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1. Introduction 
 

Steel-concrete composite beams are commonly used in 

civil engineering structures such as superstructures of 

bridges and multistory building floors. The use of external 

pre-stressing presents various advantages over traditional 

non-pre-stressed systems. These advantages are related to 

the extending of the elastic behavior to higher loads, 

increase of the ultimate load capacity, less deflection under 

service loads and higher crack resistance of concrete under 

negative bending, among others (Zona et al. 2008). Simply 

and continuous composite beams can be pre-stressed with 

either draped or rectilinear tendon configurations according 

to the convenience of the project. Tendons are anchored at 

the beam ends and are supported at intermediate locations 

by deviator blocks, which provide vertical support along the 

beam axis and also change the tendon axis direction if 

needed. Previous studies have suggested that negligible 

friction occurs at these locations and the tendon is able to 

slip without friction (Zona et al. 2008).  

The structural interaction of pre-stressed steel-concrete 

composite systems is complex to model in the nonlinear 

range and there exist various numerical and experimental 

studies about this topic (Zona et al. 2008, Nie et al. 2009, 

Chen and Gu 2005, Chen et al. 2009). For instance,  
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simplified design formulas for estimating tendon force 

increments and cracking lengths over negative moment 

regions due to external service loading are proposed in the 

work of Nie et al. (2009). Experimental data is also 

provided in the works of Chen and Gu (2005), Sun et al. 

(2014), Hu and Chen (2012) and Chen et al. (2009) for 

simply and continuous composite beams, respectively. In 

Chen and Gu (2005), the pre-stressing effect was quantified 

by comparing load-deflection curves at ultimate loads and 

suitable expressions were provided to evaluate ultimate 

bending moments. Two-span and three-span continuous 

beams were tested experimentally in Chen et al. (2009) and 

a corresponding design methodology was proposed to 

evaluate ultimate failure based on a moment redistribution 

approach. 

Experimental data is essential to validate numerical 

models, so researchers have reported advances in the 

numerical field of pre-stressed steel-concrete beams by 

using beam-column elements and complex material laws. 

Dall’Asta and Zona (2005) proposed a beam-column 

element to simulate the behavior of composite beams at 

ultimate load with material nonlinearity. Later, Zona et al. 

(2008) extended that model to include nonlinear geometric 

behavior. After, Lou et al. (2016) presented a one-

dimensional model for modeling externally pre-stressed 

steel-concrete composite beams under short-term and long-

term loads using a layered technique to describe variation of 

material properties along the beam depth. Beam-column 

elements are popular and attractive due to the sake of saving 

computa t ional  t ime.  Never the l ess ,  they cannot 

spontaneously represent the shear-lag effect at the concrete 

slab. The shear-lag effect is complex to model even in the  
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Fig. 1 Assembly of finite elements for pre-stressed 

steel-concrete composite beams 

 

 

linear range, that is, in-plane shear stresses and 

deformations affect the slab behavior and they can only be 

captured with a three-dimensional representation (Macorini 

et al. 2006). Chen and Zhang (2006) presented a finite 

element model based on shell elements for evaluating the 

effective width in the concrete slab of a pre-stressed 

composite beam by using a commercial software. Chen and 

Jia (2010) investigated the inelastic bucking of pre-stressed 

steel-concrete composite beams by using a numerical model 

based on solid and shell finite elements. Analytical models 

are also found in the literature of the topic (Nie et al. 2011, 

Zona et al. 2009, Dall’Asta et al. 2007). 

The reinforced concrete slab (RC), which is connected 

to the upper flange of the steel beam by shear connectors, 

can crack under tensile stresses with a nonlinear behavior 

under compression stresses. Steel reinforcing bars and 

structural steel of the beam can yield under both tension and 

compression loads. Shear connectors allow partial 

interaction following a shear force-slip curve. All the 

above-mentioned features were implemented into a 

previously developed in-house code by the authors (Tamayo 

et al. 2015). In this paper, the authors report the extension 

of the previous program by incorporating external pre-

stressing with the use of catenary and zero-length contact 

nonlinear finite elements. The latter element is used to 

model slipping at the tendon-deviator interfaces. The goal 

of the paper is not to give detailed explanation about the 

formulation of these elements, which can be considered 

classical and can be found in other works (Coarita and 

Flores 2015, Wayar 2016), but to present a complete finite-

element-based-approach for modeling pre-stressed steel-

concrete composite beams, with some consideration given 

to frictional effects. An important fact that should be kept in 

mind when modeling these structures is associated to the 

use of deviators at some intermediate locations along the 

beam axis in order to diminish the tendon eccentricity and 

the nonlinear geometric effect (Zona et al. 2008). However, 

in some cases this effect can be highlighted due to beam 

geometry, loading conditions and tendon profiles. In the 

current version of the present finite element code this option 

is not available, therefore it imposes a limitation. 

