

Computers and Concrete, Vol. 18, No. 5 (2016) 1019-1039

DOI: http://dx.doi.org/10.12989/cac.2016.18.5.1019 1019

Copyright © 2016 Techno-Press, Ltd.

http://www.techno-press.org/?journal=cac&subpage=8 ISSN: 1598-8198 (Print), 1598-818X (Online)

A dynamic analysis algorithm for RC frames using parallel
GPU strategies

Hongyu Li1,2a, Zuohua Li1b and Jun Teng
1

1
School of Civil and Environment Engineering, Shenzhen Graduate School, Harbin Institute of

Technology, Shenzhen 518055, China

2
College of Civil Engineering, Guilin University of Technology, Guilin 541004, China

(Received November 25, 2015, Revised August 2, 2016, Accepted August 3, 2016)

Abstract. In this paper, a parallel algorithm of nonlinear dynamic analysis of three-dimensional (3D)

reinforced concrete (RC) frame structures based on the platform of graphics processing unit (GPU) is

proposed. Time integration is performed using Newmark method for nonlinear implicit dynamic analysis

and parallelization strategies are presented. Correspondingly, a parallel Preconditioned Conjugate Gradients

(PCG) solver on GPU is introduced for repeating solution of the equilibrium equations for each time step.

The RC frames were simulated using fiber beam model to capture nonlinear behaviors of concrete and

reinforcing bars. The parallel finite element program is developed utilizing Compute Unified Device

Architecture (CUDA). The accuracy of the GPU-based parallel program including single precision and

double precision was verified in comparison with ABAQUS. The numerical results demonstrated that the

proposed algorithm can take full advantage of the parallel architecture of the GPU, and achieve the goal of

speeding up the computation compared with CPU.

Keywords: nonlinear dynamic analysis; GPU; reinforced concrete; fiber model; parallel computing

1. Introduction

Earthquakes are usually as the greatest natural hazards. Recent seismic events, e.g., Northridge

(1994), Kobe (1995), Wenchuan (2008), Chile (2010), Tohoku (2011), have caused considerable

loss of life, the staggering monetary losses and functionality disruption. In the earthquake-resistant

design, the analyzed structure should satisfy appropriate objectives for life safety and post-

earthquake occupancy. Most current design codes usually require no significant damage of any

components in the structure in the event of a minor earthquake. In the case of moderate earthquake,

the structures should sustain repairable damages. For severe seismic action, the structure should be

able to resist earthquakes without local or global collapse to maintain life and to minimize

financial loss. In order to understand the response of the structure subjected to seismic excitation,

Corresponding author, Professor, E-mail: tengj@hit.edu.cn

a
Ph.D., E-mail: lhymonica@gmail.com

b
Ph.D., Associate Professor, E-mail: lizuohua@hitsz.edu.cn

Hongyu Li, Zuohua Li and Jun Teng

further to provide adequate ductility and energy dissipation capacity for structure, the researchers

and designers should takes as many means of dynamics analysis as possible. In general, there are

two main ways to study structural dynamics response, one is experimental method, and the other is

numerical one. In this paper, we focus on the time-history nonlinear dynamic analysis is used as a

research tool.

In last several decades several methodologies to compute structural dynamics response have

been proposed. Some researchers used mature methods such as, the initial Newmark-beta Method

(Nathan M 1959), Wilson method

(Wilson et al. 1972) for analysis of second-order accuracy, while

the higher-order numerical integration algorithms (Golley 1996, Fung 1997) were introduced, for

example, precise time step integration method (Fung 1997), all of the methods focus on improving

the accuracy and efficiency of computing. With the rapid development of numerical algorithms,

many authors have studied the dynamics response of reinforced concrete (RC) structures using the

finite element method (FEM), focusing rigorously on the large-scale three dimensional (3D)

problems (Manjuprasad et al. 2001; Yamada et al. 2008; Sasani and Kropelnicki 2008; Ohsaki et

al. 2009). However time history analysis results from these algorithms can be assumed as correct,

generally, the number of degrees of freedom (DOF) of a refined 3D model is computation

intensive, especially for problems involving high nonlinearity, resulting much time consuming in

the process of finite element analysis (FEA). In order to achieve a better computing efficacy and

save calculation time, some parallel algorithms have been proposed, such as domain

decomposition method (Yagawa et al. 1991), finite element tearing and interconnection method

(Farhat and Roux 1991), multi-time-step integration method (Smolinski 1990).

