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1. Introduction 
 

Alkali Silica Reaction (ASR) may significantly reduce 

the strength of concrete as illustrated by Swamy and Al-

Asali (1988). The strength reduction would lead to crack 

formations (Giaccio et al. 2008); it also degrades the 

modulus of elasticity (Multon et al. 2005) and causes 

excessive swelling which would lead to large deformations 

exceeding serviceability limit states; and the expansion of 

concrete generated by ASR develops stresses that leads to 

damage and degradation in strength. Therefore, ASR should 

be prevented when possible by selecting non-reactive 

aggregates. Where the use of reactive aggregates cannot be 

avoided, mitigative measures such as the use of 

supplementary cementitious materials and limitation of total 

alkali in concrete mixture must be implemented. However, 

structures already suffering from ASR require assessment. 

Thus, there is a need for accurate tools that are tailored for 

the analysis of ASR effects on structural behaviour. Such 

tools are required to capture the observed behaviour as well 

as to predict the long term effects and possible failure 

mechanisms for rehabilitation purposes.  

Pietruszcak (1996) considered the effect of ASR on 

degradation of the concrete within the framework of elasto-

plasticity. However, the basic hypothesis of plasticity 

models that the elastic response remains the same in loading 

and unloading is no longer valid if the elastic response is  
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affected by the inelastic deformations. This kind of 

phenomena is observed in loading-unloading cycles of the 

concrete material, where the inelastic material pertains to 

cracks will also modify the elastic response. Therefore, 

damage modelling is also necessary to simulate the inelastic 

concrete behaviour under cyclic loading. 

Coupled elasto-plastic and damage models have been 

applied extensively for the description of progressive failure 

of materials such as concrete, geomaterials, woods, steel 

and composites. Initial attempts of merging elasto-plastic 

and damage constitutive models can be found in Lemaitre 

(1985). Simo and Ju (1987) developed alternative strain and 

stress based formulations and algorithms for the coupled 

elasto-plastic damage constitutive modelling of materials 

and applied their theories for the simulation of the concrete 

material behaviour. Later, Ju (1989) developed an energy-

based coupled elasto-plastic damage modelling approach. 

Constitutive models that are capable of coupling elasto-

plasticity and damage were also used for plain concrete by 

Meschke et al. (1998), for concrete compaction by Herve et 

al. (2005) and for mild steel by Ayhan et al. (2013). Lee et 

al. (1998) introduced a plastic-damage model for concrete 

subjected to cyclic loading. Damage models have also been 

adopted for concrete by Pituba et al. (2012) and Pituba 

(2015). Vaz and Owen (2001) developed an algorithm for 

failure predictions of multi-fracturing materials based on 

the elasto-plastic damage modelling approach. Al-Rub and 

Kim (2010) used coupled plasticity-damage model for the 

simulation of the fracture process of plain concrete. Jukic et 

al. (2014) incorporated embedded discontinuity approach in 

simulating the failure of reinforced concrete beams based 

on combined elasto-plastic damage modelling. Elasto-

plastic damage modelling approach has also been used for 

the modelling of concrete subjected to Alkali-Silica 
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Reaction by Yingdi et al. (2014). 

In this study, Euler-Bernoulli beam kinematic model is 

adopted and therefore stress-strain relationship is uniaxial. 

A review of the main features of elasto-plastic damage 

modelling is presented for uniaxial stress-strain 

relationship. The effects of ASR are incorporated into the 

stress strain relationship by adjusting the material model 

parameters according to Ibrahimbegovic et al. (2008). ASR 

effects are then considered as damage and its influence on 

the structural performance is illustrated in numerical 

studies. The steel material is assumed elasto-plastic. 

 

 
2. Coupled damage-plasticity model 

 
The uniaxial constitutive model of coupled damage and 

plasticity can be built on three basic hypotheses: additive 

decomposition of the total strain field, the strain energy and 

finally the plasticity and damage criteria. 

• The first of them implies that the total deformation can 

be additively decomposed into elastic part εe, plastic part εp 

and damage part εd, leading to ε=εe+εp+εd. 

• The second ingredient of the model governing elastic 

response is specified in terms of strain energy. Assuming 

the simplest quadratic form in terms of the corresponding 

state variables we can write the strain energy as the sum of 

elastic, damage and plastic parts 

( , , , , , ) ( ) ( , ) ( ) ( )
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(1) 

Where ϕ=θ/(1−θ) and θ is the internal damage variable. 

Physically, damage in concrete is the result of the initiation, 

growth and coalescence of micro-cracks or micro-voids. 

