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1. Introduction 
 

Concrete is the most used material in civil engineering. 

Engineers must deal with the fact that in some structures, 

such as tunnels, nuclear plants, underground car parking, 

and high buildings ordinary concrete would not suffice. In 

these applications, high performance concrete (HPC) is 

commonly utilized (Viet-Thien-An et al. 2014). In addition 

to the basic ingredients used in conventional concrete the 

making of HPC needs to incorporate supplementary 

cementitious materials, such as fly ash and blast furnace 

slag, and chemical admixture, such as superplasticizer 

(Kumar et al. 2012, Mosabepranah and Eren 2016). 

As pointed out in    tcin       , the development of 

HPC technology has shown what Féret expressed in 1892 in 

the original formula for estimating the compressive strength 

of a concrete mixture: concrete compressive strength is 

closely related to the compactness of the hardened matrix. 

Nevertheless, HPC is such a highly complex material that  
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modeling its behavior is a difficult task. 

The  brams’ water-to-cement ratio (w/c) law (Abram 

1927, Nagaraj and Banu 1996) has been described as the 

most useful and significant advancement in the evolution of 

concrete technology.  ccording to  brams’ law, in concrete 

materials for a mixture of workable consistency, the 

strength of concrete is determined by the ratio of water to 

cement (w/c). As the water content increases, the strength 

decreases. The implication of the  brams’ law, therefore, is 

that the strengths of various concrete are identical as long as 

their w/c ratios remain the same, regardless of the details of 

the compositions. A second implication is that only the 

quality of the cement paste controls the strength of 

comparable cement, while the paste quantity does not 

matter. 

When the water-cement ratio law was proposed by 

Abrams, the use of fly ash and silica fume as replacements 

or substitutes for part of the cement was virtually unknown. 

Consequently, the effects of fly ash and silica fume were not 

considered in the development of  brams’ law (Oluokun 

1994). With the development of HPC materials, since the 

early 1960s, concrete mix compositions have changed, and 

cement is no longer the only cementitious material in 

concrete mixes. In a high percentage of situations, today’s 

cementitious material content is made up of cement plus fly 

ash.  

An analysis of a variety of experimental data aimed at 

investigating the applicability of  brams’ law to concrete 

mixes containing fly ash, led to the conclusion that  brams’ 

water-cement ratio law is not directly applicable to mixes 
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point of view of the high performance concrete strength prediction, a system able to outperform existing state-of-the-art 

techniques is defined; from the machine learning perspective, this case study shows that including a local searcher in the 

geometric semantic genetic programming system can speed up the convergence of the search process. 
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Fig. 1 The GP algorithm 

 

 

with fly ash. As reported in Yeh (2008), several studies have 

independently shown that concrete strength development is 

determined not only by the w/c ratio, but that it is also 

influenced by the content of other ingredients (Khan et al. 

2016). For instance, if two comparable concrete mixtures 

have the same w/c ratio, the strength of the concrete with 

the higher cement content is lower (Popovics 1990). 

Therefore, although experimental data have shown the 

practical acceptability of the  brams’ law within wide 

limits, the validity of this rule for concrete with 

supplementary cementitious materials (fly ash, blast furnace 

slag, etc.) should be investigated (Bhanja and Sengupta 

2005, Ramadoss and Nagamani 2012). The more we know 

about the concrete composition versus strength relationship, 

the better our understanding of the nature of concrete and 

how to optimize the concrete mixture. 

All these aspects highlight the need for reliable and 

accurate techniques that allow modeling the behavior of 

concrete materials. Machine learning (ML) methods have 

demonstrated their suitability in modeling the behavior of 

concrete materials. Among the different ML techniques, 

genetic programming (Koza 1992) has been used in 

different works, showing its suitability in modeling concrete 

characteristics. In Cevik and Sonebi (2008), a genetic 

programming system to model the performance of self-

compacting SIFCON of cement slurries has been proposed, 

while Peng et al. (2009) used GP to model the strength of 

high-performance concrete. Other ML techniques have been 

used to model concrete behavior: Marti-Vargas et al. (2013) 

and Yeh (2008) used neural networks, while Parichatprecha 

and Nimityongskul (2009) considered a hybrid that 

combines genetic algorithms and neural networks. A fuzzy 

system was used in Ramezanianpour et al. (2009) for 

diagnosis assessment of reinforced concrete bridge decks. 

Building upon previous research from Castelli et al. 