However, most of

these algorithms procedure on modern computer architectures utilizing different application

programming interfaces (APIs), which open multi-processing (OpenMP) for distributed-memory

systems, POSIX threads and message passing interface (MPI) for shared memory systems (Adeli

2000). Majorities of parallel procedures developed on CPU-based architectures, offering

advantages in availability and extensibility. However, there are still some challenges need to be

solved. Developments of CPU-based parallel architectures were hindered by the high heat

generation and power consumption. As increasing the number of processing units, it will cause

dramatically high computational cost. Consequently, an alternative for CPU-based parallel

procedure has become an important issue for large-scale structural dynamic analysis.

In recent years, with the emergence of general-purpose computing on graphic processing unit

(GPU), large-scale computational problems using inexpensive off-the shelf hardware becomes

possible. More and more researchers turned their attention to parallel computations on the GPU. A

single GPU normally contains thousands of processing cores, capable of handling graphical

processing operations efficiently in parallel, thus it has significant potential for solving large-scale

engineering problems. APIs that support parallel programming on GPUs, like Compute Unified

Device Architecture (CUDA) (nVidia 2013a) and Open Computing Language (OpenCL) (Khronos

2014), allow researchers to parallelize their computing programs or sub-programs to be executed

on the GPU. Nowadays, applications of GPU computing are widely found in a variety of fields,

such as image processing (Eklund et al. 2013), computational fluid dynamics (Chetverushkin et al.

2013), earthquake modeling (Komatitsch et al. 2009) and environmental science (Bryan 2013).

Further applications suitable for GPUs were developed to enable solution of the general linear

algebra problems which commonly occur in engineering, such as direct solvers like Cholesky

decomposition, Gauss–Jordan elimination and LU decomposition which were developed and used

for solving dense linear systems (Yang et al. 2012, Galoppo et al. 2005). The conjugate gradient

solvers were used to solve of the sparse linear system of equations resulting from a FEM

1020

A dynamic analysis algorithm for RC frames using parallel GPU strategies

discretization (Helfenstein and Koko 2011, Weber et al. 2013). There are also several applications

of GPUs to nonlinear FE problems (Mafi and Sirouspour 2014, Huthwaite 2014). Göddeke and his

group (Göddeke 2010, 2011, Komatitsch et al. 2010) have done extensive further work in the area

of FEM on the GPU, introduced multigrid to FEM and optimized it for GPUs, including

incorporate GPU technologies into their FEM package FEAST (Finite Element Analysis and

Solutions Tools) (Turek et al. 2010).

It is certain without doubting that the development of high performance numerical methods and

computer programs for dynamic structural analysis will plays significant role in improving

structural analysis efficiency. GPU-accelerated FEM structural analyses contribute to the

efficiency of linear analysis processes (Miao et al. 2015) and nonlinear analysis processes (Yang et

al. 2014, Li et al. 2015, Wei and Luca, 2015). An extensive list of software that can be used to

obtain GPU acceleration was given (Georgescu et al. 2013). However, in the field of structural

dynamics, the lack of research and success cases to show the remarkable results is the reality yet

(Kand et al. 2014). And there are many challenges on solution of nonlinear dynamic structural

engineering problems.

In this paper, we present a novel parallel algorithm of nonlinear dynamic analysis of 3D RC

frame structures on the GPU-based platform. The finite element models are simulated using a fiber

beam model, and the material nonlinearities are considered. For dynamic analysis, the Newmark

implicit time integration is used. The proposed GPU-based parallel Newmark-beta integration

algorithm is implemented using CUDA, and the GPU-based parallel PCG method is introduced for

solving the system of equations resulting from implicit time integration. The GPU technology in

this work is more fine-grain parallelism, whose computing time of each subroutine is relatively

small. Because each subroutine maps to the calculation of an element of an array, it is efficient to

have adjacent threads operate on adjacent data. Furthermore, the performance of the developed

parallel program is tested on the GPU-based platform. The same computation was conducted using

a commercial FEM software ABAQUS, and the results show well agreement with the programs of

this paper. Numerical experiments demonstrate that the proposed parallel program could

effectively improve the efficiency of nonlinear dynamic analysis. The scenarios in this paper show

a very promising future in the field of large-scale structural dynamic analysis.