Within the context of continuum mechanics, one may relate 

the degradation in material properties by introducing a 

scalar quantity if restricted to isotropic damage (Lemaitre 

1985), i.e., θ∈[0,1]. In Eq. (1), hardening effects of the 

model can be accounted with variables ξp for plasticity and 

ξd for damage. Assuming linear isotropic hardening, the 

hardening functions for plasticity is 
21

2
( )

p

p p p
K    and 

the hardening functions for damage can be written as 
21

2
( )

d

p d d
K   , where Kp and Kd are hardening moduli 

for plasticity and damage, respectively. Elastic strain energy 

can be written as ( )
e e

e e
      in which 
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2
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e
E  


  is the complementary strain energy. The 

damage strain energy can be written as 
T

( , ) ( , )
d d

d d
          in which 

 * 2 1 2 1 21 1 1

2 2 2
( , )

d
E E E      

 
   was used and the reason 

for introducing Ψ
d
 is to accommodate the degradation in the 

material stiffness due to inelastic deformations. 

• The final group of basic model ingredients is provided 

to specify the elastic domain, where no change of internal 

variables takes place, along with the yield criteria and 

damage criteria as 

 ( , ) 0
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Where ( )
p
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d d d d d
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are conjugates to variables ξp and ξd, respectively, ζy is the 

initial yield stress limit and ζf is the initial damage stress 

limit. 

All necessary equations can be obtained from the above 

three sets of equations by the principles of maximum plastic 

and maximum damage dissipations. Firstly, we write the 

local form of second principle of thermodynamics. That is, 

the total inelastic dissipation is always non-negative, i.e.,
 

d d d 0      . Subsequently, one obtains 
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(4) 

Where dΩ
p
 and dΩ

d
 are plastic and damage dissipation. 

From the above equation, the stress can be obtained from 

the elastic strain energy, i.e., e

e
    . Note that in 

obtaining Eq. (4),  d d d
d d d

      was used. The 

damage strain is defined through stress and the current 

value of damage compliance, i.e., 1d

d
E    


    . 

Assuming that the stress constitutive equation and damage 

strain definition remain the same in an inelastic process we 

can conclude from dissipation inequality that  

1 21
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damage dissipation
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2.1 Plastic model 

 
Maximum plastic dissipation states that for a given 

plastic strain configuration εp among all possible stress 

states η satisfying the yield criterion (i.e., the ones on the 

yield surface), the actual stress states maximizes the plastic 

dissipation,
 

 
, 0

d d max d d
pp p p p p

p

q p


     
 

   . The 

principle of maximum plastic dissipation implies normality 

in stress space considering that the yield surface is convex. 

In order to illustrate that, we use the Lagrange multiplier 

dλp and change of sign of the plastic dissipation to 

transform the constraint maximization problem to an 

unconstraint problem of minimization (Simo and Hughes 

1998), i.e.,    , ,d d d d , 0
p p

p p p p
L p p p           .  

316



 

Elasto-plastic damage modelling of beams and columns with mechanical degradation 

This inequality is particularly useful in determining 

whether the constitutive relation of a material is 

thermodynamically allowable. This inequality is a statement 

concerning the irreversibility of natural processes, 

especially when energy dissipation is involved. The 

minimum of this function in stress space generates  

   , , d , ,d
d d 0

p p

p p p p
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(7) 

which can be interpreted as the evolution equations of the 

internal variables of the plastic model with Lagrange 

multiplier as the plastic multiplier. The minimization with 

respect to the Lagrange multiplier dλp generates the yield 

condition, i.e., ( , ) 0
p

p
q  . 

 
2.1.1 Plastic flow rule 
This rule is inspired by the fact that during the loading 

which causes plastic deformations, the stresses should stay 

on the yield surface. Therefore, the stress increments should 

be tangential to the yield surface. Since the stress 

increments are produced by the elastic strain increments 

only, i.e., dζ=Edεe, the directions of the elastic strains are 

also tangential to the yield surface. Since the plastic strain 

increments do not produce stresses, their directions should 

be normal to the yield surface. This normality criterion in 

Eq. (6) is also called the Prandtl-Reuss, where dλp is the 

proportionality factor yet to be determined. Note that a 

negative proportionality factor dλp would imply plastic 

unloading which cannot occur. There is only elastic 

unloading allowed in which case the proportionality factor 

dλp is zero. 

 
2.1.2 Elasto-plastic tangent modulus 
From the consistency condition, when plastic flow 

occurs the stresses remain on the yield surface, i.e., 

   d d d 0
p p p

p p
q q         .  

By using  d d d dp dE      , and  d dp psign    in 

the equation above, the proportionality factor becomes 

     d d d
p d psign E E K      .

