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Closed form interaction surfaces for nonlinear design
codes of RC columns with MC 90
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Abstract. The closed form solution of the equilibrium equations in the ultimate design of reinforced
concrete sections under biaxial bending is presented. The stresses in the materials are described by the
Model Code 1990 equations. Computation of the integral equations is performed generally in terms of all
variables. The deformed shape of the section in the ultimate conditions is defined by Heaviside functions.
The procedure is convenient for the use of mathematical manipulation programs and the results are easily
included into nonlinear analysis codes. The equations developed for rectangular sections can be applied
for other sections, such as T, L, I for instance, by decomposition into rectangles. Numerical examples of
the developed model for rectangular sections and composed sections are included.

Keywords: biaxial bending; closed form; nonlinear design code; heaviside functions; reinforced concrete;
model code 1990.

1. Introduction

Ultimate design of reinforced concrete columns under biaxial bending and axial load is a complex
problem due to the wvariation of the position of the neutral axis, defined by two independent
variables. The ultimate condition for concrete sections is defined by the maximum strain in concrete
or in steel. There are abacus that solve this problem in the case of simple shapes of sections, such
as the rectangular section, with the parabola-rectangle stress diagram or the rectangular stress
diagram (rsd) for concrete. The ultimate strain in concrete, in the equation indicated in the Model
Code 1990 (MC90), depends on the concrete class. The stress-strain relation indicated in the MC90
is valid for short term loading and considers a descending branch after the peak stress. This relation
is also dependent on the concrete grade and the differences to the previous laws increase with the
quality of the concrete. Since the actual design codes are not yet prepared for this law, the present
work develops the necessary equilibrium equations for the preparation of new design abacus. Recent
works using parabola rectangle constitutive equation, solve the integrals by approximate methods,
such as in Rodriguez (1999) and Fafitis (2001). Rodriguez (1999) performs the integration by
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dividing the compression zone into small rectangles. Fafitis (2001) makes the numerical integration
by the Gauss quadrature. A more recent work by Bonet (2002) uses Gauss quadrature and the
MC90 equation.

These numerical methods are implemented into computer codes but have the great disadvantage
of depending on the number of integration points and dimension of the mesh. The solution obtained
is not an exact solution and all numerical solutions have increasing computer costs when the mesh
is refined.

The advantages of the present work are the following;:

- the use of Model Code 1990 equation;

- the exact integration is obtained using MAPLE;

- the rectangular section is defined by its vertices;

- other sections, such as T, I or L can be considered by decomposing into small number of

elementary rectangles;

- Heaviside functions are used in the definition of the rupture of the section, as in Barros, et al.

(2004).

The objective of this work is to present the analytical formulation of the biaxial bending moment
diagrams with the Model Code 1990 concrete stress-strain relation. These equations can be extended
to reinforced concrete sections composed by rectangles. Examples of interaction diagrams are
presented for rectangular and other reinforced concrete sections under biaxial bending.

The model developed is general and creep is taken into consideration in a simplified way by a
reduction in the maximum strength. Confining effects can be included by modifying the input
parameters in the relevant equations.

2. Geometric properties of the section

The sections considered in the present work can have any shape since they can be decomposed
into rectangles. These are the cases of the sections represented in Fig. 1.

The elementary rectangle and the reinforcement are represented in Fig. 2. The dimensions are the
width b, the height # and the concrete cover a. Reinforcement area is considered distributed
uniformly along each side, being equal to 4, 4>, 45 and A4,, that is:

Al = al(h_za); A2 = az(b_za); A3 = a3(h_2a); A4 = a4(b_2a).

where a;, ay, a; and a4 are the thickness of equivalent rectangles, as represented in Fig. 2.