2. Problem statement

The typical FEM-based nonlinear dynamic analysis process mainly includes three procedures:

initialization, time integration, and post-processing. A flowchart of the nonlinear dynamic

structural analysis is presented in Fig. 1. We should note that this figure presents general analysis

steps; however, the actual flowcharts of most structural analysis programs are more complicated.

Specifically for initialization, operations include data input, elements matrix/vector calculations

and global matrix assembly, material properties, boundary condition enforcement, solution

parameters etc. Different schemes are used in the time integration part to calculate new

accelerations, velocities and displacements at each time step (corresponding to first loop in Fig. 1),

which include implicit time integration schemes (the Newmark or Wilson method), explicit time

integration schemes (the central difference method), or other non-iterative schemes. The solution

of a system of linear or nonlinear equations is required at each time step (corresponding to the

inner loop in Fig. 1). Post-processing is where the structural dynamic response from time

integration are analyzed (displacement, strain, stress, etc.).

1021

Hongyu Li, Zuohua Li and Jun Teng

Fig. 1 A typical FEM-based flowchart for nonlinear dynamic structural analysis

The majority of computational cost involved running a structural dynamic analysis processing

is typically concentrated in time integration and the solution of global system equations, which

consists of two nested loops as shown in Fig.1. Some surveys about the computational time for a

nonlinear dynamic analysis of a refined model showed that more than 90% of time was consumed

in the process of integration and equation solution (Fahmy and Namini 1994, Noor 1997).

Therefore, this work focuses on GPU parallelization of whole iteration process and does not

address the issue in the parallelization of initialization procedure and post-processing.

A typical GPU architecture is organized as an array of multiprocessors or cores, which has

much greater degree of parallelism within the GPU itself. The CUDA programming model

introduced by NVIDIA is designed for highly parallel execution on the GPUs. A subroutine named

kernel that runs on the GPU is executed by many threads in parallel. Threads are grouped in a grid

of blocks with each block assigned to a unique core. A core would then schedule a block of threads

into 32-thread warps. A warp is the basic unit of job scheduling on the GPU. Each warp will

always follow the same instruction schedule with each thread handling a different data set. In other

words, although all threads execute the same code, these threads typically operate on different data.

In the view of computer operations, an accurate FEM structural model is typically composed of

tens of thousands of elements. And element has multiple nodes which have multiple degrees of

freedom, resulting in a significant number of global DOFs for the whole system. Too many DOFs

will cause dramatically high computational cost during using the FEM. Therefore, a parallelism

scheme needed. In general, for FEM-based numerical techniques, two levels of parallelism can be

employed: (1) parallelism considering each element as the computational data objects; and (2)

parallelism considering each node as the computational data object. These computational data

1022

A dynamic analysis algorithm for RC frames using parallel GPU strategies

Fig. 2 Parallelism schematic of threads to global DOF

objects can be partitioned and distributed to each processor of the parallel computing platform,

such as MPI mentioned above. However, the model of parallelism on the GPU is a fine-grained

model, where it is most efficient to have adjacent threads operate on adjacent data, such as

elements of an array. In this work, each global DOF could be treated as an independent computing

unit whose variables are updated independently. In the other words, data in global matrices/vectors

(stiffness matrix, force, displacement, etc.) are independent. Intensive arithmetic operations make

these data particularly suitable for parallel implementation on threads. Parallelism considering

each global DOF is introduced, and the corresponding operations can be simultaneously performed

in each thread as shown in Fig. 2.

3. FEM for nonlinear dynamic analysis of reinforced concrete structures

In this section, the basic formulation of the dynamic analysis of 3D frame structures is briefly

introduced. After deriving the equations in discrete spatial and time domains, the iterative

preconditioned conjugate gradients (PCG) method for solving the discretized matrix-form

equations will be discussed. Then a Timoshenko-type 3D beam element is developed by

discretization of the cross section into fibers.

