
Computers and Concrete, Vol. 19, No. 6 (2017) 651-658

DOI: https://doi.org/10.12989/cac.2017.19.6.651 651

Copyright © 2017 Techno-Press, Ltd.
http://www.techno-press.org/?journal=cac&subpage=8 ISSN: 1598-8198 (Print), 1598-818X (Online)

1. Introduction

Concrete is the most used material in civil engineering.

Engineers must deal with the fact that in some structures,

such as tunnels, nuclear plants, underground car parking,

and high buildings ordinary concrete would not suffice. In

these applications, high performance concrete (HPC) is

commonly utilized (Viet-Thien-An et al. 2014). In addition

to the basic ingredients used in conventional concrete the

making of HPC needs to incorporate supplementary

cementitious materials, such as fly ash and blast furnace

slag, and chemical admixture, such as superplasticizer

(Kumar et al. 2012, Mosabepranah and Eren 2016).

As pointed out in tcin , the development of

HPC technology has shown what Féret expressed in 1892 in

the original formula for estimating the compressive strength

of a concrete mixture: concrete compressive strength is

closely related to the compactness of the hardened matrix.

Nevertheless, HPC is such a highly complex material that

Corresponding author, Professor

E-mail: ales.popovic@ef.uni-lj.si
a
Professor

E-mail: mcastelli@novaims.unl.pt
b
Professor

E-mail: leonardo.trujillo@tectijuana.edu.mx
c
Professor

E-mail: igoncalves@novaims.unl.pt

modeling its behavior is a difficult task.

The brams’ water-to-cement ratio (w/c) law (Abram

1927, Nagaraj and Banu 1996) has been described as the

most useful and significant advancement in the evolution of

concrete technology. ccording to brams’ law, in concrete

materials for a mixture of workable consistency, the

strength of concrete is determined by the ratio of water to

cement (w/c). As the water content increases, the strength

decreases. The implication of the brams’ law, therefore, is

that the strengths of various concrete are identical as long as

their w/c ratios remain the same, regardless of the details of

the compositions. A second implication is that only the

quality of the cement paste controls the strength of

comparable cement, while the paste quantity does not

matter.

When the water-cement ratio law was proposed by

Abrams, the use of fly ash and silica fume as replacements

or substitutes for part of the cement was virtually unknown.

Consequently, the effects of fly ash and silica fume were not

considered in the development of brams’ law (Oluokun

1994). With the development of HPC materials, since the

early 1960s, concrete mix compositions have changed, and

cement is no longer the only cementitious material in

concrete mixes. In a high percentage of situations, today’s

cementitious material content is made up of cement plus fly

ash.

An analysis of a variety of experimental data aimed at

investigating the applicability of brams’ law to concrete

mixes containing fly ash, led to the conclusion that brams’

water-cement ratio law is not directly applicable to mixes

An evolutionary system for the prediction of high performance concrete
strength based on semantic genetic programming

Mauro Castelli1a, Leonardo Trujillo2b, Ivo Gonçalves1,3c and Aleš Popovič
1,4

1NOVA IMS, Universidade Nova de Lisboa, 1070-312, Lisbon, Portugal

2Tree-Lab, Instituto Tecnológico de Tijuana, Tijuana B.C., 22500, México
3Department of Informatics Engineering, CISUC, University of Coimbra, 3030-290, Coimbra, Portugal

4Faculty of Economics, University of Ljubljana, Kardeljeva Ploščad 17, 1000, Ljubljana, Slovenia

(Received January 16, 2016, Revised February 14, 2017, Accepted February 15, 2017)

Abstract. High-performance concrete, besides aggregate, cement, and water, incorporates supplementary cementitious

materials, such as fly ash and blast furnace slag, and chemical admixture, such as superplasticizer. Hence, it is a highly complex

material and modeling its behavior represents a difficult task. This paper presents an evolutionary system for the prediction of

high performance concrete strength. The proposed framework blends a recently developed version of genetic programming with

a local search method. The resulting system enables us to build a model that produces an accurate estimation of the considered

parameter.

Experimental results show the suitability of the proposed system for the prediction of concrete strength. The proposed

method produces a lower error with respect to the state-of-the art technique. The paper provides two contributions: from the

point of view of the high performance concrete strength prediction, a system able to outperform existing state-of-the-art

techniques is defined; from the machine learning perspective, this case study shows that including a local searcher in the

geometric semantic genetic programming system can speed up the convergence of the search process.