Nevertheless, the geometric nonlinear effect seems to be 

negligible for the studied examples since good matching 

between experimental and numerical results is reported. 

Thus, the main highlights of the work can be 

summarized as follow: 1) Good matching between 

numerical and experimental results for seven pre-stressed 

steel-concrete composite beams, validating the proposed 

procedure; 2) Verification of some design formulas 

proposed in the works of Nie et al. (2009) and Chen and Gu 

(2005) for estimating cracking lengths at service loads and 

ultimate bending moments, respectively, and 3) The 

incorporation of a cable element based on a pre-defined 

catenary form to represent the external tendon geometry 

according to the formulation presented in the works of 

Jayaraman and Knudson (1981), Coarita and Flores (2015) 

and Wayar (2016). In Fig. 1 is depicted a piecewise of a 

pre-stressed steel-concrete composite beam. As it may be 

observed, the concrete slab and the steel beam are modeled 

with shell elements and the connection between these 

elements, given in the real structure by stud connectors, is 

provided by three-dimensional beam-column elements, 

which enable flexible or rigid coupling. External tendons 

generally present rectilinear configurations between 

deviators.    

 
 
2. Constitutive models 
 

2.1 Reinforced concrete slab 
 
The elasto-plastic RC model has been validated 

extensively by the authors in other works (i.e., Tamayo et 

al. 2013, Tamayo et al. 2015, Dias et al. 2015, Tamayo et 

al. 2016). Concrete plasticity in compression is modeled 

with a modified Drucker-Prager yield criterion as stated in 

Eq. (1). Because the element local system (X’Y’) follows 

the same direction of the global cartersian system (XY), the 

yield criterion can be expressed either in terms of local or 

global stresses. The nonlinear hardening behavior permits 

defining an initial yield surface at an effective stress equal 

to ζo=0.3 fc (being fc the concrete compression strength) and 

a limit surface which separates nonlinear state from perfect 

elasto-plastic one as depicted in Figs. 2(a)-(b). 

        oyxozyzxyxyxyxf   

2/122222 355.03355.1)(

        oyxozyzxyxyxyxf   

2/122222 355.03355.1)(  
(1) 

where ζo is the effective stress. The use of the associated 
theory of plasticity requires the definition of a hardening 
parameter, which is obtained from the slope of the one-
dimensional curve shown in Fig. 2(b). This curve is known 
as Madrid Parabola and is define as       (  ̅  
√2    ̅), where Ec is the elastic modulus,    is the strain 
at maximum concrete compressive strength and   ̅ is the 
effective plastic strain obtained from a work hardening 
hypothesis. The crushing condition is expressed arbitrarily 
by transforming the yield criterion in terms of strain 
components and the ultimate concrete strain    (usually 
0.0035). Otherwise, concrete cracking in tension is defined 
by a maximum stress criterion in which concrete behaves 
linearly elastic until the maximum principal stress at the 
current material point reaches the concrete tensile strength ft 
and then a crack is formed. Therefore, cracks appear along 
planes perpendicular to the principal directions whenever ft 
is exceeded. Thereafter, concrete behaves similar to an 
orthotropic material with zero elastic modulus Ec, zero 
Poisson’s ratio v and a reduced shear modulus in the  
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(a) Two-dimensional 

criterion at principal 

plane 

(b) One-dimensional 

representation 

Fig. 2 Concrete model 
 

  

(a) Tension stiffening model (b) Bilinear stress-strain 

curve for steel bars 

Fig. 3 Material models 
 
 

direction perpendicular to the cracked plane (Tamayo et al. 
2013). The tension stiffening effect is considered through a 
relationship between the strain and stress normal to the 
cracking plane direction as shown in Fig. 3(a), where     is 
the strain associated with ft and εtm is the maximum strain 
for 0.5≤∝≤0.7. The parameter ∝ defines the projection of 
the branch at the post-cracking stage as a percentage value 
of ft. For simple concrete or concrete away from influence 
zone of the reinforcing bars, the same diagram in 
conjunction with the material fracture energy Gf and the 
specimen thickness h are used to guarantee mesh objectivity 
of the finite element results. The model considers the 
opening and closure of cracks and in the post-cracking 
stage, a fixed crack orientation is assumed through loading. 
The reinforcing bars are modeled as membrane layer of 
equivalent thickness oriented according to the actual 
reinforcement direction, following the behavior of a one-
dimensional elasto-plastic material with a yielding stress ζo 
and initial and tangent elastic modulus Es and Es’, 
respectively, as shown in Fig. 3(b).    

