 5/3 mm h = 0.68 l b = Specimen thickness

Strengths ft,A = 10 MPa ft,M = 10 MPa ft,B = 10 MPa

Stiffness EA = 70 GPa EM = 25 GPa EB = 25 GPa

α = 0.005 β = 2.0

Fig. 7 Three-point bending test specimen

Fig. 8 Three-point bending specimen and lattice analysis modeling
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Table 2 Overview of the lattice types compared in a bending test

Lattice type Abbreviation

Triangular lattice with particle structure
(Number of node and element 672, 1283)

TYPE A

Triangular lattice with particle structure
(Number of node and element 2542, 4966)

TYPE B

Triangular lattice with particle structure
(Number of node and element 10004, 19772)

TYPE C

Fig. 9 Simulation of a bending test on a specimen using different lattice element number

E of the beams is taken equal to the stiffness of the material. The thickness b of the beams is taken

equal to the thickness of the material. These values are chosen such as to get an easy adjustment if

fracture in materials with a different stiffness or specimens with a different thickness are to be

simulated. The notched three-point bending specimen and lattice modeling of the specimen are

shown in Fig. 7 and Fig. 8 

Also, to get an insight in the behavior of these different lattice types a comparison was made by

simulating the behavior of a single notched specimen under three point bending test. The area of the
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specimen that was used to control the deformations in the laboratory test was modeled with three

different lattices, denoted Type A to C in Table 2. 

In Fig. 9(a)~(b) the cracks in the lattice part of the specimen are shown at almost the same crack

mouth opening displacement (CMOD). Because of the presence of a grain overlay in the mesh,

micro-cracks develop in the bond zones around the grains, apart from the continuous cracks in the

cement matrix. Since this mechanism resembles the actual fracture process in concrete, TYPE B

seems most suitable for modeling this material. 

The load-midspan deflection curves of the lattice element types are shown in Fig. 10(a)~(d),

respectively. The displacement given in the figure is measured at the load application point. Three

curves correspond to the three types in each size group, which differ only by the random

distribution of the equal amount of aggregates. 

Fig. 10 Compare P-δ of analyzed lattice types to experiment specimen



Crack propagation simulation of concrete with the regular triangular lattice model 175

5. Discussion and conclusions

This paper discussed 2D lattice model for fracture simulations. In this paper, models with various

types of elements can be found. The equations for the network models with these different elements

are all discretizations of different continuum equations. The square lattice model has been

successfully used to simulate the complete load-deformation response of notched three point

bending beams. For fracture the results that are obtained strongly depend on the chosen element

type. Beam elements with three degrees of freedom per node give the best agreement with

experimentally obtained crack patterns. In simulations with different Pk (aggregate size) is 0.75,

realistic crack patterns are also obtained. However the crack patterns that are simulated are not

complicated. Bending tests are simulated in which a straight crack surrounded by microcracks

developed. In Fig. 8 of this paper, it is shown that if the crack pattern is more complex, and the

cracks are curved, elements with three degrees of freedom are necessary. The shape or orientation

of the beams in a lattice also influences the simulated crack patterns, with the cracks tending to

follow the mesh lines. Cracks in such a lattice develop perpendicular to the maximum tensile

stress in the specimen and are independent of the mesh orientation. It is not known whether sets

of As and Is that are all positive exist or not. However, the small fraction of beams that have

negative values of A and/or I do not adversely affect either the computed elastic moduli or

simulated fracture patterns. 

References

Walraven, J. C. (1980), “Aggregate interlock: A theoretical and experimental analysis”, Ph. D. thesis, Delft
University of Technology. 

Bazant, Z. P. (1984), “Size effect in blunt fracture: concrete,rock, metal”. J. Eng. Mech., ASCE 110, 518-535.
Karihaloo, B. L. (1985), Fracture Mechanics and Structural Concrete. UK: Addison Wesley Longman, 151.
Bazant, Z. P. and Pfriffer, P. A. (1988), “Determination of fracture energy properties form size effect and

brittleness number”, ACI Mater J.,  111, 463-480.
Schlangen, E. (1993), “Experimental and numerical analysis of fracture processes in concrete”, Ph. D. Thesis,

Delft University of Technology, 62-65.
Carpinteri A. (1994), “Fractal nature of material microstructure and size effects on apparent mechanical properties”,

Mech. Material, 18, 89-101.
Van Mier, J. G. M., Schlangen, E. and Vervuurt, A. (1995), “Lattice type fracture models for concrete”, In

Continuum Models for Materials with Microstructure, H. B. Muhihaus(ed.). John Wiley & Sons Ltd., 341-377.
Vervuurt, A. H. J. M. (1997), “Interface fracture in concrete”, Ph. D. thesis, Delft University of Technology.  

Notation

Pk : ratio of the aggregate volume to the total colume of the polymer concrete

A : corross section area

l : length of a beam in modeling

α : fracture parameter

β : scaling factor, shear retention factor

EA, EB, EM : Young’s modulus aggregate, bond, matrix 

F : normal force

fb : bending strength
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fc : compressive strength

ft : tensile strength

ft,A, ft,B, ft, M : tensile strength aggregate, bond, matrix

Ppre : prescribed external load
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