(2013b), we present a system based on a recently defined 

variant of genetic programming. More in detail, after 

introducing the concept of semantics in the field of genetic 

programming, we couple the semantics-based genetic 

programming system with a local search optimizer to 

increase the accuracy of the prediction of the HPC concrete 

strength. 

The remainder of this paper proceeds as follows. Section 

2 provides a general overview of genetic programming. 

Section 3 focuses on the variant of genetic programming 

employed in this work and describes the method followed 

to include a local searcher in the evolutionary search. 

Section 4 presents the data used in this work to evaluate the 

performance of the system, the experimental settings and 

the results achieved by the proposed framework. Finally, 

Section 5 concludes the paper summarizing the main 

findings of this work.  

 

 

2. Genetic programming 
 

Genetic Programming (GP) is one of the techniques that 

belongs to a larger computational intelligence research area 

called evolutionary computation. Computational 

intelligence is a set of nature-inspired computational 

methodologies and approaches to address complex real-

world problems to which traditional approaches, first 

principles modeling or explicit statistical modeling, are 

ineffective or infeasible. 

GP consists of the automated learning of computer 

programs by means of a process inspired by biological 

evolution (Koza 1992). Generation by generation, GP 

stochastically transforms a population of programs into a 

new, hopefully improved, population. The quality of a 

solution is expressed by using an objective function (also 

called fitness function). The search process of GP is 

graphically depicted in Fig. 1. 

Hence, the recipe for solving a problem with GP is the 

following: 

• Choose a representation space in which candidate 

solutions can be specified. This consists of choosing the 

primitives of the programming language that will be used to 

construct programs. A program is built up from a terminal 

set (the input variables of the problem and, optionally, a set 

of constant values) and a function set (the primitive 

operators). 

• Specify a fitness measure for evaluating the quality of 

a solution. This involves the execution of a candidate 

solution on a suite of test cases. In the case of supervised 

learning, a distance-based function is employed to quantify 

the divergence of a candidate’s behavior from the desired 

one. 

• Define a parent selection and replacement policy. 

Central to every EA (Evolutionary Algorithm) is the 

concept of fitness-driven selection in order to exert an 

evolutionary pressure towards promising areas of the search 

space. The replacement policy determines the way in which 

newly created offspring programs replace their parents in 

the population. 
• Design a variation mechanism to generate offspring 

from a parent or a set of parents. Standard GP uses two 
main variation operators: crossover and mutation. 
Crossover recombines parts of the structure of two 
individuals, whereas mutation stochastically alters a portion 
of the structure of an individual. 

• After a random initialization of a population of 

computer programs, an iterative application of selection, 

variation, and replacement is employed to improve the 
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programs quality. This can be seen as a stepwise 

refinement. 

To transform a population into a new population of 

candidate solutions, GP makes use of particular search 

operators called genetic operators. Considering the common 

tree representation of GP individuals, the standard genetic 

operators (crossover and mutation) act on the structure of 

the trees that represent the candidate solutions. In other 

terms, standard genetic operators act on the syntax of the 

programs. In this paper, we used genetic operators that, 

differently from the standard ones, are able to directly act at 

the semantic level. The definition of semantics used in this 

work is the one also considered in Moraglio et al. (2012) 

and will be presented in the following section. 

To better clarify the differences between the genetic 

operators used in this work and the ones used in the 

standard GP algorithm, the latter are also briefly recalled. 

The standard crossover operator is traditionally used to 

combine the genetic material of two parents by swapping a 

part of one parent with a part of the other. More in detail, 

after choosing two individuals based on their fitness, the 

crossover operator performs the following operations: (1) 

selects a random subtree in each parent and (2) swaps the 

selected subtrees between the two parents. The resulting 

individuals are referred to as the offspring. The mutation 

operator introduces random changes in the structures of the 

individuals in the population. The most well-known 

mutation operator, called sub-tree mutation, works as 

follows: (1) it randomly selects a node in a tree, (2) It 

removes the node and the subtree for which it is the root, 

and (3) it inserts a randomly generated tree there. This 

operation is controlled by a parameter that specifies the 

maximum size (usually measured in terms of tree depth) for 

the newly created subtree that is to be inserted. 

For a complete introduction to genetic programming, the 

reader is referred to the work of Koza (1992). 
 

 

3. Methods 

 
This section describes the components of the proposed 

computational intelligence system used for the prediction of 
high performance concrete strength. Section 3.1 describes  

 
 

the geometric semantic operators and their properties, while 
Section 3.2 presents the local search strategy that we used 
with the geometric semantic mutation. For a complete 
introduction to geometric semantic operators, the reader is 
referred to the work of Vanneschi (2017). 
 