 
2.2 Steel beam 

 

The multi-axial state of stresses in the web and flanges 

of the steel beam follow the von Mises yield criterion as 

shown in Fig. 4(a) with a plane stress assumption and a 

hardening law defined according to Fig. 3(b). The yield 

criterion can be expressed in the following way 

𝑓( )  ( 𝑥′
2   𝑦′

2 −  𝑥′ .  𝑦′  3𝜏𝑥′𝑦′
2 )

1
2     (2) 

where ζx’, ζy’ and ηx’y’ are the in-plane stress components 

according to a local material system (see Tamayo et al. 

2015 for more details). 

  
(a) Von Mises criterion (b) Shear force versus slip 

Fig. 4 Material models 

 

 

2.3 Shear connector 
 

The shear lateral stiffness of the connector varies 

according to the current shear force in the connector 

following the shear force-slip relationship depicted in Fig. 

4(b). This expression is defined in the following way 

𝐹𝛽  𝑎(1 − 𝑒
−𝑏𝑠𝛽) (3) 

where Fβ and sβ are the shear force acting in the shear 

connector and the associated slip along the β direction, 

respectively. The constants a and b define the form of the 

constitutive curve with a variable tangential stiffness 

according to k=ab.exp(−bsβ). The β direction follows the 

element local directions y’ and z’ when the corresponding 

shear rigidities k=ky’ and k=kz’, respectively, are selected. 

Great values for the axial stiffness ka can be assigned to 

prevent uplift in the connector.  

 

2.4 Pre-stressed tendon and deviator blocks 
 

The stress-strain diagram for external pre-stressed 

tendons follows the same bilinear constitutive law shown in 

Fig. 3(b), but considering only the tension part. Meanwhile, 

the behavior at the deviator locations requires the use of 

zero-length contact elements to model slipping. Each 

contact element is represented by three mutually orthogonal 

uncoupled springs. Each spring follows a proper uniaxial 

law along its direction. Great stiffness values can be 

assigned to directions normal to the longitudinal direction in 

order to ensure full displacement compatibility (penalty 

method). Otherwise, a null friction coefficient is assigned 

along the longitudinal direction to allow the tendon element 

to slip with zero resistance. More details about the finite 

element implementation of these elements can be found in 

the work of Wayar (2016).   

 

 

3. Finite element formulation 
 

3.1 Reinforced concrete slab, steel beam and shear 
connectors 
 

The finite element employed for modeling the RC slab 

is a degenerated shell element based on the theory of thick 

plates. The slab is divided into several concrete and steel 

layers along its thickness in order to capture concrete 

cracking, nonlinear behavior due to compressive stresses 
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(a) Tendon element (b) Zero-length contact 

element 

Fig. 5 Finite elements for tendon-deviator interface 

 

 

and yielding of the reinforcing bars. The reinforcement 

mesh is defined in its real position as a smeared layer with 

steel properties. Perfect adherence between the reinforcing 

bars and the surrounded concrete is also considered. A 

plane stress assumption coupled with out of plane shear 

stress components is established at each layer. The element 

middle-plane is located at the middle-plane of the actual RC 

slab. The element is quadratic with eight nodes defined at 

its middle-plane and five degrees of freedom at each node 

(three translations and two rotations). Because of the 

current position of the RC slab, the local coordinate system 

X’Y’Z’ at each integration point follows the same directions 

of the global system XYZ as shown in Fig. 1. 