Keywords: high performance concrete; concrete strength; genetic programming; local search; semantics

Mauro Castelli, Leonardo Trujillo, Ivo Gonçalves and Aleš Popovič

Fig. 1 The GP algorithm

with fly ash. As reported in Yeh (2008), several studies have

independently shown that concrete strength development is

determined not only by the w/c ratio, but that it is also

influenced by the content of other ingredients (Khan et al.

2016). For instance, if two comparable concrete mixtures

have the same w/c ratio, the strength of the concrete with

the higher cement content is lower (Popovics 1990).

Therefore, although experimental data have shown the

practical acceptability of the brams’ law within wide

limits, the validity of this rule for concrete with

supplementary cementitious materials (fly ash, blast furnace

slag, etc.) should be investigated (Bhanja and Sengupta

2005, Ramadoss and Nagamani 2012). The more we know

about the concrete composition versus strength relationship,

the better our understanding of the nature of concrete and

how to optimize the concrete mixture.

All these aspects highlight the need for reliable and

accurate techniques that allow modeling the behavior of

concrete materials. Machine learning (ML) methods have

demonstrated their suitability in modeling the behavior of

concrete materials. Among the different ML techniques,

genetic programming (Koza 1992) has been used in

different works, showing its suitability in modeling concrete

characteristics. In Cevik and Sonebi (2008), a genetic

programming system to model the performance of self-

compacting SIFCON of cement slurries has been proposed,

while Peng et al. (2009) used GP to model the strength of

high-performance concrete. Other ML techniques have been

used to model concrete behavior: Marti-Vargas et al. (2013)

and Yeh (2008) used neural networks, while Parichatprecha

and Nimityongskul (2009) considered a hybrid that

combines genetic algorithms and neural networks. A fuzzy

system was used in Ramezanianpour et al. (2009) for

diagnosis assessment of reinforced concrete bridge decks.

Building upon previous research from Castelli et al.

(2013b), we present a system based on a recently defined

variant of genetic programming. More in detail, after

introducing the concept of semantics in the field of genetic

programming, we couple the semantics-based genetic

programming system with a local search optimizer to

increase the accuracy of the prediction of the HPC concrete

strength.

The remainder of this paper proceeds as follows. Section

2 provides a general overview of genetic programming.

Section 3 focuses on the variant of genetic programming

employed in this work and describes the method followed

to include a local searcher in the evolutionary search.

Section 4 presents the data used in this work to evaluate the

performance of the system, the experimental settings and

the results achieved by the proposed framework. Finally,

Section 5 concludes the paper summarizing the main

findings of this work.

2. Genetic programming

Genetic Programming (GP) is one of the techniques that

belongs to a larger computational intelligence research area

called evolutionary computation. Computational

intelligence is a set of nature-inspired computational

methodologies and approaches to address complex real-

world problems to which traditional approaches, first

principles modeling or explicit statistical modeling, are

ineffective or infeasible.

GP consists of the automated learning of computer

programs by means of a process inspired by biological

evolution (Koza 1992). Generation by generation, GP

stochastically transforms a population of programs into a

new, hopefully improved, population. The quality of a

solution is expressed by using an objective function (also

called fitness function). The search process of GP is

graphically depicted in Fig. 1.

Hence, the recipe for solving a problem with GP is the

following:

• Choose a representation space in which candidate

solutions can be specified. This consists of choosing the

primitives of the programming language that will be used to

construct programs. A program is built up from a terminal

set (the input variables of the problem and, optionally, a set

of constant values) and a function set (the primitive

operators).

• Specify a fitness measure for evaluating the quality of

a solution. This involves the execution of a candidate

solution on a suite of test cases. In the case of supervised

learning, a distance-based function is employed to quantify

the divergence of a candidate’s behavior from the desired

one.

• Define a parent selection and replacement policy.

Central to every EA (Evolutionary Algorithm) is the

concept of fitness-driven selection in order to exert an

evolutionary pressure towards promising areas of the search

space. The replacement policy determines the way in which

newly created offspring programs replace their parents in

the population.
• Design a variation mechanism to generate offspring

from a parent or a set of parents. Standard GP uses two
main variation operators: crossover and mutation.
Crossover recombines parts of the structure of two
individuals, whereas mutation stochastically alters a portion
of the structure of an individual.

• After a random initialization of a population of

computer programs, an iterative application of selection,

variation, and replacement is employed to improve the

652

An evolutionary system for the prediction of high performance concrete strength…

programs quality. This can be seen as a stepwise

refinement.