 For isotropic strain hardening under uniaxial stress-

strain relationship dξp=dλp can be assumed (see Simo and 

Hughes 1998). Using the above equation for dλp with 

dεp=dλp and qp=−Kpξp and substituting into dζ=E(dε−dε-

p−dεd) produces 

   
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2.2 Damage model 

2.2.1 Effective stress concept 
The strain associated with a damaged state under the 

applied stress is equivalent to the strain associated with its 

fictitious undamaged state under effective stress. Using the 

hypothesis of strain equivalence it can be understood that 

the stress-strain relationship of damaged materials can be 

exchanged with the stress-strain relationship of the fictitious 

undamaged state but the Cauchy stress ζ should be replaced 

by the effective stress ζ
*
. For the practical damaged state, 

according to this hypothesis, the stress-strain relation can be 

written as ε=E
*-1
ζ. and in fictitious undamaged state, the 

stress strain relation can be written as ε=E
*-1
ζ. According to 

the concept of strain equivalence, we have ζ= E
-1

E
*
ζ

*

 
where E

-1
E

*
 an be considered as a function of stress 

transformation from the effective stress ζ
*
 to the Cauchy 

stress ζ. For an isotropic damage state, the damaged 

modulus of elasticity can be obtained as E
*
=(1−θ)E.  

 
2.2.2 Damage model derivations 
The damage model can be cast in an equivalent form 

similar to the one given for plasticity. In the case, where the 

damage model is activated and plasticity remains inactive, 

we can appeal to the principle of maximum damage 

dissipation to select among all admissible values of stress 

and hardening damage variables those which maximize the 

damage dissipation. Then, for a given damage strain 

configuration εd among all possible stress states η satisfying 

the damage criterion (i.e., the ones on the damage surface), 

the actual stress states maximizes the damage dissipation, 

 
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dd d d d d
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

     
 

   . The principle of 

maximum damage dissipation implies normality in stress 

space considering that the damage surface is convex. In 

order to illustrate that, we use the Lagrange multiplier dλd 

and change of sign of the damage dissipation to transform 

the constraint maximization problem to an unconstraint 

problem of minimization, i.e., 
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of this function in stress space generates  
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(10) 

The minimization with respect to the Lagrange 

multiplier dλd generates the damage condition, i.e., Φ
d
(ζ, 

qd)=0. 

 
2.2.3 Elasto-plastic tangent modulus 
From the consistency condition one obtains,    

d d d 0

d d

d

d

d

q
q


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By substituting Eq. (9) in 
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obtains  1 1
d d d
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by using in Eq. (11), dλd 
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2.2.4 Elasto-plastic damage coupling 
Finally for the case where both plasticity and damage 

models are active one can apply simultaneously the 

principle of maximum dissipation by equating Eqs. (8) and 

(12), and eliminating dεd one obtains 

 
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d d
ed eped ep

K CK C 
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3. Computational algorithm for stress update 

 
For numerical computation purposes procedures based 

on finite increments are needed. The central problem is to 

compute the internal variables which will provide an 

admissible stress field for a given strain at global iteration i 

of step n+1, i.e., 
1

i

n



. This computation is accomplished 

by a local iterative scheme, with iteration counter denoted 

as k, where the current values of plastic and damage strain 

are known as 
k

p
  and

k

d
 . The corresponding stress field 

is  1 1

i k k

n n p d
E   

 
   . Computation will be initially 

carried out independently for the plasticity and damage part 

of the model, producing stress values 
1

p

n



 and 

1

d

n



. At 

the final stage the two stresses are forced to coincide which 

provides the converged values of plastic and damage 

deformations.  

 
3.1 Plastic computation 

 

Based on the given configuration  , , ,
k k k k

p p
     at 

k
th

 iteration for a finite strain increment Δε
k
 and fixed 

damage strain εd, the problem is to determine the updated 

configuration  1 1 1 1
, , ,

k k k k

p p
   

     at k+1 considering the 

conditions of elasto-plastic deformations. Since the 

incremental integration is a strain driven process, the strain 

can be directly updated as 
1k k k

  

  . The updated 

stress, however, is dependent on the updated plastic strain, 

i.e.,  1 1 1k k k
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  
   . The plastic strain can be 

updated according to the finite incremental form of the flow 

rule as  1k k k

p p k
sign   


    in which Δλk is 

incremental form of the slip rate or (the proportionality 

factor), which can also be used to update the hardening 

variable in the case of strain hardening, i.e., 

1k k

p p k
  


   . Once the incremental slip rate Δλk is 

determined the updated configuration can be figured. In 

plasticity computations to obtain Δλk, we use the fact that 

the yield function stays as zero, i.e., Φ
p
=0 and dΦ

p
=0. Note 

that Φ
p
=0 can be written as   0
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pk
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3.2 Damage computation 
 

Based on the given configuration  , , ,
l l l

l d
     at l

th
 

iteration for a finite strain increment Δε
l
 the problem is to 

determine the updated configuration  1 1 1

1
, , ,
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  


 

at l+1 considering the conditions of damage deformations. 