Otherwise, as the thicknesses of the web and flanges of 

the steel beam are thinner, therefore the theory of thin plates 

is used here. Each part of the steel beam is modeled with 

thin shell elements as shown in Fig. 1. The shell element is 

obtained from the assemblage of a membrane finite element 

with drilling degree of freedom and a thin plate element, 

resulting in a finite element with four nodes and six degrees 

of freedom at each node (with three translations and three 

rotations). Inelastic behavior in the element is captured by 

using a five point integration rule along its thickness 

besides a four integration rule in the middle plane of the 

element. 
Each connector element is a three-dimensional two-node 

beam column element, which joints one node from the 
middle plane of the RC slab with the corresponding node of 
the shell element representing the top flange of the steel 
beam. Thus, the element length is determined by the sum of 
the half thickness of the actual RC slab plus the half 
thickness of the actual top flange. The stud shear connectors 
are located in a discrete manner along the beam axis 
according to their real positions and they are used to 
simulate slipping at the slab-beam interface. To include 
nonlinear behavior along the local shear directions y’ and z’ 
of the element, the element matrix is expressed directly in 
terms of the shear rigidities ky’ and kz’, respectively. 
Whenever these rigidities are known at each load 
increment, the other stiffness terms such as axial, torsional 
and bending rigidities are automatically determined since 
equilibrium condition are satisfied at each column of the 
matrix. The torsional stiffness kt is condensed in the 
formulation due to the fact the connector element joins one 
node with five degrees of freedom (slab node) with other of 
six degrees of freedom (top flange node). The axial stiffness 
ka can be treated independently in order to prevent uplift in 

the connector. The reader is referred to the works of 
Tamayo et al. (2013), (2015) and Dias et al. (2015) for 
more details about the finite element formulation of the RC 
slab, steel beam and connector elements.  
 

3.2 Tendon element and deviator blocks 
 

Pre-stressed external tendons are similar to internally 

unbounded tendons except that external tendons attach to 

the beam at several discrete locations, including anchorage 

points and deviator blocks. External tendons are modeled 

with two-node catenary elements as shown in Fig. 5(a). The 

catenary elements are preferred instead of the truss elements 

because an a priori assumed catenary form better matches a 

curved geometry with fewer elements. The catenary 

element and the shell element representing the tendon and 

the anchorage plate, respectively, share the same node in 

the numerical model at the anchorage points of the beam. 

Meanwhile, at the deviator locations, the node of the tendon 

element and that of the steel beam have full compatibility in 

all directions except in the longitudinal direction where the 

tendon is able to slip. The realising of the movement along 

the longitudinal direction allows the tendon force to remain 

almost unchanged due to the very small value of tendon 

angle (Nie et al. 2009). Thus, this modeling method is 

accurate enough to simulate slipping and zero-length 

contact elements are used for this purpose. Zero-length 

contact elements are formed by three mutually 

perpendicular springs with different rigidities along each 

direction as shown in Fig. 5(b). At the beginning of the 

analysis, node i and j share the same global coordinates and 

they start slipping each other as loading is increased (e.g., x 

direction). The complete mathematical formulation of these 

elements can be found in the works of Coarita and Flores 

(2015) and Wayar (2016). 

 

 

4. Numerical algorithm 
 

An incremental-iterative algorithm of the Newton-

Raphson type is used for analyzing monotonic loads in this 

work. Firstly, a static analysis is carried out in order to 

obtain the initial state of stresses in the structure under self-

weight and pre-stressing. At this stage, it is expected that 

the tendon elements were already included in the numerical 

model and all material nonlinearities are activated. 

Thereafter, external loading is applied on the composite 

beam in several load steps. Then, iterations are carried out 

until equilibrium condition is encountered between internal 

and external forces at each load step. In the numerical 

model, failure of the structure is detected when a predefined 

number of iterations is reached in a given load step or when 

the program is not able to achieve convergence. A detailed 

explanation of the complete algorithm can be found in Dias 

et al. (2015) and Wayar (2016).   

 

 

5. Numerical applications 
 

5.1 Cable suspended with point load (Jayaraman and 
Knudson 1981) 
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Fig. 6 Cable geometry at equilibrium position under 

self-weight (Units: mm) 

 
Table 1 Displacement at node 2 (in mm) 

Present analysis 

 
Catenary  

element 
Truss element 

CBL1 element 

(Jayaraman and Knudson 1981) 

Vertical -5643 -5379 -5645 

Horizontal -861 -828 -862 

Number of 
elements 

2 10  

 
 

This example is used to validate the implemented 

catenary element with the published data by Jayaraman and 

Knudson (1981). The cable structure depicted in Fig. 6 is in 

an equilibrium position due to its own weight. Then, a force 

of 35,586 kN is suddenly applied at node 2. The problem is 

to determine the displacements at node 2 when the pre-

stressed cable under self-weight is applied the prescribed 

load. The problem is solved by using only two catenary 

elements with properties: linear weight (0.04612 kN/m), 

transversal area (548.4 mm
2
) and elastic modulus (131 

kN/mm
2
). In order to show the advantages of the catenary 

element over the truss element, the problem was also solved 

by using ten truss elements. Present numerical results are 

compared with those reported by Jayaraman and Knudson 

(1981), in which a curved cable element namely CBL1 was 

used, in Table 1. Nonlinear geometric behavior is important 

in this example and it was considered only for validation 

purposes. As it may be noted, the present catenary element 

compares well with the results reported in the cited 

reference. On the other hand, the truss element results are 

not close enough to the cable elements results despite using 

more elements. Hence, the potentiality of the catenary 

element is demonstrated here and its use is preferred 

whenever curved geometries are of interest.     