To transform a population into a new population of

candidate solutions, GP makes use of particular search

operators called genetic operators. Considering the common

tree representation of GP individuals, the standard genetic

operators (crossover and mutation) act on the structure of

the trees that represent the candidate solutions. In other

terms, standard genetic operators act on the syntax of the

programs. In this paper, we used genetic operators that,

differently from the standard ones, are able to directly act at

the semantic level. The definition of semantics used in this

work is the one also considered in Moraglio et al. (2012)

and will be presented in the following section.

To better clarify the differences between the genetic

operators used in this work and the ones used in the

standard GP algorithm, the latter are also briefly recalled.

The standard crossover operator is traditionally used to

combine the genetic material of two parents by swapping a

part of one parent with a part of the other. More in detail,

after choosing two individuals based on their fitness, the

crossover operator performs the following operations: (1)

selects a random subtree in each parent and (2) swaps the

selected subtrees between the two parents. The resulting

individuals are referred to as the offspring. The mutation

operator introduces random changes in the structures of the

individuals in the population. The most well-known

mutation operator, called sub-tree mutation, works as

follows: (1) it randomly selects a node in a tree, (2) It

removes the node and the subtree for which it is the root,

and (3) it inserts a randomly generated tree there. This

operation is controlled by a parameter that specifies the

maximum size (usually measured in terms of tree depth) for

the newly created subtree that is to be inserted.

For a complete introduction to genetic programming, the

reader is referred to the work of Koza (1992).

3. Methods

This section describes the components of the proposed

computational intelligence system used for the prediction of
high performance concrete strength. Section 3.1 describes

the geometric semantic operators and their properties, while
Section 3.2 presents the local search strategy that we used
with the geometric semantic mutation. For a complete
introduction to geometric semantic operators, the reader is
referred to the work of Vanneschi (2017).

3.1 Geometric semantic operators

Despite the large number of human-competitive results

achieved with the use of GP (Koza 2010), researchers still

continue to develop new methods that improve the ability of

GP to produce high-quality solutions. In recent years, one

of the emerging ideas is to include the concept of semantics

in the evolutionary process performed by GP. In this work

we use the most common and widely accepted definition of

semantics in GP literature (Krawiec and Lichocki (2009)).

The semantics of a program Ti is defined as the vector of

outputs si=[Ti(x1);Ti(x2);…;Ti(xn)], obtained after executing

the program on a set of data (Moraglio et al. 2012), where

s1, x2,…,xn are vectors containing the features of the

problem. When Ti represents a real-valued function then

si∈R
n
.

In this section, we briefly recall the definition of the

geometric semantic operators proposed by Moraglio et al.

(2012). The objective of geometric semantic operators is to

define modifications on the syntax of GP individuals that

have a precise effect on their semantics. These operators

define transformations in the syntax of GP individuals that

correspond to well-known operators of Genetic Algorithms

 G s . In this way, GP can “inherit” the known properties

of those GA operators. Furthermore, in the application of

GP to supervised learning problems, the target point in the

semantic space is also known (it corresponds to the vector

of expected output values in supervised learning) and the

fitness of an individual is simply given by the distance

between the points it represents in the semantic space and

the target point t.

It was shown in Moraglio et al. (2012) that when fitness

is defined in this way it induces a unimodal error surface.

The real-valued G operators that we want to “map” into

the GP semantic space are the geometric crossover and the

ball mutation. In real-valued GAs, geometric crossover

produces an offspring that lies on the segment that joins the

Fig. 2 Geometric semantic crossover (plot (a)) (and respectively geometric semantic mutation (plot (b))) performs a

transformation on the syntax of the individual that corresponds to geometric crossover (respectively geometric

mutation) in the semantic space

653

Mauro Castelli, Leonardo Trujillo, Ivo Gonçalves and Aleš Popovič

parents. It was proven in Krawiec and Lichocki (2009) that

in cases where the fitness is a direct function of the distance

to the target (like the case we are interested in here) this

offspring cannot have a worse fitness than the worst of its

parents. Ball mutation consists of a random perturbation of

the semantics of an individual.

Fig. 2 shows a graphical representation of the mapping

between the syntactic and the semantic space produced by

geometric semantic operators.

The definitions of the operators that correspond to

geometric crossover and ball mutation in the GP semantic

space, as given in Moraglio et al. (2012), are the following:
Geometric Semantic Crossover (GSC): given two parent

functions T1, T2: R
n
→R, the geometric semantic crossover

returns the real function TXO=(T1·TR)+((1−TR)·T2), where TR
is a random function such that TR:R

n
→(0; 1).