The trial stress is equal to the stress of the elasto-plastic 

device at the l
th

 iteration, 1trial l

l d
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
 . From 
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E E sign     

 
   integrating numerically 

starting from the trial stress, one updates the stress based on 

the damage evolution as  1 1l trial l

l
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 
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.
 

Note that the previous damage parameters ϕl have been used 

for calculating the trial stresses since the current parameters 

at l+1 is not known. Once the proportionality factor Δλl is 

determined the updated configuration can be figured. The 

hardening variable can also be updated as 1l l

d d l
  


    

and the damage parameters can be updated as 
1l l l

  

  , where 

d
E     . Note that Φ

d
=0 

can be written as  1
0

d d trial

dl
E K 


     . In that 

case Δλk can be written as  1d trial

dl
E K 


    . 

 

3.3 Coupling 
 

Damage and plasticity are evolving independently and 

they are parallel processes. The damage strain is an input in 

the plasticity calculations; however, two computational 

procedures can be advanced in parallel with no exchange of 

results. On the other hand, it is important to determine how 

they share the strain in a strain driven process and thus, 

what portion really is the damage strain. For this, the final 

results produced by two parts of the model should be 

compared against one another and any discrepancy or 

residual should be eliminated between the two stresses to 

satisfy equilibrium by adjusting the damage strain. Among 

those cases which satisfy elasto-plasticity for different 

damage strains the one that produces the same stress with 

the damage stress is the solution.  

 

 
4. Structural analysis procedure 

 
4.1 Dynamic analysis 

 

In general the structural dynamic analysis will be 

implemented within the frame-work of finite element 

method and in an incremental iterative manner due to the 

nonlinearities involved in the problem. The dynamic 
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equilibrium equations for the updated time t+Δt can be 

written as 

 R u Cu Mu F    (14) 

In which the first term R(u) is the internal stress 

resultants at the nodes and dependent on the current 

displacement configuration u, C is a damping matrix, u  

denotes time derivative of u(≡du/dt), M is the nodal 

equivalent mass matrix and F is the external load vector. 

The incremental form of the nonlinear equilibrium 

equations can be obtained by subtracting the virtual work 

expressions of two adjacent equilibrium states and then 

linearizing the result by omitting the second and higher 

order terms as  

δ δ δ δ 0
T

K u C u M u F     (15) 

In which δu , δu , and δu  are incremental 

displacement, incremental velocity and incremental 

acceleration vectors respectively and δF  is the 

incremental time-dependent load and KT is the tangent 

stiffness matrix, constant acceleration method of Newmark 

(1959) is implemented to obtain a step by step numerical 

solution, based on which the dynamic equilibrium equation 

can be written as  

δ δ
eff eff t

F K u  (16) 

In which δFeff is the effective incremental load vector 

and Keff is the effective stiffness matrix given by 

4
δ δ 2 2

δ
eff t t t

t
F F M u u Cu   

 
 
 

 (17) 

And 

2

2 4

δ δ
eff T

t t
K K C M    (18) 

In Eqs. (17) and (18), 
t

u  and 
t

u  are the acceleration 

and velocity vectors at the previous time step and δt  is 

the prescribed time step increment. By assuming that the 

acceleration, velocity and displacement vectors at the 

previous time step are known, and using the solution of Eq. 

(16), the incremental acceleration and velocity vectors can 

be obtained as 

2

4 4
δ δ 2

δ δ
t t t t

t t
u u u u    and 

2
δ δ 2

δ
t t t

t
u u u   (19a-b) 

And the displacement, velocity and acceleration vectors 

for the current time step can be obtained as 

δ
δ

t t t t
u u u


  , 

δ
δ

t t t t
u u u


   and 

δ
δ

t t t t
u u u


   (20a-c) 

Since the tangent stiffness matrix KT is only an 

approximation to the real stiffness of the structure for a time 

step δt, an unbalanced force vector 
δ

δ
j

t t
U


 exists at the j

th
 

iteration. This unbalanced force can be calculated from the 

nonlinear equilibrium at the current time step from 

   δ δ δ δ
δ δ

j j j j

t t t t t t t t
t tU F R u Cu Mu

   
        (21) 