3.1 Dynamic FEM

In dynamic analysis, either explicit time integration or implicit time integration can be

employed. Typically, fewer degrees of freedom are considered with a large number of small time

steps, advocating the use of explicit time integration schemes. Though the explicit approaches are

easier to be implemented, they are only conditionally stable. In contrast, a large number of degrees

of freedom with a large time step is efficiently handled by implicit time integration schemes, and

numerical stability is guaranteed independent of the integration step length used (Belytschko 1983).

In this work, one of the most widely known implicit time integration techniques, the Newmark

algorithm was used for solving the dynamic equation of nonlinear frame structures in the parallel

program.

In nonlinear analyses, it is assumed that the physical properties remain constant only for short

increments of time; accordingly, it is convenient to reformulate the response in terms of the

incremental equation of motion, as follows

g M u C u K u M u (1)

1023

Hongyu Li, Zuohua Li and Jun Teng

where, M is the global mass matrix, C is the damping matrix, K is the stiffness matrix, üg is

ground acceleration vector, and Δu, u , and Δü is incremental displacement, velocity, and

acceleration vectors respectively.

The general numerical integration approach to dynamic response analysis is step-by-step

method. In this paper, we choose Newmark-beta algorithm. The incremental velocity and

displacement over a short time step are calculated from

()t t t tt t u u u u (2)

2 21
()

2
t t t t tt t t u u u u u (3)

where and are factors that control the stability and accuracy. Set =1/ 2 and 1/ 4 .

Solved Eqs. (2)-(3) to obtain u and u . Then substituted them into Eq. (1)

2

1 1 1
1

2 2
g t t t tt

t t t

K M C u M u M u u C u u (4)

when
tu , and

tu at time t were given, the incremental displacement u can be calculated from Eq.

(4). Then the total values were obtained.

In Newmark-beta algorithm, the limits on the integration step length t aim to ensure

convergence and stability of the solution. The integration step length must be small enough for

solution accuracy, but for a cost effective solution it should not be unnecessarily small. Several

researchers have adopted different limits on the integration step length (Walpole and Shepherd

1969), which is given in terms of the highest eigenvalue in the system

max

1 1 2
~

10 6
t

 (5)

where
max is the maximum frequency of the system.

3.2 Solving linear system of equations

The elemental equations for dynamic analysis after implicit numerical integration are in the

global matrix equation in the form of Eq. (6) by considering interactions among the elements as

well as boundary conditions

Au b (6)

The direct methods such as Gauss Elimination are generally employed to solve linear system of

equations. In general, iterative methods are more suitable for parallelization of the computations,

and also more efficient in terms of memory storage. The conjugate gradient (CG) algorithm is one

of the best known iterative techniques for solving linear systems. From a numerical perspective,

lack of robustness is a widely recognized weakness of CG. This drawback can be improved by

using preconditioning (Benzi and Tuma 1999).

It is assumed that a preconditioner M is available and symmetric positive definite. A

mathematically equal preconditioned system is obtained as follows

1024

A dynamic analysis algorithm for RC frames using parallel GPU strategies

1 1 M Au M b (7)

Jacobi preconditioners are commonly used preconditioners for parallel formulations (Phoon et

al. 2002). In this work, M is a diagonal matrix comprising of the diagonal entries of matrix A.

3.3 Fiber beam element formulations

In this work, RC 3D frames are simulated by fiber beam model including a 12 degrees of

freedom element, which is based on the Timoshenko beam theory. This fiber beam model is

improved to address the interaction between axial force, bidirectional shear, biaxial bending, and

torsion.

The 3-D fiber beam element is shown in Fig.3. The proposed fiber beam element follows the

plane section hypothesis, thus the strain of the fiber i is related to the strain of the section as

 () () ()
T

i s

x xy xzx x x ε b d (8)

where ()xb is the compatibility matrix considering the effect of shear given by

1 0 0 0

() 0 1 0 0 0

0 0 1 0 0

z y

x z

y

b (9)

Then the tangent stiffness matrix and node force vector of the section were obtained by

summation of the contribution of all fibers as follows (Mullapudi and Ayoub 2013)

1

() () ()
n

s T

i i

i

x x x A

K b D b (10)

1

() ()
n

s T

i i

i

x x A

F b σ (11)

where n is the number of fibers in a section; Ai is the area of the fiber; Di is material stiffness

matrix; and σi is material stress vector.