3.1 Geometric semantic operators 
 

Despite the large number of human-competitive results 

achieved with the use of GP (Koza 2010), researchers still 

continue to develop new methods that improve the ability of 

GP to produce high-quality solutions. In recent years, one 

of the emerging ideas is to include the concept of semantics 

in the evolutionary process performed by GP. In this work 

we use the most common and widely accepted definition of 

semantics in GP literature (Krawiec and Lichocki (2009)). 

The semantics of a program Ti is defined as the vector of 

outputs si=[Ti(x1);Ti(x2);…;Ti(xn)], obtained after executing 

the program on a set of data (Moraglio et al. 2012), where 

s1, x2,…,xn are vectors containing the features of the 

problem. When Ti represents a real-valued function then 

si∈R
n
. 

In this section, we briefly recall the definition of the 

geometric semantic operators proposed by Moraglio et al. 

(2012). The objective of geometric semantic operators is to 

define modifications on the syntax of GP individuals that 

have a precise effect on their semantics. These operators 

define transformations in the syntax of GP individuals that 

correspond to well-known operators of Genetic Algorithms 

 G s . In this way, GP can “inherit” the known properties 

of those GA operators. Furthermore, in the application of 

GP to supervised learning problems, the target point in the 

semantic space is also known (it corresponds to the vector 

of expected output values in supervised learning) and the 

fitness of an individual is simply given by the distance 

between the points it represents in the semantic space and 

the target point t. 

It was shown in Moraglio et al. (2012) that when fitness 

is defined in this way it induces a unimodal error surface. 

The real-valued G  operators that we want to “map” into 

the GP semantic space are the geometric crossover and the 

ball mutation. In real-valued GAs, geometric crossover 

produces an offspring that lies on the segment that joins the  

 

Fig. 2 Geometric semantic crossover (plot (a)) (and respectively geometric semantic mutation (plot (b))) performs a 

transformation on the syntax of the individual that corresponds to geometric crossover (respectively geometric 

mutation) in the semantic space 
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parents. It was proven in Krawiec and Lichocki (2009) that 

in cases where the fitness is a direct function of the distance 

to the target (like the case we are interested in here) this 

offspring cannot have a worse fitness than the worst of its 

parents. Ball mutation consists of a random perturbation of 

the semantics of an individual. 

Fig. 2 shows a graphical representation of the mapping 

between the syntactic and the semantic space produced by 

geometric semantic operators. 

The definitions of the operators that correspond to 

geometric crossover and ball mutation in the GP semantic 

space, as given in Moraglio et al. (2012), are the following: 
Geometric Semantic Crossover (GSC): given two parent 

functions T1, T2: R
n
→R, the geometric semantic crossover 

returns the real function TXO=(T1·TR)+((1−TR)·T2), where TR 
is a random function such that TR:R

n
→(0; 1). 

To constrain TR in producing values in (0; 1) we use the 

sigmoid function    
 

          where Trand is a random 

tree with no constraints on the output values. 

Geometric Semantic Mutation (GSM): given a parent 

function T: R
n
→R, the geometric semantic mutation with 

mutation step ms returns the real function 

TM=T+ms·(TR1−TR2), where TR1 and TR2 are random real 

functions. 

Moraglio et al. (2012) showed that the geometric 

semantic crossover corresponds to geometric crossover in 

semantic space (i.e., the point representing the offspring 

stands on the segment joining the points representing the 

parents) and the geometric semantic mutation corresponds 

to ball mutation on the semantic space (and thus induces a 

unimodal fitness landscape on the above mentioned types of 

problem). Moraglio et al. (2012) further showed that these 

operators create much larger offspring than their parents 

and the fast growth of the individuals in the population 

makes fitness evaluation unbearably slow, making the 

system unusable. Castelli et al. (2013a) and Castelli et al. 

(2014) proposed a possible solution to this problem, 

consisting of an implementation of Moraglio et al. (2012)’s 

operators that makes them not only usable in practice 

(Castelli et al. 2016a, Castelli et al. 2016b, Castelli et al. 