 

5.2 Simply supported composite beams (Chen and 
Gu 2005) 
 

Two simply supported steel-concrete composite beams 

namely BS1 and BS2 in the experimental work were tested 

in Chen and Gu (2005) under positive bending moments. 

Beam BS1 was tested in two stages. At stage 1, the 

specimen was loaded without pre-stressing until yielding of 

the steel flange occurs and the nonlinear behavior of the 

load-deflection curve was observed, then the specimen was 

totally unloaded (test 1). At stage 2, beam BS1 was pre-

stressed and continuously loaded up to bending failure (test 

2). Beam BS2 was pre-stressed at the beginning of loading 

 

Fig. 7 Geometry and cross section of the beam 

 

  

(a) Concrete and steel 

layers (mm) 

(b) Load application and 

mesh 

Fig. 8 Geometry and cross section of the beam 

 

 

Fig. 9 Deformed mesh after application of pre-stressed 

load for beam BS1 (test 2) 

 

 

with a slightly higher pre-stressed force. Both beams have 

the same cross-sectional properties and beam length as 

shown in Fig. 7. The length of the beam is 5000 mm and 

two point loads were applied symmetrically along its 

length. Two rectilinear pre-stressed tendons were located 

near the bottom flange of the steel beam as depicted at the 

bottom part of Fig. 7. Material properties are listed in Table 

2. Figs. 8(a)-(b) depict the number of steel and concrete 

layers used in the discretization of the RC slab and the finite 

element mesh used in the analysis, respectively. The color 

in green represents the loading area according to the 

experimental work.   

The finite element mesh is discretized according to the 

actual position of the connectors. The RC slab is reinforced 

with 8 mm diameter reinforcing bars along each direction. 

Each tendon has a nominal area of 137.4 mm
2
 and is 

anchored at the beam ends, 30 mm above the bottom flange, 

by using 25 mm thick plates, which extent along the depth 

of the steel beam. The tendons and the beam have only 

strain compatibility at the anchors. The initial pre-stressed 

forces for beams BS1 and BS2 are 107.6 kN and 112.6 kN, 

respectively, for each tendon. 

For each beam, the pre-stressed load and its weight were 

applied to the structure firstly and the corresponding 

upward deflection is generated, then the external load is 

applied incrementally in various load steps up to finally 

achieve the collapse load of the system. The failure was 

detected for concrete crushing at the top of the concrete slab 

at the middle-span section of the beam. This last fact is  
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Table 2 Material properties 

Material Properties BS1/BS2 CCB1/PCCB1-5 

Structural  

Steel 

Yielding Strength 

Web ζy 367,1 287,7 MPa 

Top Flange 

ζy 
367,1 249,3 MPa 

Bottom 

Flange ζy 
367,1 272,3 MPa 

Ultimate Strength 

Web ζu 543,1 443,3 MPa 

Top Flange 

ζu 
543,1 428,3 MPa 

Bottom 

Flange ζu 
543,1 489,4 MPa 

Elasticity Module Es 200 200 GPa 

Poisson v 0,3 0,3 
 

Ultimate strain (web) εu 0,24 0,24 m/m 

Ultimate strain (flange) εu 0,28 0,28 m/m 

Steel 

Reinforcement 

Yielding Strength ζy 327,7 300 MPa 

Ultimate Strength ζu 492,6 400 MPa 

Elasticity Module Es 200 200 GPa 

Poisson v 0,3 0,3 
 

Ultimate strain εu 0,25 0,25 m/m 

Concrete 

Compression Strength fc 30,0 31,4 MPa 

Tensile Strength ft 3,0 2,6 MPa 

Elasticity Module E 32.920 43.339 MPa 

Poisson v 0,15 0,2 
 

Ultimate strain εu 0,0045 0,0045 m/m 

Connector 

Longitudinal separation s1 200 60/80 Mm 

Transversal separation s2 76 76 Mm 

Diameter x height d×h 16×65 8×45 Mm 

Shear stud number per row ns 2 2 
 

Poisson’s coefficient v 0,3 0,3 
 

Shear force-slip parameter a 75 18 kN 

Shear force-slip parameter b 6 5 mm-1 

Tendon 

Yield Strength ζy 1680 1680 MPa 

Ultimate Strength ζu 1860 1860 MPa 

Elasticity Modulus Es 200 200 GPa 

One tendon area At 137,4 139,0 mm2 

Linear weight w 10,57 10,57 N/m 

Ultimate Deformation εu 0,25 0,25 m/m 

 

 

corroborated by the appearance of longitudinal cracks at the 

concrete slab at this location during the experiment. In Fig. 