Fig. 1 Shape of the possible sections
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3. Concrete stresses in compression

The constitutive relation used in the present work is indicated in the MC 90. This equation
depends on the strength class of the concrete, defines the strength g, in terms of the strain & and is
given by the following relation:

E. ¢ &0
EEUIEUI 531 Ef;d
0, = 0.850 (1)
1 — 0 EL _%i
DEcl gcl

where £, is the maximum value of the stress and &,,(=0.0022) the corresponding strain in module.
The remaining parameters are the elasticity modulus at the origin £, and the secant elasticity
modulus £, at the peak stress f.,. The compressive strains £ are negative and so are the stresses 0.
Fig. 3 represents Eq. (1) and parabola-rectangle law given by CEB (1982), for the classes of

13

Fig. 2 Geometry of the section with reinforcing steel
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Fig. 3 Stress strain diagrams for different concrete classes
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Table 1 Mechanical properties for concrete C16/20, C25/30, C40/50 and C50/60

C16/20 C25/30 C40/50 C50/60

Ecnom (Gpa) 27.50 30.50 35.00 37.00
E.=E;pom/1.5 (Gpa) 18.33 20.33 23.33 24.66
Jea=fa/1.5 (Mpa) 10.67 16.67 26.67 33.33
Eu 0.0035 0.0033 0.0030 0.0028

E Ea=11E, Ealfea 4.16 295 2.12 1.79

concrete which are resumed in Table 1.

In this work the rectangular stress diagram (rsd) for compressive stresses in concrete, suggested
by the CEB-FIP 1990 in the case of complex shape sections, is also implemented and used in the

numerical examples.

4. Constitutive relation of the steel

The constitutive relation of the steel is composed by an elastic behaviour followed by perfect
plasticity. The elastic modulus of the steel is £, and the design yield stress is fi,s. The steel stress oy

is defined by a parametric function, in terms of the strain &, that is:

E_f;ya’ & < _&1

E,
0
g, = E!Es‘es‘ —@S gvsfi[
T g TE TUTE,
0
Jsya
Efw E_y‘ <¢,

In the case of S400 steel these values are: E~=200000MPa and fi,,=400/1.15MPa.
corresponding diagram is plotted in Fig. 4.
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Fig. 4 Stress strain diagram for S400 steel
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5. Section design

The rupture of the section may occur either in concrete or in steel being uniquely defined by the
position of the neutral axis X indicated in Fig. 5. This position is defined by the variable a given
by:

X
a=7 3)
where d is the effective height of the section, represented in Fig. 5. The rupture by the concrete, in
the case of biaxial bending of a rectangular section, rotated by an angle B, is represented in Fig.
5(a). In this figure & is the maximum strain in concrete equal to the rupture value —¢,. In the
MC90 the ultimate strain in the concrete &, is variable with the class of concrete and in the present
model is considered in absolute value.

The rupture by the steel is represented in Fig. 5(b) where the strain in the more stressed steel &
is equal to the maximum 1%. This situation occurs for the small values of a and the maximum
extension of the concrete is defined by

. ECU
if 0sas—+— 4

— 109
g = 155 e +1%

The rupture by the concrete is represented in Fig. 5(a). This rupture occurs in the high values of o
where &, is given by:

&
£ =-¢, If ——<a<w 5
C cu EL,“ + 1% ( )
|‘<~2-|=“;u
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(a) Rupture by the concrete
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(b) Rupture by the steel
Fig. 5 Rupture by the concrete and the steel
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These two relations are written in one equation by the use of Heaviside functions, as in Barros, et
al. (2004), by the following equation:

cu a 0
— o
£ = 1000{—1 H e +1/D " T00(a—1)0 ©)

A similar procedure is used in the maximum stressed steel in the definition of the strain &,
Rupture of steel will take place with small values of the non-dimensional variable a, Fig. 5(b), and
the steel strain & is given by

£,
—_ 17) u
& = 1% if 0<a<—+]/ (7)

For the rupture of concrete, Fig. 5(a), this strain is the following:

a—1 . Ecu
£ = —€. if
) cu a gcu + 1/

<as<l (8)

The strain in the steel & is defined by a unique equation with the Heaviside function by:

Ecu ot 1 a-—1 0
— + 2=
~Hf e +1%0000  a O ©)

6. Equilibrium conditions
6.1. Resulting force and bending moments in concrete

6.1.1. Constitutive equation of the MC90
The resulting force and bending moments due to concrete stresses are obtained by the integration
of the stresses in the compressed zone, denoted as 4., that is:

N, = [ o.dA (10a)
AC

M, = [ opda (10b)
Ac

M, = [ oxdd (10c)

The force N, is the resulting force in the compressed concrete, the values M, and M,, are the
biaxial bending moments due to concrete stresses given in Barros, ef al. (2003) referred to the axes
xy as indicated in Fig. 5.