To constrain TR in producing values in (0; 1) we use the

sigmoid function

 where Trand is a random

tree with no constraints on the output values.

Geometric Semantic Mutation (GSM): given a parent

function T: R
n
→R, the geometric semantic mutation with

mutation step ms returns the real function

TM=T+ms·(TR1−TR2), where TR1 and TR2 are random real

functions.

Moraglio et al. (2012) showed that the geometric

semantic crossover corresponds to geometric crossover in

semantic space (i.e., the point representing the offspring

stands on the segment joining the points representing the

parents) and the geometric semantic mutation corresponds

to ball mutation on the semantic space (and thus induces a

unimodal fitness landscape on the above mentioned types of

problem). Moraglio et al. (2012) further showed that these

operators create much larger offspring than their parents

and the fast growth of the individuals in the population

makes fitness evaluation unbearably slow, making the

system unusable. Castelli et al. (2013a) and Castelli et al.

(2014) proposed a possible solution to this problem,

consisting of an implementation of Moraglio et al. (2012)’s

operators that makes them not only usable in practice

(Castelli et al. 2016a, Castelli et al. 2016b, Castelli et al.

2015c, Castelli et al. 2015d), but also very efficient. Their

implementation is based on the idea that, besides storing the

initial trees, at every generation it is enough to maintain

in memory, for each individual, its semantics and a

reference to its parents. Castelli et al. (2014) showed that

the computational cost of evolving a population of n

individuals for g generations is O(ng). The cost of

evaluating a new, unseen, instance is O(ng) in the worst

case, where all the individuals at each generation must be

evaluated. Nonetheless, in practice, the average time needed

to evaluate a new instance is O(g) (Castelli et al. 2014). In

the following sections, we will refer to the GP system that

makes use of the geometric semantic operators as GSGP

(Geometric Semantic Genetic Programming).

3.2 Local searcher in GSGP

This section presents the procedure we followed for

including a local searcher in GSGP. The same approach has

been described in Castelli et al. (2015a). In this work, we

include a local searcher (LS) within the GSM operator,

since previous works have shown that the mutation operator

is the one that can benefit more from this modification

(Vanneschi et al. 2014). It has also been recently shown that

the GSM is the operator that more efficiently explores the

search space in GSGP (Gonçalves et al. 2015). For this

particular local searcher, the GSM with LS (GSM-LS) of a

tree T generates an individual

where αi∈R. Notice that α2 replaces the mutation step

parameter ms used in the definition of GSM. This in fact

defines a basic multivariate linear regression problem,

which can be solved, for example, by Ordinary Least

Square regression (OLS). In this sense, after each mutation

event, OLS is applied to the above expression to obtain the

values of the model parameters (α0, α1, α2) that best fit the

training fitness cases.

Differently from existing works that relied on a non-

linear local optimizer (Z-Flores et al. 2014), it is simple to

apply a linear regression optimizer, given that the GSM

operator defines a linear expression in the parameter space.

By combining the exploration ability of GSGP with the

exploitation ability of a local search method we expect to

find good quality solutions in a small number of

generations, hence avoiding the excessive specialization of

Fig. 3 A graphical representation of GSM(a) and GSM-LS(b)

654

An evolutionary system for the prediction of high performance concrete strength…

Table 1 Data considered in the experimental phase

Column1 Minimum Maximum Mean Median Std. deviation

Cement (kg/m3) 102 540 281.2 272.9 104.5

Fly ash (kg/m3) 0 359.4 73.9 22 86.3

Blast furnace (kg/m3) 0 200.1 54.2 0 64

Water (kg/m3) 121.8 247 181.6 185 21.4

Superplasticizer (kg/m3) 0 32.2 6.2 6.4 6

Coarse aggregate (kg/m3) 801 1,145 972.9 968 77.8

Fine aggregate (kg/m3) 594 992.6 773.6 779.5 80.2

Age of testing (days) 1 365 45.7 28 63.2

a model on the training instances and, consequently,

overfitting.

To illustrate how GSM and GSM-LS differ, a graphical

depiction of each method is provided in Fig. 3.