Fig. 3 Fiber beam element

1025

Hongyu Li, Zuohua Li and Jun Teng

The accuracy of the above summation depends on the number of the fibers. Additionally,

section behavior is evaluated through fiber discretization with the appropriate material constitutive

models. In order to simulate the concrete the modified Kent–Park model is applied, where the

monotonic envelope of the concrete in compression follows the model of Kent and Park (1971) as

extended by Scott et al. (1982).The hysteretic stress-strain relation of the concrete implemented

with Blakely and Park model (1973) and the concrete tensile strength is also considered, which is

proposed by Yassin (1994). The nonlinear behavior of the reinforcing bars was simulated within

the model is discussed in Menegotto and Pinto (1977). More details about the presented spatial

discretization and material model selection can be found in literature (Spacone et al. 1996).

The stiffness matrix and node force vector at element level are presented in Eqs. (12) and (13).

In particular, these formulations are evaluated by using a numerical integration such as the Gauss-

Lobatto integration scheme (Stroud and Secrest 1966). Here, the superscript e indicates the

matrix/vector of the element; superscript s indicates that the matrix/vector of section (i.e. section at

integral point).

10

() () () () () ()

L nip
e T s T s

i i i i

i

x x x dx x x x

 K B K B B K B (12)

10

() () () ()

L nip
e T s T s

i i i

i

x x dx x x

 F B F B F (13)

where nip is the number of integral points; ωi is weighted sum of the integrand function at certain

integral point xi, B(x) is the strain-displacement matrix, and N(x) is the displacement interpolation

function matrix.

4. Parallelization strategies

In this section, we describe two main problems of parallelization strategies mentioned in

Section 2, that is, real-time updating of the incremental matrices/vectors by using the Newmark-

beta algorithm and solving of a large system of linear Eq. (6). Then we state the framework of

entire program.

4.1 Implementation of Newmark-beta on the GPU

During the step-by-step solution, the specific operations of parallelization Newmark-beta

implement on the GPU including the CPU procedure as comparison are presented in Fig. 4(a)-(b).

We should note that this figure presents elastic analysis steps and all of the steps of Newmark-beta

algorithm are running on the GPU. However, actually most structural analysis programs are

nonlinear, which will be discussed in section 4.3 (see Fig. 6). For the Newmark-beta algorithm,

both of the calculations and solutions at element level of Eq. (4) involve computations that are not

easily partitioned along a number of threads. In addition, GPU requires the same instruction to be

executed by warps. This fact further hinders the partitioning of a computational work along threads

without instruction branching inside a warp. For this reason, in the implementation of CUDA

kernels, computations for each global DOF are assigned to one thread. This approach simplifies

the implementation, and these kernels are fully scalable. Furthermore, it can be executed for

1026

A dynamic analysis algorithm for RC frames using parallel GPU strategies

(a) (b)

Fig. 4 (a) CPU sequential and (b) GPU parallel flowcharts of Newmark-beta algorithm. The white

boxes are executed on the CPU, while the filled boxes are launched on the GPU. a is the constants of

integration, whose details are referred to reference (Bathe and Wilson 1976).

different-sized DOF problems. GPU can substantially accelerate these types of computations due

to the data parallel structure and arithmetic-intensive nature of this problem, particularly for

models with a large number of elements. Additionally, in the process of implementation of the

Newmark-beta algorithms, in order to improve the efficiency of computation, the NVIDIA’s

CUBLAS library (nVidia, 2013b) was used in addition to our programmed kernels. It should be

noted that at each time step Newmark algorithm requires solving a linear system of equations

which is the most time consuming process. Implementation of the parallel PCG solver will be

further discussed in Section 4.2.