In the cases of biaxial bending moment, the shape of the compression concrete zone A4, is function
of the position of the neutral axis, defined in terms of two parameters. These parameters are the
distance X to the more compressed fibre and the angle (8 to the horizontal, as shown in Fig. 6(a).

The dashed zone A, is divided into different cases, depending on the X and 3, in the following way:

® Case ]l (Fig. 6b) : 0<X<bsinBH0<X<hcosf;
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Fig. 6 Concrete compression zone A,

® Case lla (Fig. 6¢) : bsinB< X< hcosfB if bsinf< hcosf;

® Case IIb(Fig. 6d) : hcosB<X<bsinf if hcosB<X< bsinf;

® Case III (Fig. 6¢) : bsinB< X< bsinB+ hcosBUhcos B X< bsinf+ hcos3;
® Case 1V (Fig. 6f) : bsinf3+ hcos < X.

The area integrals of the stress in the concrete defined by the MC90 (1) in the cases I to 1V,
respectively denoted by N.i, Noa, Now, Nes, and N4, were developed in Barros, ef al. (2003). The

results are resumed in Annex I. Axial force N, integrated in the variable domain is transformed into
the addition of the cases multiplied by Heaviside functions, that is:

N. = N, H(hcosB—-X)H(X)H(bsinf—-X) +
+N, H(bsinB—X)H(X —hcos B)H(X)+
+NH(bsinB+ hcos B—X)H(X —bsin B)H(X —hcos B)H(X)+ (11)
+N,  H(X=bsinB—hcos B)H(X)+
+N,H(hcos B—X)H(X — bsin B)H(X)
Similar equations are obtained for the bending moments M., and M, .
6.1.2. Rectangular stress diagram

The previous integrals with the concrete stress defined by the rectangular stress diagram (rsd) are
performed by defining the indicatrix function I(x, y;) equal to 1 in 4, and 0 outside 4., that is:

_ ol if (xG ye) U Ae
{ore) = Ep if (xgyyg) O A, (12

With this definition the integrals are calculated over the total area of the section 4, becoming;:

N. = IA 0.1(xg, y)dA (13a)
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M., = IA OvI(xg yi)dA (13b)
M, = IA ox1(xg, y)dA (130
In the rectangular stress diagram (rsd) the stress in concrete is constant and 0O, in the previous

equations is substituted by 0.80f.,. The indicatrix function in this problem is defined by the
following Heaviside function:

(x5, y5) = HX-Y) (14)
6.2. Resulting force and bending moments in steel

The axial load due to the steel and corresponding moments are calculated by the following
integrations:

Ny = fods (15a)
M\;\'G = _fasdeS (1 Sb)
M\yG = _fo-.s‘XGdS (] SC)

Since the stress O, is constant in the fibres located at the same distance X, the integration is
performed with the following change in the variables, see Fig. 5:

X X
= x—2Z¢: == 1
v =2X CE, dy Uds 16)

The values of the expressions 15 (a), (b) and (c) are calculated relatively to the four sides of steel
termed A4, 4>, A; and A4, in the Fig. 7, giving the following results:

A ||

| o
I

Fig. 7 Coordinate system change in the concrete biaxial bending moments
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Fig. 8 Concrete axial force variation with neutral axis depth

v gn

sxG %_%(Fl_F3)—dF2—dF4

<
I

Mye = %—%E(F4—F2) +dF, +dF;
where the F; and dF;are indicated in Annex II.