Fig. 3(a) shows a contour plot of semantic space, the

space of all possible program outputs, with the highest

fitness peak at the desired targets t. The semantics of a

single GP tree is depicted as s; the circle around s is the area

in which the semantics s’ of the offspring generated by

GSM may lie, where the radius of the circle is determined

by the mutation step ms. Notice that GSM can, in some

cases, generate offspring with semantics that are farther

away from t than the parent, i.e., it can generate an

offspring which is worse than its parent. This can slow

down the convergence speed of the search. On the other

hand, GSM-LS will always produce offspring that have a

better fitness than the parent, by forcing the geometric

mutation to always move in the direction of the known goal

of the search, as depicted in Fig. 3(b).

The definition of the new GSM operator allows to

counteract the problems that prevent GSGP to be used in

applications where a vast amount of data is available by

speeding up the convergence of the search. As

demonstrated in the next section, GSGP with local search

(LS-GSGP) can outperform GSGP by providing an accurate

prediction of the HPC strength in a negligible amount of

time.

4. Experimental phase

This section describes the experimental phase that has

been performed to assess the performance of the proposed

system. Section 4.1 describes the data considered, while

section 4.2 presents the experimental settings and discusses

the results achieved by the proposed system. Finally,

section 4.3 compares the results achieved by the proposed

system against the ones produced by non-evolutionary

methods.

4.1 Data

The dataset used in the experimental phase was the same

as in Castelli et al. (2013b). A description of the data can be

found in that work. Here, we briefly summarize the features

of the dataset. Data were assembled for concrete containing

Fig. 4 Training MAE. The plot shows the median over 50

independent runs

Fig. 5 Test MAE. The plot shows the median over 50

independent runs

cement plus fly ash, blast furnace slag, and superplasticizer.

An analysis was made to ensure that these mixtures were a

fairly representative group governing all of the major

parameters that influence the strength of HPC and present

the complete information required for such an evaluation.

The dataset consists of 1,028 instances, each of them

described by 8 variables that are reported in Table 1.

4.2 Experimental settings and results

A comparison between the proposed semantics-based

system with a local search optimizer (LS-GSGP) and GSGP

was performed. GSGP has been selected for two main

reasons: (1) as shown in Castelli et al. (2013b), GSGP is the

state-of-the-art technique for addressing the HPC strength

prediction problem, producing results that outperform other

well-known machine learning techniques; (2) GSGP is the

system that we want to improve by coupling the GSM

operator with a local search optimizer.

Regarding the two GP systems, all the runs used

populations of 250 individuals and evolution stops after

1000 generations. Tree initialization was performed with

the Ramped Half-and-Half method described in Koza

(1992), with a maximum initial depth equal to 6. The

function set contained the arithmetic operators, including

655

Mauro Castelli, Leonardo Trujillo, Ivo Gonçalves and Aleš Popovič

Fig. 6 First generations of the evolutionary process for

training (left) and test fitness (right)

Table 2 Comparison between errors obtained on training

and test instances by GSGP and LS-GSGP. For the

considered systems we reported 10
th

, 25
th

, 50
th

, 75
th
 and 90

th

percentile

Training Test

GSGP LS-GSGP GSGP LS-GSGP

10th 8.7594 8.4792 8.6095 8.2239

25th 8.8627 8.5717 8.9824 8.4813

50th 9.0618 8.7537 9.4112 8.8226

75th 9.2399 8.9033 9.8345 9.1904

90th 9.4889 8.9989 10.2355 9.6026

the protected division as in Koza (1992). The terminal set

contained 8 variables, each one corresponding to a different

feature in the dataset. Mutation and crossover probabilities

have been automatically self-tuned by using the system

described in Castelli et al. (2015b). This system allows the

practitioner to save the time-consuming task of tuning the

GP parameters. Survival from one generation to the other

was always guaranteed to the best individual of the

population (elitism). For the GSM used in GSGP, a random

mutation step has been considered in each mutation event,

as suggested in Vanneschi et al. (2014). The results

discussed in the next section have been obtained using the

GSGP implementation (Vanneschi et al. 2013) freely

available at http://gsgp.sourceforge.net and documented in

Castelli et al. (2014).

We studied the performance by considering the Mean

Absolute Error (MAE) as a measure of error. The definition

of this error measure is the following

∑| |

where yi=T(xi) is the output of the GP individual T on the

input data xi and ti is the target value for the instance xi. N

denotes the number of samples in the training or testing

subset, and Q contains the indices of that set. Considering

that the study aims at comparing the performance of

different techniques, we prefer MAE over RMSE because it

weights all the errors equally. Anyway, both error measures

are commonly used in the machine learning area (Castelli et

al. 2016a, Castelli et al. 2015d).