4.2 Parallel PCG solver

Algorithm 1 shows the parallel PCG solver strategy. As shown in Algorithm 1, for each

iteration (lines 3-9), the PCG algorithm uses a matrix-vector multiplication operation in line 3,

vector dot product operations in lines 4 and 8, vector scalar multiplication and vector addition

operations in lines 5, 6 and 9, and a preconditioning operation in line 7. Most of these functions are

1027

Hongyu Li, Zuohua Li and Jun Teng

Algorithm 1 The parallel PCG solver strategy

1 r0 = b – Au0, z0 = M
-1

r0, d0 = z0 ! CPU initialization

2 do i = 0, 1, …

3 qi = Adi ! GPU cublasDsbmv

4 αi = r
T

izi / d
T

iqi ! GPU cublasDdot

5 ui+1 = ui + αidi ! GPU cublasDaxpy

6 ri+1 = ri – αiqi ! GPU cublasDaxpy

7 zi+1 = M
-1

 ri+1 ! GPU diagonal scaling kernel

8 βi = r
T

i+1zi+1 / r
T

izi ! GPU cublasDdot

9 di+1 = zi+1 + βi di ! GPU cublasDaxpy

10 if norm(r) < tolerance or i > imax exit ! CPU logical judgement

11 end do

Algorithm 2 Diagonal scaling kernel

1 ! kernel

2 attributes(global) subroutine diagonal scaling kernel (A,B,C,N)

3 implicit none

4 real(8),device:: A(N),B(N),C(N) ! #real(8) for double precision

5 integer,value::N

6 integer :: i

7 i = blockDim%x*(blockIdx%x-1)+threadIdx%x ! identify each thread index

8 if(i<=N) C(i) = A(i)*B(i) ! fine-grained parallelism

9 call syncthreads() ! each thread waits until all

10 end subroutine diagonal scaling kernel ! threads have reached this call

11 ! launch kernel

12 call diagonal scaling kernel <<<nb, nt>>> (Ad,Bd,Cd,N)

directly available from CUBLAS library, except for the diagonal scaling kernel which was

implemented by ourselves.

A parallelizing diagonal scaling kernel is straightforward and the algorithm is shown in

Algorithm 2. N parallel threads is launching to calculate the diagonal scaling, each thread

identifies itself via an index i. An execution configuration of <<<blocks, threads>>> specifies that

the kernel is executed by nb parallel blocks with nt GPU threads. In the case which is shown in Fig.

5, N is equal to 6. We can simply change the number 6 in the line #define N to 10000 or 100000 to

launch tens of thousands of parallel blocks. Note that this parallelism where different threads

modify adjacent data of the array is a fine-grained parallelism.

In Jacobi preconditioning, preconditioner M is the diagonal matrix of A and was stored as a

vector. Here matrix A is the left side of linear system of equations ˆ ˆ
t t K u R , where ˆ

tK is a N

× N symmetric banded sparse matrix. Yang et al. have mentioned that a dynamic analysis of a

refined model of frame building may exceed 20,000 DOFs (Yang et al. 2012), meaning the matrix

ˆ
tK is of the size 20,000 × 20,000, while ˆR is of the size 20,000 × 1. With a large number of

DOFs, the storage spaces and computational costs are increased. As stiffness matrix is stored in the

global memory, storage schema of these data structures is designed for coalesced access. Thus, to

1028

A dynamic analysis algorithm for RC frames using parallel GPU strategies

Fig. 5 Storage schema of global stiffness matrix

access to these arrays in global memory efficiently, all the FEM matrices and vectors with m

elements can be stored in m one-dimensional arrays. In the storage of stiffness matrix a storage

schema that is presented in Fig. 5 was used.

Since stiffness matrix is symmetric, it saves space to store only the upper (or lower) triangular

part of the matrix. We will consider storing the upper triangular part. The array is of dimension m

= N × nband, where N is the corresponding global DOF number and nband is equal to half-

bandwidth +1. We show a case in which N = 6 and half-bandwidth = 2 as in Fig. 5.

4.3 Framework of entire program

Based on the discussion above, a GPU-based program was developed to analyze RC 3D frame

structures subjected to ground motion. The framework of entire program is illustrated in Fig. 6.

First, the main program executed in the CPU, the element stiffness matrices, mass matrices and

damper matrices were pre-calculated. Then the assembly process is performed by the CPU because

several uncoalesced global memory accesses and consequently poor performance would occur at

GPU for the same process. Second, nodal and element data that are required to do the calculation

are stored in the global memory of GPU and first sent to the GPU. Then threads can be assigned

on the GPU to perform the nonlinear dynamic analysis. When an update with independency of

other global arrays composed of the unique DOF occurred, the nodal and element data should be

sent to CPU for dealing with some serial operations, such as state determination of elements

(Spacone et al. 1996). Finally, results obtained from the GPU are transferred into the CPU and the

post process is performed on the CPU naturally.