The unbalanced force can be introduced into the 

incremental equilibrium equation, so that  

δ
δ δ δ

j j

t t eff eff t
U F K u


   (22) 

And an iterative process can be adopted over the time 

step δt by recalculating the unbalanced force 
δ

δ
j

t t
U


 for 

the updated displacement 
δ

j

t t
u


, velocity 

δ

j

t t
u


 and 

acceleration 
δ

j

t t
u


 vectors. The unbalanced force vector 

δ
δ

j

t t
U


 is then added into the incremental equilibrium for 

the next j
th

 iteration. A criterion for the error in a selected 

norm, e.g., 

1

max δ

max δ

j

t

toln
j

t

j

u

u









 
(23) 

For the incremental displacement vector δut can be 

assigned to terminate the loop for j and to move on to the 

next time step for a predetermined tolerance εtol. The stress 

resultant vector  δ

j

t t
R u


 at the j

th
 iteration of the current 

time step t+δt in Eq. (21) is calculated from section 3 by 

using numerical integration at the selected integration 

points.  

 
4.2 Static analysis 

 
Static analysis procedure can be obtained as a special 

case from Eq. (14) by removing the inertia and damping 

effects. In order to have a displacement control algorithm to 

be able trace the post peak values in load-displacement 

curve the incremental form of the equilibrium in Eq. (15) is 

replaced with 

δ δ
j j j j

i i i i
K u r F   (24) 

Where j indicates the iteration number within the i
th

 

incremental step and 
j

i
r  is the residual force vector, which 

is the difference between the internal and external forces, 

i.e.,  j j j

i i i
r F R u   where 

j

i
  is a load control 

parameter and F is the applied load vector. The control 

parameter is adjusted in order to obtain a prescribed 

displacement at a selected point. Details of the displacement 

update procedure and the adjustment of the control 

parameter can be found in several references (e.g., Batoz 

and Dhatt 1979). 

 
 

5. Case studies 
 

5.1 Adjustment of the parameters of the concrete 
model 
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Fig. 1 Numerical results for cyclic behaviour of 

concrete in compression 

 

 

Fig. 2 A simply supported beam tested by Takahashi et 

al. (1997) 

 

 

Fig. 3 Load vs mid-span deflection results for the 

tested beam by Takahashi et al. (1997) 

 

 

Firstly the parameters of the elasto-plastic damage 

model for concrete are adjusted to fit the concrete model 

employed by Ibrahimbegovic et al. (2008) which has been 

validated by comparisons with experimental results. As 

shown in Fig. 1, there is very good agreement between the 

current model and the concrete model of Ibrahimbegovic et 

al. (2008). Following material properties for concrete are 

chosen; Young’s modulus E=52 GPa, ζy=14 MPa, ζf=36 

MPa, ζu=48 MPa, Kp=65 GPa, Kd=14.5 GPa and the 

hardening modulus after ultimate stress were taken as Kp=-

2.8 GPa and Kd=-1.6 GPa. In all examples the same 

hardening parameters are adopted.  

 
5.2 Comparison with the beam experiment of 

Takahashi et al. (1997) 
 

The test of Takahashi et al. (1997) is examined in this 

example. The tested beam has a 1.6 m span and 200×300 

mm
2
 cross-section as shown in the Fig. 2. 

The Young’s modulus for concrete is Ec=44.5 Gpa and 

the ultimate compressive strength of concrete is 40.3 MPa. 

Accordingly, the yield stress is taken as ζy=14 MPa and the 

fracture stress is taken as ζf=36 MPa. The tensile strength 

capacity has been assumed zero. Total of 593 mm
2
 tensile 

reinforcement has been used. Steel reinforcement has the  

Table 1 Mechanical property as percentage of the value 

(Gowripalan et al. 2016) 

Property Percentage 

Uniaxial Compressive strength 60 60 

Modulus of Elasticity 50 35 

 

Table 2 Calculation of the damage parameter due to ASR 

related reduction in Modulus of Elasticity  

Property Percentage 

Modulus of Elasticity 50 35 

θ=1-E*/E 1-0.5=0.5 1-0.35=0.65 

ϕ=θ/(1-θ)
 

0.5/(1-0.5)=1
 

0.65/(1-0.65)=1.857
 

 

 

Fig. 4 Effect of ASR on the Load-Deflection behaviour 

of beams 

 

 

modulus of elasticity Es=180 Gpa and yield strength of 

ζy=371 MPa. It should also be noted that steel has assumed  

to have zero hardening modulus. Concrete cover is assumed 

to be 50 mm. 