In this experimental phase we considered the median

Table 3 Comparison between errors obtained on training

and test instances by LS-GSGP and other non-evolutionary

methods. Median over 50 independent runs

Training Test

LS-GSGP 8.754 LS-GSGP 8.823

Square Regression 15.146 Square Regression 14.233

Radial Basis Function
Network

14.790
Radial Basis Function

Network
13.874

Isotonic Regression 11.637 Isotonic Regression 11.049

 brams’ Law 10.902 brams’ Law 10.893

over 50 runs. We preferred the median with respect to the

average for its robustness to outlier values. We start the

discussion of the obtained results by considering the

performance of GSGP and LS-GSGP. Results of this

comparison are reported in Figs. 4 and 5.

As it is possible to see from these plots, LS-GSGP

outperforms GSGP on both training and test instances.

Furthermore, besides the fitness values reached at the end of

the search process, it is interesting to notice how LS-GSGP

converges more quickly than GSGP. Hence, coupling the

GSM operator with a local search optimizer allows LS-

GSGP to converge in a smaller number of generations with

respect to GSGP. This is fundamental for the applications

where data are continuously provided and the training phase

must be executed promptly. To better visualize the speed of

convergence of LS-GSGP (compared with the one of

GSGP), we report in Fig. 6 the first 20 generations of Figs.

4 and 5.

Regarding the numerical results (after 1000

generations), on the training instances LS-GSGP produces a

MAE of 8.75, while GSGP produces a MAE of 9.06. On the

test set the MAE obtained with LS-GSGP is 8.82, while

GSGP produces a MAE of 9.41. Table 2 summarizes the

MAE on training and test instances considering the 10
th

,

25
th

, 50
th

, 75
th

 and 90
th

 percentile.
To analyze the statistical significance of the obtained

results, a set of tests has been performed on the median
errors. Firstly, the Kolmogorov-Smirnov test has shown that
data is not normally distributed (p-value smaller than 10E

-

10
) and hence a rank-based statistic has been applied.

Subsequently, the Mann-Whitney rank-sum test for
pairwise data comparison has been used under the
alternative hypothesis that the samples do not have equal
medians. The p-values are 9.14E-09 for the training data
and 3.80E-06 for the test data. Hence, LS-GSGP produces
results that are statistically better than the ones produced by
GSGP on both training and test instances.

To summarize, it is possible to state that the contribution

proposed in this work to improve the performance of GSGP

is effective. In particular, LS-GSGP can converge faster

than GSGP and, more important, it is able to produce better

overall results.

4.3 Comparison with other methods

This section reports the results obtained with other non-

evolutionary techniques as well as the ones obtained with

the application of the brams’ law strength at 8 days .

656

An evolutionary system for the prediction of high performance concrete strength…

The objective of this experimental phase is to compare the

performance of LS-GSGP against the ones achieved by

other commonly used approaches. To perform the

comparison with other methods, we used the

implementation provided by the Weka public domain

software (Hall et al. 2009). As done for the previous

experimental phase, a preliminary study has been performed

to find the best tuning of the parameters for the considered

techniques. In particular, we used the functions provided by

WEKA for finding the best parameter settings for the

techniques taken into account: the tuning phase has been

performed by using the WEKA metaclassifier

(CVParameterSelection). The metaclassifier provides a way

of automating the tuning process (Hall et al. 2009).

The techniques taken into account are the following:

square regression (Seber and Wild 2003), radial basis

function network (Haykin 1999) and isotonic regression

(Hoffmann 2009). The results of the comparison we

performed are reported in Table 3. The results show that

LS-GSGP performs better than all the considered methods

(and the difference among the MAE produced by LS-GSGP

and the other methods is statistically significant) and,

moreover, it produces a more accurate estimation with

respect to the brams’ law.

5. Conclusions

High-performance concrete is a highly complex material

that makes modeling its behavior a challenging undertaking.
Machine learning techniques have shown their suitability in
addressing this problem and, among the several existing
techniques, a variant of GP has demonstrated its superior
performance. This GP system makes use of particular
genetic operators that, differently from the standard genetic
operators used in GP, work on the semantics of the
solutions. While the use of semantics methods in GP has
been successfully investigated, and applied, several
important problems that do not allow to efficiently use these
methods are still open. The GP system that uses the
semantics operators (GSGP) requires a huge amount of
generations in order to converge towards optimal solutions.
This drawback affects the readability (i.e., the possibility,
for a human being, of understanding the final model
returned by the GP system) of the final model and requires a
computational effort that is not adequate for real world
applications.