2015c, Castelli et al. 2015d), but also very efficient. Their 

implementation is based on the idea that, besides storing the 

initial trees, at every generation it is enough to maintain 

 

 
in memory, for each individual, its semantics and a 

reference to its parents. Castelli et al. (2014) showed that 

the computational cost of evolving a population of n 

individuals for g generations is O(ng). The cost of 

evaluating a new, unseen, instance is O(ng) in the worst 

case, where all the individuals at each generation must be 

evaluated. Nonetheless, in practice, the average time needed 

to evaluate a new instance is O(g) (Castelli et al. 2014). In 

the following sections, we will refer to the GP system that 

makes use of the geometric semantic operators as GSGP 

(Geometric Semantic Genetic Programming).  

 

3.2 Local searcher in GSGP 
 

This section presents the procedure we followed for 

including a local searcher in GSGP. The same approach has 

been described in Castelli et al. (2015a). In this work, we 

include a local searcher (LS) within the GSM operator, 

since previous works have shown that the mutation operator 

is the one that can benefit more from this modification 

(Vanneschi et al. 2014). It has also been recently shown that 

the GSM is the operator that more efficiently explores the 

search space in GSGP (Gonçalves et al. 2015). For this 

particular local searcher, the GSM with LS (GSM-LS) of a 

tree T generates an individual 

                        

where αi∈R. Notice that α2 replaces the mutation step 

parameter ms used in the definition of GSM. This in fact 

defines a basic multivariate linear regression problem, 

which can be solved, for example, by Ordinary Least 

Square regression (OLS). In this sense, after each mutation 

event, OLS is applied to the above expression to obtain the 

values of the model parameters (α0, α1, α2) that best fit the 

training fitness cases. 

Differently from existing works that relied on a non-

linear local optimizer (Z-Flores et al. 2014), it is simple to 

apply a linear regression optimizer, given that the GSM 

operator defines a linear expression in the parameter space. 

By combining the exploration ability of GSGP with the 

exploitation ability of a local search method we expect to 

find good quality solutions in a small number of 

generations, hence avoiding the excessive specialization of  

 

Fig. 3 A graphical representation of GSM(a) and GSM-LS(b) 
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Table 1 Data considered in the experimental phase 

Column1 Minimum Maximum Mean Median Std. deviation 

Cement (kg/m3) 102 540 281.2 272.9 104.5 

Fly ash (kg/m3) 0 359.4 73.9 22 86.3 

Blast furnace (kg/m3) 0 200.1 54.2 0 64 

Water (kg/m3) 121.8 247 181.6 185 21.4 

Superplasticizer (kg/m3) 0 32.2 6.2 6.4 6 

Coarse aggregate (kg/m3) 801 1,145 972.9 968 77.8 

Fine aggregate (kg/m3) 594 992.6 773.6 779.5 80.2 

Age of testing (days) 1 365 45.7 28 63.2 

 

 

a model on the training instances and, consequently, 

overfitting. 

To illustrate how GSM and GSM-LS differ, a graphical 

depiction of each method is provided in Fig. 3. 

Fig. 3(a) shows a contour plot of semantic space, the 

space of all possible program outputs, with the highest 

fitness peak at the desired targets t. The semantics of a 

single GP tree is depicted as s; the circle around s is the area 

in which the semantics s’ of the offspring generated by 

GSM may lie, where the radius of the circle is determined 

by the mutation step ms. Notice that GSM can, in some 

cases, generate offspring with semantics that are farther 

away from t than the parent, i.e., it can generate an 

offspring which is worse than its parent. This can slow 

down the convergence speed of the search. On the other 

hand, GSM-LS will always produce offspring that have a 

better fitness than the parent, by forcing the geometric 

mutation to always move in the direction of the known goal 

of the search, as depicted in Fig. 3(b). 

The definition of the new GSM operator allows to 

counteract the problems that prevent GSGP to be used in 

applications where a vast amount of data is available by 

speeding up the convergence of the search. As 

demonstrated in the next section, GSGP with local search 

(LS-GSGP) can outperform GSGP by providing an accurate 

prediction of the HPC strength in a negligible amount of 

time. 

 

 

4. Experimental phase 

 
This section describes the experimental phase that has 

been performed to assess the performance of the proposed 

system. Section 4.1 describes the data considered, while 

section 4.2 presents the experimental settings and discusses 

the results achieved by the proposed system. Finally, 

section 4.3 compares the results achieved by the proposed 

system against the ones produced by non-evolutionary 

methods. 

 
4.1 Data 

 
The dataset used in the experimental phase was the same 

as in Castelli et al. (2013b). A description of the data can be 

found in that work. Here, we briefly summarize the features 

of the dataset. Data were assembled for concrete containing  

 

Fig. 4 Training MAE. The plot shows the median over 50 

independent runs 

 

 

Fig. 5 Test MAE. The plot shows the median over 50 

independent runs 

 

 

cement plus fly ash, blast furnace slag, and superplasticizer. 