As shown in Fig. 3, the load to mid-span deflection 

results of the developed numerical analysis are in very good 

agreement with those of the experimental results of 

Takahashi. The load value corresponding to 12.8 mm 

deflection in Takashi experiment is 185 kN while in the 

current model the corresponding load value is 161 kN. 

 

5.3 Effect of ASR on the nonlinear static analysis 
results of a beam 
 

In this example the effect of ASR on the structural 

behaviour is illustrated. In Table 1 we summarize the effect 

at two different stages of ASR reaction.  

Damage can be defined as the impairment of the stress 

transmitting capacity as a result of the presence of 

microcracks. ASR is causing damage as its effect is 

irreversible and it degrades the material. Therefore, within 

the elasto-plastic damage modelling framework damage 

parameter is adjusted for both cases to introduce the ASR 

effect on the modulus of elasticity. 

On the other hand, reduction in the ultimate stresses to 

60% of its original capacity is also introduced due to ASR 

effect. The same beam shown in Fig. 2 is analysed however, 

only the reinforcement is increased to 550 mm
2
 each instead 

of 296.5 mm
2
 in the beam experiment of Takahashi et al. 

(1997). As can be seen from Fig. 4 that this amount of 

reinforcement is based on a balanced design where the 

failure of the beam is ductile. The effect of ASR is also  
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Fig. 5 Moving load on a simply supported beam 

 

 

Fig. 6 Comparison of the analytical solution with the 

numerical solution 

 

 

illustrated in the figure as there is a reduction in the ultimate 

load capacity and significant reduction in the ductility of the 

beam. It should be noted that these significant loses in 

mechanical properties do not all occur at the same rate (e.g., 

Swamy and Al-Asali 1988). In real structures it may take 

tens of years to have significant degradation in the material 

properties due to ASR. However, the degradation process 

may be accelerated in experiments by introducing excessive 

heat and humidity in to the environment.  

As shown in Fig. 4, ASR effect can cause around 9% 

reduction in the ultimate load carrying capacity as the peak 

point of the load reduces from 293 kN down to 

approximately 269 kN. There is also significant reduction in 

the ductility of the beam due to early crushing of the 

concrete.  

 

5.4 Effect of ASR on the linear dynamic analysis 
results of a beam 
 

In this example, the dynamic analysis procedure is 

tested by comparison with the analytical solution. As shown 

in Fig. 5, a load P is moving at a constant velocity c on a 

simply supported beam which has a weight per length of ρ 

and rigidity per length EI. The moving load is sufficiently 

small so that the material stays within the elastic limit both 

in tension and compression. 

The analytical solution for time dependent deflection 

function at position x at time t can be written as (Olsson 

1991) 

 
 

 
3

2 2 2

1

1
, sin sin sin

48
j

j

PL j x j ct
v x t t

EI L L jj j

  








 


    
    
    


 

(25) 

In which 
4 4

2

4j

j EI

L





  and L

EI





 . 

The moving load is P=1 kN, the velocity is c=10 m/sec, 

the weight per length is ρ=0.0012 N/mm, rigidity is  

 

Fig. 7 Beam under moving load 

 

 

Fig. 8 Moving load analysis results of the beam 

 

 

Fig. 9 Pier under cyclic load 

 

 

EI=2.145?10
15 

Nmm
2
 and the beam span is L=20 m. No 

damping is assumed. Comparisons of results based on the 

analytical and the proposed numerical solutions are shown 

in Fig. 6 below. 

As shown in Fig. 6 the results are in perfect agreement 

and thus the numerical solution procedure for dynamic 

loading is validated. The same beam, with the dimensions 

as shown in Fig. 7 below, is analysed under moving load 

plus a sudden impact load of 3.2 kN introduced at 1 sec to 

simulate the effect of a speed bump at the mid-span. Low 

damping values are typical of most practical structures and 

damping ratio of 1% of the stiffness is used in this example. 

The material stays elastic during the analysis. 

Three types of analysis are compared as shown in Fig. 8, 

i.e., beam without the ASR effect and two different beams 

with the ASR effect. The deflections significantly increase 

when the reduction of the elasticity modulus due to ASR is 

considered as given in Table 1. 

For the case with no ASR effect, the maximum 

deflection at around 1 sec is 0.48 mm, whereas the 

maximum deflections corresponding to 65% and 50% 

modulus of elasticity reductions are 0.91 mm and 0.73 mm, 

respectively. 