To answer this call, this paper integrates a local search
optimizer in the GSGP framework. By combining the
exploration ability of GSGP with the exploitation ability of
a local search method, we expect to find good quality
solutions in a small number of generations. The proposed
system, called LS-GSGP, can produce results that are
statistically better than the ones produced by the GSGP
algorithm that was reported in Castelli et al. (2013b). The
system proposed in this paper represents the state-of-the-art
method for addressing the HPC strength prediction
problem. In particular, LS-GSGP is able to reduce the
forecasting error with respect to GSGP, thus generating
more accurate and reliable predictive models without
overfitting the data. Finally, LS-GSGP is able to outperform
several non-evolutionary techniques that are commonly

used to address regression problems and, moreover, it
returns a prediction that is more accurate with respect to the
one provided by brams’s law. We hope our work will
spark future attempts in this intriguing research area.

References

 brams, D. . 19 7 , “Water-cement ration as a basis of concrete

quality”, ACI Mater. J., 23(2), 452-457.

 tcin, P.C. , “The durability characteristics of high

performance concrete: review”, Cement Concrete Compos.,

25(4), 409-420.

Bhanja, S. and Sengupta, B. 5 , “Influence of silica fume on

the tensile strength of concrete”, Cement Concrete Res., 35(4),

743-747.

Castelli, A., Silva, S. and Vanneschi, L. (2014), “ C++

framework for geometric semantic genetic programming”, Gen.

Program. Evol. Mach., 16(1), 73-81.

Castelli, M., Castaldi, D., Giordani, I., Silva, S., Vanneschi, L.,

Archetti, F. and Maccagnola, D. (2013a), An Efficient

Implementation of Geometric Semantic Genetic Programming

for Anticoagulation Level Prediction in Pharmacogenetics,

Progress in Artificial Intelligence, Volume 8154 of the series

Lecture Notes in Computer Science, 78-89.

Castelli, M., Manzoni, L., Vanneschi, L., Silva, S. and Popovič, .

(2015b), “Self-tuning geometric semantic genetic

programming”, Gen. Program. Evol. Mach., 17(1), 55-74.

Castelli, M., Trujillo, L. Vanneschi, L., Silva, S., Z-Flores, E. and

Legrand, P. (2015a), “Geometric semantic genetic

programming with local search”, Proceedings of the 17th

Annual Conference on Genetic and Evolutionary Computation,

Madrid, Spain, July.

Castelli, M., Trujillo, L., Vanneschi, L. and Popovič, . 15d ,

“Prediction of energy performance of residential buildings: A

genetic programming approach”, Energy Build., 102, 67-74.

Castelli, M., Trujillo, L., Vanneschi, L. and Popovič, . 16a ,

“Prediction of relative position of CT slices using a

computational intelligence system”, Appl. Soft Comput., 46,

537-542.

Castelli, M., Vanneschi, L. and De Felice, M. (2015c),

“Forecasting short-term electricity consumption using a

semantics-based genetic programming framework: The South

Italy case”, Energy Econ., 47, 37-41.

Castelli, M., Vanneschi, L. and Silva, S. (2013b), “Prediction of

high performance concrete strength using genetic programming

with geometric semantic genetic operators”, Exp. Syst. Appl.,

40(17), 6856-6862.

Castelli, M., Vanneschi, L., Manzoni, L. and Popovič, . 16b ,

“Semantic genetic programming for fast and accurate data

knowledge discovery”, Swarm Evolut. Comput., 26, 1-7.

Cevik, . and Sonebi, M. 8 , “Modelling the performance of

self-compacting SIFCON of cement slurries using genetic

programming technique”, Comput. Concrete, 5(5), 475-490.

Gonçalves, I., Silva, S., Fonseca, C.M. 15 , “On the

generalization ability of geometric semantic genetic

programming”, Proceedings of the 18th European Conference

on Genetic Programming, March.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and

Witten, I.H. 9 , “The WEK data mining software: n

update”, ACM SIGKDD Expl. Newslett., 11(1), 10-18.

Haykin, S. (1999), Neural Networks: A Comprehensive

Foundation, Prentice Hall.

Hoffmann, L. 9 , “Multivariate isotonic regression and its

algorithms”, Ph.D. Dissertation, Wichita State University,

Kansas, U.S.A.

Khan, ., Do, J. and Kim, D. 16 , “Cost effective optimal mix

657

Mauro Castelli, Leonardo Trujillo, Ivo Gonçalves and Aleš Popovič

proportioning of high strength self compacting concrete using

response surface methodology”, Comput. Concrete, 17(5), 629-

638.