6.3. Equilibrium equations for the axial force and bending moments

(17a)

(17b)

(17 ¢)

The equilibrium of the stresses applied to the section in terms of total force N and biaxial bending

moments M, and M, are given respectively by:

N = N.+N;

(18a)
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Fig. 9 Concrete reduced bending moment M,,; variation with neutral axis depth

Mx(} = Mcx(i + Msx(} (1 8b)

My(} = Mcy(i +M5’y(} (]80)

where the bending moments due to the concrete stresses must be changed into the global system,
that is M.,; and M., in Fig. 7. The results are the following:

M. = M,sin(PB) + M, cos(B)—N_.b/2 (19a)

C

(19b)

M. = —M_.cos(PB) + M ,sin(pB) + N.h/2
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Fig. 10 Concrete reduced bending moment M.,; variation with neutral axis depth

7. Numerical examples
7.1. Axial force in concrete and steel in a rectangular section

To exemplify the resultant force in the concrete, Eqs. 10(a), (b) and (c), a rectangular section with
height 2.0 m and width 1.0 m is considered. In Figs. 8(a) to (f), the values of reduced compressive
force N,/ (bhf.;) are plotted in function of neutral axis depth, o given by (3). Three values of the
neutral axis inclination (S=1716, =178, f=174) and two classes of concrete, C16/20 and C50/60, are
considered. The reduced force obtained with the rectangular stress diagram (rsd) is also plotted and
it can be compared with the value computed through MC90 equation, signalled by MC90 in Figs. 8.

In Figs. 9(a), 9(b) and Figs. 10(a), 10(b), the reduced bending moment M,,;/(bh*f,;) and M/
(bl’fy) are also plotted for the same values of B, classes of concrete and considering the two
constitutive relations that are the rectangular stress diagram (rsd) and the MC90 equation. These
diagrams show that the differences in the two models increase with the concrete grade and also
when the section is all compressed, near a=1. Nevertheless the changes in 8 are not relevant.

Fig. 11 exemplifies the computations of the axial force N, and bending moment A, variation in
steel with neutral axis depth a, for the ultimate strains values €., corresponding to the four classes



66 M. H. E M Barros, C. C. Ferreira and A. F. M. Barros

a)
e
z
C16/20
. ~ : e C25/30
............ C40/50
........... C50/60

0.2

0.4

o
N

0.6

Mey G [KNm]
M SX G [KNm]

o
[

-0.84

0.1

0 05 i 15 2 2,
alpha alpha

Fig. 11 Axial force and bending moment M,,; and M,,; variation in steel

of concrete, related in Table 1. The curves obtained by the use of the expressions 17(a) and (¢) and
using the relevant definitions in Annex TT are plotted in Fig. 11. The angle 3 considered is 774. The
other geometric properties of the section are the following: #=1 m, #=2 m, a;=a,=a;=a,=0.001 m,
a=0.05 m, E~200000Mpa and f,,= 400MPa.

It can be observed in this figure that the concrete grade also affects the force and moments in
the steel. Fig. 11a) shows that increasing the concrete grade the axial force decrease in absolute

value.
7.2. Interaction surfaces in biaxial bending of a rectangular section

A section with 0.40 X 0.40 m’> made in concrete C16/20 (&, =0.0035 and f,=10.67Mpa) is
reinforced with different steel area. The cover of steel is a=0.04 m. The steel class S400 with
Jya=400/1.15Mpa is uniformly distributed along the sides of the section. Four different reinforcing
bars are considered, 4¢16, 4¢20, 8¢l 6 and 8¢20. Interaction bending moment diagrams for a constant
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Fig. 13 Interaction N ~ MXG in the present model for 3=45°

axial load N =—-683KNare represented in Fig. 12. The present model is compared to parabola-rectangle
law given by CEB (1982). The present results are more conservative, since the resistant bending
moments are smaller than those with the parabola-rectangle. The interaction diagram N « M, , for
M, = —-M, (thatis b=45°), is also represented in Fig. 13 for different steel areas.

X
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Fig. 15(b) Interaction surface of the corner shear wall



Closed form interaction surfaces for nonlinear design codes of RC columns with MC 90 69

7.3. Interaction surfaces of a corner shear wall in biaxial bending

The present model is used in the analysis of the corner shear wall presented in Fafitis (2001). The
geometry of the wall with 29 steel bars of 17 (0.0254 m) diameter is indicated in Fig. 14. The
concrete strength is f.,= 9000Psi (62.07MPa), that is concrete class C50/60, an the steel strength is
Jso» = 60000Psi (413.80MPa). The bending moments are calculated at the gravity center G, of the
concrete section. The results are presented in Fig. 15. In Fig. 15(a) the interaction M, —M,
diagrams are plotted for N=-9000Kips(—40.0MN), N =-24000Kips (-106.7MN) and N=-
44000Kips (—-195.6MN) obtained with present model. The results by Fafitis (2001) are also
represented. The model developed is more conservative than the results obtained by Fafitis (2001).
In Fig. 15(b) the interaction surface is represented.