 

5.5 Effect of ASR on the nonlinear dynamic analysis 
results of a column 
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Fig. 10 Applied earthquake load based on Northridge 1994 

 

 

Fig. 11 Compressive stress-strain relationship at the 

root of the column 

 

 

The fixed-base-free-end bridge pier shown in Fig. 9 is 

considered to be under 25×10
3 
kN vertical load. At x=15 m, 

y=0, z=0, the pier is subjected to the Earthquake load as 

shown in Fig. 10. The earthquake data is taken from the 

Northridge 1994 recordings (PEER Strong-Motion 

Database http:// peer.berkeley.edu). 

Damping ratio is taken as 0.25 % of the stiffness for the 

analysis. There is 6% reinforcement with the elasticity 

modulus of 200 GPa and yield strength of 350 MPa with no 

strain hardening. Comparisons of the 3 cases are illustrated 

in Fig. 11. The first case has no ASR effect and concrete 

properties have been taken as E=52 GPa, ζy=14 MPa, ζf=36 

MPa, ζu=48 MPa. When ASR effect is considered according 

to Table 1, the concrete properties have been dropped to 

ζy=8.2 MPa, ζf=21.3 MPa, ζu=30 MPa due to 40% 

reduction in compressive strength of concrete. Concrete 

cover for reinforcement is 50 mm. The ASR effect on the 

modulus of elasticity is considered by using the damage 

parameter f and calculated as in Table 2.  

In this example the material reaches beyond the elastic 

limit. For example at the fibre of coordinates x=0, y=0.75 

m, z=0 the compressive stress-strain relationship of 

concrete for all three cases can be obtained as shown in Fig. 

11.  

As shown in Fig. 12, the effect of ASR causes 

significant difference in the predictions of deflections 

compared to the case with no ASR. 

For the case with no ASR effect, the maximum 

deflection during the first 40 seconds is 12.8 mm, whereas 

the maximum deflections corresponding to 65% and 50% 

modulus of elasticity reductions are 35 mm and 26.9 mm, 

respectively. 

 

Fig. 12 Tip deflection results in time 

 

 

6. Conclusions 
 

In this paper, the behaviour of concrete is modelled 

within the elasto-plastic damage framework. Reduction in 

modulus of elasticity due to ASR effects is considered as 

damage effect. A procedure for dynamic analysis is 

developed to be able to capture cyclic load effects and 

validated by comparisons with a known solution. The 

influence of ASR related reductions in the modulus of 

elasticity and compressive strength on the structural 

behaviour is illustrated throughout the selected examples. It 

has been shown that ASR effects can cause significant 

reduction in the ductility of beams. There can also be 

significant increase in the deformations due to ASR related 

reduction of material properties. 

 

 

Acknowledgments 
 

This research is funded through an Australian Research 

Council Research Hub for Nanoscience Based Construction 

Materials Manufacturing (NANOCOMM) with the support 

of the Cement Concrete and Aggregates Australia (CCAA). 

The authors are grateful for the financial support of the 

Australian Research Council (IH150100006) in conducting 

this study. 

 

 

References 
 

Al-Rub, R.K.A. and Kim, S.M. (2010), “Computational 

applications of coupled plasticity-damage constitutive model for 

simulating plain concrete fracture”, Eng. Fract. Mech., 77(10), 

1577-1603. 

Ayhan, B., Jehel, P., Brancherie, D. and Ibrahimbegovic, A. 

(2013), “Coupled damage-plasticity model for cyclic loading: 

Theoretical formulation and numerical implementation”, Eng. 

Struct., 50, 30-42. 

Batoz, J.L. and Dhatt, G. (1979), “Incremental displacement 

algorithms for displacement problems”, J. Numer. Meth. Eng., 

14(8), 1262-1267. 

Giaccio, G., Zerbino, R., Ponce, J.M. and Batic, O.R. (2008), 

“Mechanical behaviour of concretes damaged by alkali-silica 

-1500

-1000

-500

0

500

1000

1500

0 10 20 30 40L
o

ad
 (

k
N

)

Time (sec)

0

5

10

15

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

C
o

m
p

re
ss

iv
e 

st
re

ss
 (

M
p

a)

Strain

No ASR Effect

ASR effect with 50% Modulus of Elasticity

and 40% Compressive strength reduction
ASR effect with 65% Modulus of Elasticity

and 40% Compressive strength reduction

-70

-50

-30

-10

10

30

50

0 10 20 30 40

T
ip

 d
e
fl

e
c
ti

o
n

 (
m

m
)

Time (sec)

No ASR effect

ASR effect with 50% Modulus of Elasticity

and 40% Compressive strength reduction

ASR effect with 65% Modulus of Elasticity

and 40% Compressive strength reduction

322



 

Elasto-plastic damage modelling of beams and columns with mechanical degradation 

reaction”, Cement Concrete Res., 38(7), 993-1004. 