9 is shown the upward deflection of 4.6 mm generated 

immediately after the application of the pre-stressed force in 

the beam BS1 (test 2) according to the experimental work.  

In Fig. 10 are depicted the moment-deflection and the 

tendon force evolution curves for both beams. In Table 3 

are compared the predicted and experimental results for the 

pre-stressed beams at two important stages (yielding and 

ultimate loads). The numerical prediction correlates well 

with the experimental data for yielding and ultimate 

bending moments and with the deflection at yielding as 

well. The ultimate bending moment predictions correlate 

also well with the simplified approach presented in the 

work of Chen and Gu (2005) (horizontal lines in the 

graphs). However, the two-tendon force increment at failure 

load is underestimated in the numerical prediction, although 

the initial path at various load levels is reasonably captured. 

These differences can be attributed to the dimension errors 

between real and nominal dimensions of the beams. In the 

numerical model, nominal dimensions were used. Other 

factors can be related to the concrete and tendon material 

models, which can be relevant in the numerical prediction at 

this ultimate stage. According to the experimental values, 

the ultimate beam deflections are approximately L/62 and 

L/57 for beams BS1 and BS2, respectively, where L is the 

total length of the beam. 

 

5.3 Continuos steel-concrete composite beams (Nie 
et al. 2009) 
 

In the experimental program reported in Nie et al. 

(2009), seven two-span continuous composite beams under 

different tendon profile configurations were tested by the 

authors. The non-pre-stressed simply composite beam 

namely CCB1 and the pre-stressed series namely PCCB1 

(straight-line, one-tendon, internal pre-stressed beam), 

PCCB2 (straight-line, two-tendon, internal pre-stressed 

beam), PCCB3 (fold-line, one-tendon, internal pre-stressed 

beam), PCCB4 (fold-line, two-tendon, internal pre-stressed 

beam) and PCCB5 (straight-line, two-tendon, external pre-

stressed beam) were selected in this study to validate the 

present numerical model. The word internal is used in the 

sense that the tendon is located within the beam depth, but 

external to the section of the beam. The composite cross-

section of the beams is formed by a steel box which 

supports a RC slab with dimensions of 500 mm×70 mm as 

shown in Fig. 11(a). The three-dimensional geometry used 

in the numerical model is depicted in Fig. 11(b). The 

layouts of the beams with the different tendon 

configurations are depicted in Fig. 12. The tendons are 

anchored at the beam ends and supported by deviators at 

intermediate locations as shown by the enclosed red circles 

in the figure. Material properties are listed in Table 2.  

Two symmetric point loads are applied at each span. In 

the case of beam CCB1, the load is applied incrementally 

up to failure, meanwhile for the PCCB series, the beams are 

firstly pre-stressed and then loaded up to failure. The 

interior support is fixed and sliding for the external ones. It 

is supposed that the reinforcing bars are welded at the top of 

the shear connectors. The steel reinforcing bar ratios in the 

longitudinal and transversal directions are 1.62% and 

0.67%, respectively. The effective pre-stressed forces 

measured in the experiment are 130.62 kN, 128.84 kN, 

133.75 kN, 123.22 kN and 128.01 kN for beams PCCB1, 

PCCB2, PCCB3, PCCB4 and PCCB5, respectively. Half of 

the beam was modeled due to symmetry considerations. 
Load-deflection curves for the studied beams are 

depicted in Fig. 13. As it may be observed, the inclusion of 
contact elements at the deviator zones for simulating 
slipping at these locations does not bring any substantial 
change when compared with the results of the fully bonded 
behavior. Nevertheless, as it is going to be shown later, the 
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(a) Cross section (b) Load application 

region and finite element 

mesh 

Fig. 11 Geometry and cross section of the beams 

 

 

inclusion of contact elements significantly influences the 

tendon force evolution at the local level. Otherwise, the 

numerical model is able to capture the initial stiffness of the 

structure and the path failure at various load levels. Also, 

the predicted ultimate loads correlate well with 

experimental data and with the results predicted by the 

simplified methodology proposed in the work of Nie et al.  