An analysis was made to ensure that these mixtures were a 

fairly representative group governing all of the major 

parameters that influence the strength of HPC and present 

the complete information required for such an evaluation. 

The dataset consists of 1,028 instances, each of them 

described by 8 variables that are reported in Table 1. 

 

4.2 Experimental settings and results 
 

A comparison between the proposed semantics-based 

system with a local search optimizer (LS-GSGP) and GSGP 

was performed. GSGP has been selected for two main 

reasons: (1) as shown in Castelli et al. (2013b), GSGP is the 

state-of-the-art technique for addressing the HPC strength 

prediction problem, producing results that outperform other 

well-known machine learning techniques; (2) GSGP is the 

system that we want to improve by coupling the GSM 

operator with a local search optimizer. 

Regarding the two GP systems, all the runs used 

populations of 250 individuals and evolution stops after 

1000 generations. Tree initialization was performed with 

the Ramped Half-and-Half method described in Koza 

(1992), with a maximum initial depth equal to 6. The 

function set contained the arithmetic operators, including  
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Fig. 6 First generations of the evolutionary process for 

training (left) and test fitness (right) 

 

Table 2 Comparison between errors obtained on training 

and test instances by GSGP and LS-GSGP. For the 

considered systems we reported 10
th

, 25
th

, 50
th

, 75
th
 and 90

th
 

percentile 

 
Training Test 

 
GSGP LS-GSGP GSGP LS-GSGP 

10th 8.7594 8.4792 8.6095 8.2239 

25th 8.8627 8.5717 8.9824 8.4813 

50th 9.0618 8.7537 9.4112 8.8226 

75th 9.2399 8.9033 9.8345 9.1904 

90th 9.4889 8.9989 10.2355 9.6026 

 

 

the protected division as in Koza (1992). The terminal set 

contained 8 variables, each one corresponding to a different 

feature in the dataset. Mutation and crossover probabilities 

have been automatically self-tuned by using the system 

described in Castelli et al. (2015b). This system allows the 

practitioner to save the time-consuming task of tuning the 

GP parameters. Survival from one generation to the other 

was always guaranteed to the best individual of the 

population (elitism). For the GSM used in GSGP, a random 

mutation step has been considered in each mutation event, 

as suggested in Vanneschi et al. (2014). The results 

discussed in the next section have been obtained using the 

GSGP implementation (Vanneschi et al. 2013) freely 

available at http://gsgp.sourceforge.net and documented in 

Castelli et al. (2014). 

We studied the performance by considering the Mean 

Absolute Error (MAE) as a measure of error. The definition 

of this error measure is the following 

    
 

 
∑|     |

   

 

where yi=T(xi) is the output of the GP individual T on the 

input data xi and ti is the target value for the instance xi. N 

denotes the number of samples in the training or testing 

subset, and Q contains the indices of that set. Considering 

that the study aims at comparing the performance of 

different techniques, we prefer MAE over RMSE because it 

weights all the errors equally. Anyway, both error measures 

are commonly used in the machine learning area (Castelli et 

al. 2016a, Castelli et al. 2015d).  

In this experimental phase we considered the median  

Table 3 Comparison between errors obtained on training 

and test instances by LS-GSGP and other non-evolutionary 

methods. Median over 50 independent runs 

Training Test 

LS-GSGP 8.754 LS-GSGP 8.823 

Square Regression 15.146 Square Regression 14.233 

Radial Basis Function 
Network 

14.790 
Radial Basis Function 

Network 
13.874 

Isotonic Regression 11.637 Isotonic Regression 11.049 

 brams’ Law 10.902  brams’ Law 10.893 

 

 

over 50 runs. We preferred the median with respect to the 

average for its robustness to outlier values. We start the 

discussion of the obtained results by considering the 

performance of GSGP and LS-GSGP. Results of this 

comparison are reported in Figs. 4 and 5. 

As it is possible to see from these plots, LS-GSGP 

outperforms GSGP on both training and test instances. 

Furthermore, besides the fitness values reached at the end of 

the search process, it is interesting to notice how LS-GSGP 

converges more quickly than GSGP. Hence, coupling the 

GSM operator with a local search optimizer allows LS-

GSGP to converge in a smaller number of generations with 

respect to GSGP. This is fundamental for the applications 

where data are continuously provided and the training phase 

must be executed promptly. To better visualize the speed of 

convergence of LS-GSGP (compared with the one of 

GSGP), we report in Fig. 6 the first 20 generations of Figs. 