Gowripalan, N., Erkmen, R.E., Nejadi, S. and Sirivivatnanon, V. 

(2016), “Effects of alkali-silica reaction on structural 

performance”, University of Technology Sydney-Research 

Report. 

Herve, G., Gatuingt, F. and Ibrahimbegovic, A. (2005), “On 

numerical implementation of acoupled rate dependent damage-

plasticity constitutive model for concrete in application to high-

rate dynamics”, Eng. Comput., 22(5-6), 381-405. 

Ibrahimbegovic, A., Jehel, P. and Davenne, L. (2008), “Coupled 

damage-plasticity constitutive and direct stress interpolation”, 

Comput. Mech., 42(1), 1-11. 

Ju, J.W. (1989), “On energy-based coupled elasto-plastic damage 

theories: Constitutive modelling and computational aspects”, J. 

Sol. Struct., 25(7), 803-833. 

Jukic, M., Brank, B. and Ibrahimbegovic, A. (2014), “Failure 

analysis of reinforced concrete frames by beam finite element 

that combines damage, plasticity and embedded discontinuity”, 

Eng. Struct., 75, 507-527. 

Lee, J. and Fenves, G.L. (1998), “Plastic-damage model for cyclic 

loading of concrete”, J. Eng. Mech., 124(8), 892-900. 

Lemaitre, J. (1985), “A continuous damage mechanics model for 

ductile fracture”, J. Eng. Mater. Technol., 107(1), 83-89. 

Lemaitre, J. (1985), “Coupled elasto-plasticity and damage 

constitutive equations”, Comput. Meth. Appl. Mech. Eng., 51(1-

3), 31-49. 

Lemaitre, J. and Desmorat, R. (2005), Engineering Damage 

Mechanics, Springer. 

Liao, Y., Chen, D., Liu, Z., Ouyang, F. and Hou, L. (2014), 

“Elastoplastic-damage compression constitutive model for 

cementitious material subjected to alkali-silica reaction”, J. Adv. 

Concrete Technol., 12(5), 158-166. 

Meschke, G., Lackner, R. and Mang, H. (1998), “An anisotropic 

elastoplastic-damage model forplain concrete”, J. Numer. Meth. 

Eng., 42(4), 703-727 

Multon, S., Seignol, J.F. and Toutlemoonde, F. (2005), “Structural 

behaviour of concrete beams affected by alkali-silica reaction”, 

ACI Mater. J., 102(2), 67-76. 

Newmark, N.M. (1959), “A method of computation for structural 

dynamics”, J. Eng. Mech. Div., 85(3), 67-94. 

Olsson, M. (1991), “On the fundamental moving load problem”, J. 

Sound Vibr., 145(2), 299-307. 

Pietruszczak, S. (1996), “On the mechanical behaviour of concrete 

subject to alkali silica reaction”, Comput. Struct., 58, 1093-

1097. 

Pituba, J.C. (2015), “A damage model formulation: Unilateral 

effect and RC structures analysis”, Comput. Concrete, 15(5), 

709-733. 

Pituba, J.C. and Delalibera, R.G. (2012), “Numerical and 

statistical analysis about displacements in reinforced concrete 

beams using damage mechanics”, Comput. Concrete, 10(3), 

307-330. 

Simo, J.C. and Hughes, T.J.R. (1998), Computational Inelasticity, 

Springer. 

Simo, J.C. and Ju, J.W. (1987), “Strain- and stress-based 

continuum damage models-I. formulation”, J. Sol. Struct., 23, 

821-840. 

Simo, J.C. and Ju, J.W. (1987), “Strain- and stress-based 

continuum damage models-II. computational aspects”, J. Sol. 

Struct., 23(7), 841-869. 

Swamy, R.N. and Al-Asali, M.M. (1988), “Engineering properties 

of concrete affected by alkali-silica reaction”, ACI Mater. J., 

85(5), 367-374. 

Takahashi, Y., Sato, Y., Ueda, T., Maeda, T. and Kobayashi, A. 

(1997), “Flexural behaviour of RC beams with externally 

bonded carbon fiber sheet”, Proceedings of the 3rd 

International Symposium on on-metalic (FRP) Reinforced 

Concrete Structures. 

Vaz, M. and Owen, D.R.J. (1996), “Aspects of ductile fracture and 

adaptive mesh refinement in damaged elasto-plastic materials”, 

J. Numer. Meth. Eng., 50(1), 29-54. 

 

 

CC 

323