Using MAPLE the quality of the interaction abacus is dependent on the number of points used in
the definition of the figures. In the computation of the present abacus this number is small because
the symbolic language is not the more appropriate for intensive computation. The change to
FORTRAN language can improve the solution.

8. Conclusions

In the present work the expressions for the evaluation of the axial load and biaxial bending
moment in a reinforced concrete section are derived analytically with the mathematical program
MAPLE. This program is very convenient for the section design due to the quick and easy
implementation.

The constitutive relation of the concrete under compression is described either by the MC90
equation or the rectangular constant diagram. The equations for the biaxial bending moment and
axial force can be introduced into computer codes with the advantage of having the exact solution
instead of approximated solutions. The equations deducted to rectangular sections can be applied
into other sections, such as T, L, I or other, simply by decomposing them into small rectangles.
These equations can also be used in the elaboration of tables or design abacus. The numerical
examples consist of interaction diagrams for biaxial bending moment of different concrete sections.
The results are compared to the CEB (1982) model and it is concluded that in the high strength
concrete the present model can be more conservative in terms of the ultimate design.
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ANNEX |

In the following expressions the ratio of elasticity modulus at the origin and the secant value is
denoted by E..=E./E.. Axial forces N, (Fig. 6b), Ny, (Fig. 6¢), N, (Fig. 6d), N3 (Fig. 6¢) and
N (Fig. 6f) are given by:

No, = s fuaX (681(1 = B0 ) (K1 —K2) = 8B,y ~2)' + 68,72,

(1 =Ee1) (Eees =2)(k2 = k1) =3 €26, (Eee1 —2) (1 = E.1) )/ k14

C2a

= —%bﬁ.d(ef(Em 2 (X =bsin(B)) = 2X €2 (E.,, —1)2(k2 —k6)
261 6(Eeer =2)(Ecer = 1)’ (X" = bsin(B)X)/ (cos (B) X&.1 (E.e1 —2) €.
o 3B SI (B (£ Feiy =2) + £ 8 Eeiy =2) (ey = 1))
166 E(E,. —2)(Eoey — 1) (X (k1 —k6) =X *bsin(B))

260’ sin(B) (Euey —2)’ + 66, X (Eoey— 1)’ (k6 —k1)/ k14
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N, = —:T(Zhﬁd(si(Eccl —2) (X =hcos(B)) —2X e (E,., — 1) (k2 —k3)
+2XE,, € (E oy —2)(Euey — 1) (X —hcos(B)))/ (sin(B)Xe,  (E,., —2)°€.)
o 3R 05 (B (EFecy =2’ + 88 (Eeey =2) (Eeiy = 1))
+66 1 E(E o) —2)(Eoor — 1) (X (k1 =k3) =X heos (B)) —2€.4 cos(B)°
(B, =2) +66 X (E.oy— 1) (K3 —k1)/k14
N, = N%—% Fol( 66 EX(Eosy =2)(E.ey
BXELE(E e —2) (Euer — 1) (X =hcos(B))

—1)(1 + k2 —k3)(X = hcos(B))

+ & (E, —2) (Bheos(B) X =X + h cos(B)’ =31 cos (B)°X)

—6& X (E,.,— 1) (k2 —k3)/k14

No, = Noy+ 30 FubQE =1V X8 (KT = K2) + Xe, £y (Eooy = 2)(X

~bsin(B) = heos (B)))+ £ (Ecei =2) ((bsin(B) + heos () +X

17

~ 2hcos(B)X - 2Xbsin (B))/ (08 (B, £ Fecr =2)') = 136 foa

(6X €01 (Eeer = 1) (Eeer —2)((K7 —k3) (X + bsin(B)) ~hcos(B))
+e b sin(B)(E..; —2)’ (3hcos(B) —3X + 2bsin(f)) —6.X €,

(Eee1 = 1) (k7 —k3) =3 €2X, B sin (B) (Eoe — 1) (Eee1 —2)*/ k14
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Bending moments M, and M., in Fig. 6(b); M., and M., in Fig. 6(c); M. and M, in Fig.