4 and 5. 

Regarding the numerical results (after 1000 

generations), on the training instances LS-GSGP produces a 

MAE of 8.75, while GSGP produces a MAE of 9.06. On the 

test set the MAE obtained with LS-GSGP is 8.82, while 

GSGP produces a MAE of 9.41. Table 2 summarizes the 

MAE on training and test instances considering the 10
th

, 

25
th

, 50
th

, 75
th

 and 90
th

 percentile. 
To analyze the statistical significance of the obtained 

results, a set of tests has been performed on the median 
errors. Firstly, the Kolmogorov-Smirnov test has shown that 
data is not normally distributed (p-value smaller than 10E

-

10
) and hence a rank-based statistic has been applied. 

Subsequently, the Mann-Whitney rank-sum test for 
pairwise data comparison has been used under the 
alternative hypothesis that the samples do not have equal 
medians. The p-values are 9.14E-09 for the training data 
and 3.80E-06 for the test data. Hence, LS-GSGP produces 
results that are statistically better than the ones produced by 
GSGP on both training and test instances. 

To summarize, it is possible to state that the contribution 

proposed in this work to improve the performance of GSGP 

is effective. In particular, LS-GSGP can converge faster 

than GSGP and, more important, it is able to produce better 

overall results. 

 

4.3 Comparison with other methods 
 

This section reports the results obtained with other non-

evolutionary techniques as well as the ones obtained with 

the application of the  brams’ law  strength at  8 days . 
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The objective of this experimental phase is to compare the 

performance of LS-GSGP against the ones achieved by 

other commonly used approaches. To perform the 

comparison with other methods, we used the 

implementation provided by the Weka public domain 

software (Hall et al. 2009). As done for the previous 

experimental phase, a preliminary study has been performed 

to find the best tuning of the parameters for the considered 

techniques. In particular, we used the functions provided by 

WEKA for finding the best parameter settings for the 

techniques taken into account: the tuning phase has been 

performed by using the WEKA metaclassifier 

(CVParameterSelection). The metaclassifier provides a way 

of automating the tuning process (Hall et al. 2009). 

The techniques taken into account are the following: 

square regression (Seber and Wild 2003), radial basis 

function network (Haykin 1999) and isotonic regression 

(Hoffmann 2009). The results of the comparison we 

performed are reported in Table 3. The results show that 

LS-GSGP performs better than all the considered methods 

(and the difference among the MAE produced by LS-GSGP 

and the other methods is statistically significant) and, 

moreover, it produces a more accurate estimation with 

respect to the  brams’ law. 

 

 
5. Conclusions 

 
High-performance concrete is a highly complex material 

that makes modeling its behavior a challenging undertaking. 
Machine learning techniques have shown their suitability in 
addressing this problem and, among the several existing 
techniques, a variant of GP has demonstrated its superior 
performance. This GP system makes use of particular 
genetic operators that, differently from the standard genetic 
operators used in GP, work on the semantics of the 
solutions. While the use of semantics methods in GP has 
been successfully investigated, and applied, several 
important problems that do not allow to efficiently use these 
methods are still open. The GP system that uses the 
semantics operators (GSGP) requires a huge amount of 
generations in order to converge towards optimal solutions. 
This drawback affects the readability (i.e., the possibility, 
for a human being, of understanding the final model 
returned by the GP system) of the final model and requires a 
computational effort that is not adequate for real world 
applications.  

To answer this call, this paper integrates a local search 
optimizer in the GSGP framework. By combining the 
exploration ability of GSGP with the exploitation ability of 
a local search method, we expect to find good quality 
solutions in a small number of generations. The proposed 
system, called LS-GSGP, can produce results that are 
statistically better than the ones produced by the GSGP 
algorithm that was reported in Castelli et al. (2013b). The 
system proposed in this paper represents the state-of-the-art 
method for addressing the HPC strength prediction 
problem. In particular, LS-GSGP is able to reduce the 
forecasting error with respect to GSGP, thus generating 
more accurate and reliable predictive models without 
overfitting the data. Finally, LS-GSGP is able to outperform 
several non-evolutionary techniques that are commonly 

used to address regression problems and, moreover, it 
returns a prediction that is more accurate with respect to the 
one provided by  brams’s law. We hope our work will 
spark future attempts in this intriguing research area. 
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