 

 

 

Fig. 12 Geometry and load application scheme 

 

 

(2009).    
In Fig. 14(a) is compared the effect of pre-stressing for 

the PCCB series. As it may be observed, the inclusion of 
pre-stressed tendons increases significantly the ultimate 
load capacity of the non-pre-stressed case CCB1. This 
increment depends upon the tendon area and profile. In Fig. 
14(b) is compared the tendon force evolution for the studied 
beams with a maximum tendon force increment predicted 

Steel Beam

Load Application Points

Concrete Slab

   

  

Fig. 10 Moment-deflection and tendon axial force evolution curves 

Table 3 Comparison of numerical and experimental results 

Beam Test 

Applied Two-tendon 

force  

(kN) 2N0 

Yielding Moment 

(kN.m) My 

Ultimate Moment 

(kN.m) Mu 

Deflection at yielding 

(mm) Δy 

Deflection at 

failure 

(mm) δu 

Two-tendon force 

increment  

at yielding (kN) ΔNy 

Two-tendon force 

increment at failure 

(kN) ΔNu 

BS1* 
Test 2 215.2 255.3 335.0 19.1 80.8 59.2 172.6 

Numeric 215.2 250.0 342.0 20.4 59.6 56.8 148.4 

BS2 
Test 1 225.2 248.6 356.0 19.9 82.1 72.2 211.7 

Numeric 225.2 261.2 350.0 16.4 55.8 56.8 140.4 

*BS1: Test 1 corresponds to a non-pre-stressed conventional beam and the applied tendon force corresponds to two tendons 
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(a) Load-deflection curve (b) Tendon force evolution 

Fig. 14 Beam results 
 
 

for the beam PCCB4. Precisely, in Fig. 15 is depicted the 

tendon force evolution along the tendon axis for the bonded 

and unbonded cases. As it may be observed, the non-

adherence case allows the tendon element to slip without 

friction, maintaining a uniform force along its axis. For the 

bonded case, the tendon force varies between deviators 

defining three different zones for each beam span. The first  

zone, namely zone 1, corresponds to the tendon segment 

between the left anchorage plate of the beam and the 

location of the first deviator, the second zone, namely zone 

2, is located between intermediate deviators and finally, the 

third zone, namely zone 3, is defined between the last 

intermediate deviator and the deviator located at the interior 

support. In Fig. 16 is compared the tendon force evolution 

for these three zones with the corresponding results of the 

non-adherence case. As it may be observed, the non-

adherence case acceptably matches the experimental results 

reported in the work of Nie et al. (2011). Thus, indicating 

the importance of using contact elements in the numerical 

modeling. 

In Fig. 17 is shown the cracking pattern obtained at the 

top layer of the RC slab under service load for the non-pre-

stressed case CBB1 obtained with the present numerical  

 

 
Full bonded 

Full bonded  

Non-adherence 

 

 
Non-adherence 

Fig. 15 Tendon force for different contact models for 

beam PCCB5 

 

 

model. As it may be observed, cracks appear at the negative 

moment region near the interior support and the extension 

of this cracked zone is determined graphically. In a similar 

way, other cracking zones for other beams of the PCCB 

series can be defined. The determination of the cracking 

zone length, which is usually expressed as a fraction n of 

the current span length L, is important because it would 

determine the length of the pre-stressed tendons to be used 

in this zone for reinforcement.  
In Nie et al. (2009), an expression is proposed to 

evaluate the cracking length at the interior support in a two-
span continuous beam. In that work, the cracking length    
is related to the pre-stressing degree λ=(M0/Mk) with an 
expression n=A(λ−1)/(Bλ−CA), where Mk=moment at 
interior support due to service load excluding pre-stressing 
effect and M0 is the moment needed to eliminate the 
compressive stress at the interior support, over a given span, 
and with the values of the constant A, B and C defined in 
the following way 

𝐴  0.5  𝑊 𝐴𝑒0⁄  1.5(1 − 𝑚)𝑚𝜃 /𝑒0 (4) 

𝐵  1.5  (−1.5𝑚  1.5  1/𝑚)𝑚𝜃 /𝑒0 (5) 

𝐶  (51𝑚2 − 51𝑚 − 40) (51𝑚2 − 51𝑚)⁄  (6) 
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Fig. 13 Load-displacement curves 
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Beam CCB1-Cracking Region Length nL for P=18,86 kN 

Fig. 17 Cracking pattern for CBB1 beam 

 

 

which depend on m=loading position, L=span length, 

e0=distance from the beam anchor to the neutral axis of the 

transformed section, which is positive below neutral axis, 

W=section modulus of transformed composite section at the 

top of concrete flange, A=cross-sectional area of 

transformed section and θ=tendon angle with respect to the 

horizontal axis. The above-mentioned expressions are 

referred here as the complete version of the Nie et al. 