6(d); M.,z and M, in Fig. 6(e); M., and M, in Fig. 6(f) are the following:

Moy =~ fuaX € (B =2)" 4 1268 (B = 1) (k1 =K2) + (B, 1)’
(16 (Euer —2) (12(k1 —k2) — 18) + £, £.(Eoo —2) (12 =24 (k1 — £2))

+4E,1E(Ee —2)"))/ k15

My = M, (sin(B)’ - cos(B)’)/ (cos(B)sin(pB))
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cy2a

My =

cy2b

M

cx3

M

cx2a —
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17 4,2 17

= S5 Fuab (K108 () + 625X 81, (K2 ~K6)(Eeey =2)(Eeey — 1)’

=M

3ED(E.q —2) (X =bsin(B))’ =66, € (Epey —2) (Ecer = 1)’
(sz ~b’Xsin(B)))/ (€.1c08 (B) X& (Eoer —2)")
17 1 (sin(B) - cos(B)’ )kll/sm(ﬁ)cos(ﬁ)

f k5

480

LT e/ (sin(B)(E.o, —2)' XE2E,) -

120 240

S Fudh (2K oS (B) + 68,1 " (K2 = K3)(Eooy =2)(Ecor =1)°

—3&h(E,.. —2) (X=hcos(B)) =66, (E,y —2) (E.oy —1)°

ccl

(hx* =’ Xcos(B)))/ (&.sin(B)’ Xe(E,., —2)")

_41?70 Foa(sin(B)’ = cos(B)*)k5/ sin(B) cos (B)

cx2a 240 ﬂd(12X4£cl(Eccl ])z(k2 _k3) +X28§l£§(Eccl -1 )Z(Eccl _2)2

(18X > + 64 cos(B)* — 12Xhcos (B) (k2 —k3 +2) + 12X (k2 —k3))

cy3 T

—X"cos(2B)) + £.6.,(E

4128 6(Eue; = 1) (Eooy =2) (X heos(B) (k2 —k3 + 1) —2X (k2 —=k3) - X )
e (E,. —2) (W cos(B) =X * +2X heos(B) —2Xh cos(B)°)

+ 8., € (Euey = 1) (E,oy —2) (6X heos(B) —4X " =2Xh cos (B)’))/ k15

480fd(s (Ecar —2)"(4cos(B)'X(hX’ —sin(B)h’ +3)

+h'cos(B) (3sin(B)* —6) + 5cos(B)°h* —8Xh cos(B)’ — 6k cos(B)° X"

—2)(E,..; — 1)’ (12X sin(B)*hcos (B) + (6

ccl ccl

+4(k2 —k3))(3X *cos(28)) - 6X  cos(B) h)+ Xk’ cos(B) (6sin(B)’
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+18cos(B)’ +12(k2—=k3))) + €. €., (Eooy —2) (E..; — 1)’ (12¢c0s (B)’ hX°
—12h°cos(B)° X = cos(B)’ XK’ (8cos(B) + 4sin(B)’ — 12) —4X *cos (28))

+ 8.6 (Epey —2)(Euey — 1) 24 cos (B hX (k2 —k3) + 12cos(2B) X

(cos(B)h—X—2X(k2 —k3)) + 12X "€ (E.., — 1) cos (2 B) (k2 — k3))
/ (sin(B)cos(B)k15)

Mo = Moy + o £ b(K12+ 6X° € £.1c08 (B) (oot =2) (Ever — 1)’

120
8. 6 (E = 2) (E.oy — 1) (3XH cos(B) + 6 Xbsin(B)hcos(B))
+ € (E ., —2) heos(B)(heos (B)(6bsin(B) —3X) + 6b°sin(B)’
+2h’cos(B) = 6Xbsin(B)))/ (cos(B)XeE. £ (E..; —2)")
+214—70 £k13 —21770ﬁ.d (&' bsin (B) heos (B)(E.., —2)"(8bsin(B) — 6X

+6hcos(B)) + 6hcos(B)(E,., — 1) (k3 -k7)2X €€ (E,. —2)