Koza, J.R. (1992), Genetic Programming: On the Programming of

Computers by Means of Natural Selection, MIT Press,

Cambridge, U.S.A.

Koza, J.R. 1 , “Human-competitive results produced by

genetic programming”, Gen. Program. Evol. Mach., 11, 251-

284.

Krawiec, K. and Lichocki, P. 9 , “ pproximating geometric

crossover in semantic space”, Proceedings of the 11th Annual

Conference on Genetic and Evolutionary Computation, Quebec,

Canada, July.

Kumar, M., Singh, S.K. and Singh, N.P. 1 , “Heat evolution

during the hydration of Portland cement in the presence of fly

ash, calcium hydroxide and super plasticizer”, Thermochim.

Acta, 548, 27-32.

Marti-Vargas, J.R., Ferri, F.J. and Yepes, V. 1 , “Prediction of

the transfer length of prestressing strands with neural

networks”, Comput. Concrete, 12(2), 187-209.

Moraglio, ., Krawiec, K. and Johnson, C.G. 1 , “Geometric

semantic genetic programming”, Proceedings of the 12th

International Conference on Parallel Problem Solving from

Nature, Volume 7491 of Lecture Notes in Computer Science,

21-31.

Mosabepranah, M. . and Eren, O. 16 , “Statistical flexural

toughness modeling of ultra-high performance concrete using

response surface method”, Comput. Concrete, 17(4), 477-488.

Nagaraj, T. and Banu, Z. 1996 , “Generalization of brams’

law”, Cement Concrete Res., 26(6), 933-942.

Oluokun, F. . 1994 , “Fly ash concrete mix design and the water-

cement ratio law”, ACI Mater. J., 91(4), 362-371.

Parichatprecha, R. and Nimityongskul, P. 9 , “ n integrated

approach for optimum design of HPC mix proportion using

genetic algorithm and artificial neural networks”, Comput.

Concrete, 6(3), 253-268.

Peng, C.H., Yeh, I. and Lien, L.C. 9 , “Modeling strength of

high-performance concrete using genetic operation trees with

pruning techniques”, Comput. Concrete, 6(3), 203-223.

Popovics, S. (1990), “ nalysis of concrete strength versus water-

cement ratio relationship”, ACI Mater. J., 87(5), 517-529.

Ramadoss, P. and Nagamani, K. 1 , “Statistical methods of

investigation on the compressive strength of high-performance

steel fiber reinforced concrete”, Comput. Concrete, 9(2), 153-

169.

Ramezanianpour, A.A., Shahhosseini, V. and Moodi, F. (2009),

“ fuzzy expert system for diagnosis assessment of reinforced

concrete bridge decks”, Comput. Concrete, 6(4), 281-303.

Seber, G. and Wild, C. (2003), Nonlinear Regression, Wiley

Series in Probability and Statistics, Wiley.

Vanneschi, L. 17 , “ n introduction to geometric semantic

genetic programming”, Proceedings of the NEO 2015, Tijuana,

Mexico, September.

Vanneschi, L., Castelli, M., Manzoni, L. and Silva, S. 1 , “

new implementation of geometric semantic GP and its

application to problems in pharmacokinetics”, Proceedings of

the EuroGP 2013, European Conference on Genetic

Programming, 205-216.

Vanneschi, L., Silva, S., Castelli, M. and Manzoni, L. (2014),

Geometric Semantic Genetic Programming for Real Life

Applications, Genetic Programming Theory and Practice XI,

191-209.

Viet-Thien-An, V., Röbler, C., Bui, D. and Horst-Michael, L.

 14 , “Rice husk ash as both pozzolanic admixture and

internal curing agent in ultra-high performance concrete”,

Cement Concrete Compos., 53, 270-278.

Yeh, I. 1998 , “Modeling of strength of high-performance

concrete using artificial neural networks”, Cement Concrete

Res., 28(12), 1797-1808.

Yeh, I. 8 , “Modeling slump of concrete with fly ash and

superplasticizer”, Comput. Concrete, 5(6), 559-572.

Z-Flores, E., Trujillo, L., Schütze, O. and Legrand, P. (2014),

Evaluating the Effects of Local Search in Genetic

Programming, EVOLVE-A Bridge between Probability, Set

Oriented Numerics, and Evolutionary Computation, Volume

288 of the Series Advances in Intelligent Systems and

Computing, 213-228.

CC

658