(2009) formulation.  
This formulation recovers the fully pre-stressed case 

(λ=1) and the conventional non-pre-stressed case, i.e., when 
λ=0, n=0.15, which is supported in some design codes (EN 
1994-1-1, Nguyen et al. 2010). Also, a simplified version is 
provided in Nie et al. (2009), with a more manageable 
expression for n=3(λ−1)/(14 λ −20), which depends only on 
the value of 𝜆 . It is important to mention that the 
methodology presented in Nie et al. (2009) assumes 
negligible concrete tensile strength at the negative moment 
regions and negligible tendon force increment during 
loading. Then, it is expected that the actual length of the 
cracked zone, nL, should be slightly shorter.  

In Fig. 18 is depicted the locus of the n values according 
to the pre-stressing degree factor λ for the complete and 
simplified formulations. In this figure are also plotted the 
experimental and numerical results obtained for the PCCB 
series. As it may be observed, the complete and simplified  

 

 

Fig. 18 Evaluation of predicted formula proposed in 

Nie et al. (2009) 
 
 

formulations significantly overestimate and underestimate, 
respectively, the cracking length for all λ values. Then, a 
more suitable expression is proposed in this study, with 
n=(20λ−3.8)/(14λ−3.8), better matching the experimental 
and finite element results. In addition, the experimental 
value for the conventional case of λ=0, does not resemble 
the practical value of n=0.15 established in some design 
codes and some revision could be needed.    

 

 

6. Conclusions 
 

A previous three-dimensional numerical model was 

extended to include external pre-stressed tendons. A two-

node catenary element was implemented for this purpose. 
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Fig. 16 Tendon force evolution 
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The new model is able to trace the complete nonlinear 

response of seven experimental external pre-stressed steel-

concrete composite beams up to ultimate loads. Simplified 

expressions found in the specialized literature to predict 

ultimate loads and cracking lengths at service loads are 

evaluated and compared with the present numerical results. 

The following conclusions can be drawn from this study: 

• The obtained tendon force histories demonstrate the 

correct functionality of the implemented catenary element 

when compared with the experimental data. Although the 

whole element potentiality is not explored in the studied 

examples due to the rectilinear tendon configurations. It is 

expected that in curved tendon geometries the catenary 

element would demonstrate better its potentiality over the 

classical truss element. 

• The numerical model predicts an increase in the 

ultimate bending moments when external pre-stressed 

tendons are used, following the tendency of the 

experimental data. These increments depend upon the 

tendon area, tendon force magnitude and tendon profile. 

The beam PCCB4 presented the highest increase.  

• The error percentage between predicted numerical and 

experimental collapse loads ranges from 5% to 8% for the 

studied examples. Also, the numerical model is able to 

capture the initial path failure consistently. 

• The nonlinear geometric behavior is diminished by the 

use of intermediate deviators and by the moderate 

slenderness of the studied beams. Nevertheless, this 

nonlinearity should be included in future studies for 

generality and completeness. 

• The inclusion of free slipping behavior at the tendon-

deviator blocks slightly decreases the capacity of the beam 

at high loads and thus, has a minor influence on the global 

computed response. But, it local effect is more pronounced 

and should be considered in the analysis. That is, the 

bonded analysis is not able to reproduce a uniform tendon 

force along the tendon axis at all times. 

• The length of cracked concrete at the interior supports 

predicted with the present numerical model at service loads 

varies between the two limits established by the two 

versions of the formula presented in the work of Nie et al. 

(2009). The lower and upper limits correspond to the 

simplified and complete versions, respectively. The beams 

PCCB3, PCCB4 and PCCB5 are on the unsafe and safe 

sides, respectively, when the simplified and complete 

versions are used. A more suitable expression is presented 

in this work to predict cracking lengths for the PCCB series. 

This new version maintains the simplicity of the simplified 

formulation, while predicting closer values on the safe side 

when compared with the experimental and numerical 

results. 

• The predicted ultimate loads according to the 

analytical procedure established in the work of Nie et al. 

(2009) for two-span continuous composite beams were 

revised in this work. The predicted numerical results 

obtained with the present finite element model better match 

these analytical values than the experimental ones. The 

predicted ultimate bending moments obtained with the 

present numerical model also correlate well with the 

prediction formula proposed by Chen and Gu (2005) for 

simply supported pre-stressed steel-concrete composite 

beams.   
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