—2X° 1 E(E ey —2)) — .XE, B sin (B) ((Eeer —2)1))/ K15

= M, + %fcdb(ZklZsin(,B) + 68,6 (Eoe; —2) (E,., — 1) (Xsin(B)
(b* —h’cos(B)’) —bX* + hXbeos(B)(1 —2sin(B)*)) + & (E..; —2) (6sin(B)
(X —hcos(B))(b” —2cos(B)hbsin(B))+12cos(B)b’sin(B) h —3b”sin(B)’
—6¢o0s(B)°Xh’sin(B) + 4cos(B) h’ sin(B) —3b(X —hcos(B))°)
+ X2 6 (Es —2)(E..i — 1)’ (6b(k2 —k7) + 12cos(B)hsin(B)))/ (&,

oS (B XE(E. ~2)") = 75 fialcos(B)’ = sin(B))K13/ (sin(B)cos (B))

17

18 [od24X€1¢08(B) hE(E oy —2) (E ooy — 1)} (k3 —k7) — 125in(B)"

EXE,1b cos(B)V(Eeet —2) (Ecer = 1)’ + 12X 1€ (Ever = 2) (B = 1)°

heos(B)(bsin(B) + (k3 —k7) (hcos(B) —2Xcos (B) )+ (E.., —2) (126K



74

M. H. E M Barros, C. C. Ferreira and A. F. M. Barros

sin(B)(cos (B)°X + cos (B)’ h — cos(B)' X — heos(B)’) + h’cos(B)’(18sin(B) b’

—12cos(B)’Xb)~4sin(B) cos(B)’ (b’ h —=3bh’) — 65 hsin(B)* cos (B)’

+12hcos(B) (b sin(B)’ = b sin(B)' X))/ (cos(B)sin(B)k15)

Parameters K in these expressions are given by:

k1l

k2

k3

k4

kS

k6

k7

k8

k9

In(Xe,, —€.E., X +2€X)

In(Xe,,)

In(Xe,, + €(E..,—2)(hcos(B) —X))

66 € (E s — 1) (Eur —2)(X *heos (B) —X (1 —k3 + k2)) +3¢€,,&
—2)° (X’ =Xxh cos(B)’) + 66, X (E.., —1) (k2 —k3)

(Eeer —1)°(E

cel ccl

€ (E, —2) (X + 2k cos(B)’ =3Xh cos(B))

(12X (k1 =k3)(Euoy = 1) € 1(60 — EAEuy —=2))Y — €1 E(E,0 —2)

(Ecer = 1) (12X hcos(B) + 6X hcos (B)°) + £:(Eee1 —2)" (4XH cos(B)’
—3h'cos(B)") + 12X hcos(B)e(Eeer = 2)(Eeer = 1) +41 cos (B) e,
Xe,(Epe) =2) (Eoor = 1))/ k15

In(Xe,, + £.(E,., —2)(bsin(B) - X))

In(Xe., + €(E ., —2)(bsin(B) + hcos(B) —X))

66 E(E,.; — 1) (Eue; —2)(X *heos(B) =X (1 —k7 + k2)) + 3¢, &
(E,..— 1) (E,., —2)' (X =Xhcos(B)’) + 66, X (E,., — 1) (k2 —k7)
e (E —2) (X7 + 2k cos(B)’ = 3XN cos(B)?)

(12X (k6 —kT)(E,., — 1) E (& — E(E,u1 —2)) — €16 (Eoy —2)
-2)"(4x%’ cos(B)’

(E.oi — 1)’ (12X  heos(B) + 6X *h cos(B)’) + €1 (E

ccl ccl

3h'cos(B)) + 12X € hcos(B)E(Eeet —2)(Eoor — 1)’ +4h cos (B) &)

XE(Eee =2) (Eeer —1)1)/ K15

ccl
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K10 = 66 ,6(Eoy— 1) (E,. —2)(X bsin(B) =X (1 —k6 + k2)) + 3€,,&
(Bcr =1) (Eeer =2)" (X = Xb7sin(B)°) + 601X (E,oy = 1) (k2 = k6)

e (E,. —2) (X7 +2b°sin(B)’ = 3Xb7sin(B))

K11 = (12X (k1 =k6)(Eee1 = 1) €01 (E) = E( B = 2)) — €216 (Ee —2)°

(E...— 1)’ (12X bsin(B) + 6.X *bsin(B)°) + € (E.., —2)" (4Xb sin(B)’

=3b*sin(B)H + 12X° € bsin(B)e(E,,, —2)(E,., — 1)’ +4b sin(B) €

ccl

XEL'I(EL' _2)3(Ecc1 - 1)2)/k15

cl

k12 = 66 €(Eoe; — 1) (Euey —2)(X *bsin(B) =X (1 —k7 + k2)) + 3¢, &

ccl ccl

(Eeet = 1) (Eee1 =2)(X° =XBsin(B)’) + 66, X *(Eoer — 1) (k2 —k7)

+E(E,. —2) (X +2b sin(B)’ - 3Xbsin(B))

ccl

K13 = (12X (k3 —=k7)(Eee1 = 1)1 () = E(E e —2)) = €1 60(Eees —2)°

ccl ccl

(E...— 1)’ (12X bsin(B) + 6X b sin(B)°) + € (E.., —2)" (4Xb sin(B)’
—3b*sin(B)") + 12X € bsin(B)€.(Eeey —2)(E,or — 1) +4bsin(B) €,
X, (E,oy —2) (Eoor 1))/ k15

k14 = Xe, 6 (E,.; —2)"sin(B)cos(B)

k15 = kl4g,(E,, —2)

ANNEX 11

The strains, in each side of the section referenced in Fig. 7, have a linear variation between the
extreme values & and &, given by the following expressions:

E
Ue = &, —)—;((b —a)sin B+ acosf)

%, = EL.—i—g((h—a)cosB+ (b—a)sin B)
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E.
E&‘l = EL.—)—éa(sinB+cosB)
Side 2
T e
e = EC—)—(((b—a)smB+acosB)
&
Egl = EL.—)—;a(sinB+cosB)
Side 3
e |
g = EL.—)—(((h—a)cosB+as1nB)
SC .
581 = Ec—)—(((h—a)cosﬂ+asmﬁ)
Side 4
E.
Efz = gu—)_g((h—a)COSB+(b—a)sinB)

The definitions of x,1, x,», H; to Hs are :

Eifsval (&—-&)¢. _ Efyyal (&-6&)¢

= —_ ’x = —_
’! &l Es(&,— &) 2(&—&) 2 |&|Es(e,— &) 2(&—-8)

. Sy .. S
H, = Heavzszde%l—E—ij; H, = Heavzszde%z—E—ij
H = HeaVlSlde% "'é'&,”:| H = Heaviside% +é&1|:|
3 E 0 4 2 ES 0
Hs = HeavzszdeDf—M SlD’ Hy = HeavzszafeD fwd—s%
Hs = Heavzszde%fﬁ—gzg; Hg = HeavzszdeD f‘yd—é‘%

The value of & is §=h —2a if the sides are 1 or 3 and £ =5 —2a if the sides are 2 or 4.
The resultant force in the steel at side 7, with i =1 to 4, is computed through the expression:

|
F, = f. qa,0H,HyE — HyHy&E + HyHy H. e 250 +
ydljlz 8416 7%5%2% lfaDEQ
] Elf.;ya'f N
4+ A _ N
D|£1|E5(£2—£1) x‘UZD(Hng H2H6) H4H6H7
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ol sDDE O_¢0

03 /0 ~*r0

_ Lo, m, G100 .. 80  mbE
HyH, H; 5 — 2%1 &7 O * %] HHH &+ 531+ & ~At ~* 0

+%H3H5H4H7ES(£1 +86)¢a;

The bending moment dF; at side i, with i =1 to 4, is given by:

1
dr,; = 6H3H5E§ +xl’%(5_xp2)((f;yd+ & E)Hs = ([ya—&E)Hy)a+

178 1
+§|:% - (xpz)2 - (xpl)2 + g(xﬂ _xpl)zJ(HSHl _H2H6)fﬁ‘yd a;

+= H4H7E§ pl%(f +x, W ((fya— &L)H, = (fiya + &E)Hg)a, +

1 £ §(& +26)
+2H3H5H4H7(51 + 52) 3¢, +3¢ U E

NB
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