1029

Hongyu Li, Zuohua Li and Jun Teng

Fig. 6 The framework of entire program for large-scale structural nonlinear dynamic analysis

5. Numerical results

5.1 Benchmark test

Our numerical tests were conducted on (1) an Intel Core i5-2300 processor running 64-bit

Windows 7 system with 8 Gb memory, 333 MHz DDR3, and (2) a NVIDIA Geforce GTX460

GPU processor in the same Core i5 system with CUDA Fortran Toolkit 5.0. The Intel Core i5-2300

offers four cores, initially clocked at 2.8 GHz. Each core has a separate 32 Kb L1 for both

instruction and data caches, and a 1Mb L2 cache. It features one 6 MB L3 shared cache that is

dynamically allocated to each processor core. The NVIDIA Geforce GTX460 graphics card has

compute capability of 2.1 and has 7 multiprocessors, 336 CUDA cores, 1 GB of global memory

and 1.4 GHz shader clock. PGI Accelerator™ Visual Fortran integrated Microsoft Visual Studio

2012 was employed to compile the program writing in CUDA FORTRAN.

To benchmark the performance of the dynamic analysis of 3D frame structures, a simple

numerical example is used to validate the developed paralleled GPU program. A similar CPU-

based program is also developed. The RC 3D frame model and the reinforcement details within

structural members are shown in Fig. 7(a)-(b). The dimensions of cross section of beam and

columns are 20cm × 50cm (width × depth) and 40cm × 40cm (width × depth) respectively. Besides

gravity loads acting on the frame, dead loads 3.5 kN/m
2
and live loads 2.0 kN/m

2
at each floor are

considered in the analysis. The masses of the tributary floor areas are assumed to be lumped at the

beam column joints.

1030

A dynamic analysis algorithm for RC frames using parallel GPU strategies

(a) (b)

Fig. 7 The model for benchmark: (a) Modeling of the 3D six-story frame structure and (b)

reinforcement details of structural members

A nonlinear steel model used in the present study is discussed in Menegotto and Pinto (1977).

The longitudinal steel is assumed to have initial elasticity modulus of 206 GPa, yield stress 400.0

MPa and strain hardening ratio 1.0%. The lateral steel is assumed to have yield strength 240.0

MPa. The compressive strength of the concrete is assumed as 26.0 MPa and the concrete cover is

2.5 cm. Due to the confining effects of the transverse reinforcement of the Kent and Park model,

the concrete properties in the core concrete are 26.8 MPa and 0.00206 which are concrete

compressive strength and compressive strain corresponding to maximum strength, respectively.

An acceleration ground motion of recorded during the Imperial Valley, California, Earthquake

in 1940 was adopted as input in the analysis. The peak ground acceleration (PGA) is normalized to

100gal and 200gal, in order to evaluate the nonlinear responses of the structure. The duration of

time history analysis was set to 20.0 s at a 0.005 s time step increment and the amount of time

steps was 4000. This duration was long enough to cover large- and small- amplitude ranges of

response. A classic Rayleigh damping ratio of 5% was applied.

First, we compared the results of GPU-based program with ones obtained using a commercial

FEM software ABAQUS. The results of top floor displacement, acceleration and base shear were

obtained by GPU and ABAQUS respectively as shown in Figs. 8-10. Excellent agreement is

observed up to T = 7 s. In this large amplitude region, the frequency content and the waveform of

the calculated response is very close to what was obtained by ABAQUS. Beyond this point and

before T = 12 s, when low amplitude response starts, the response obtained by GPU program

deviates from the results of ABAQUS. The difference is more salient in the acceleration response.

Such difference signifies that, in the low amplitude regions, the fiber model resulted in structural

stiffness is larger because of the scheme of interpolation the displacement function. In addition, the

results of inter-story drift ratio at the time of maximum response were presented in Table 1 and

Table 2. The single precision and double precision programs are conducted on GPU, and the

obtained errors of maximum inter-story drift are both less than 5.0% and the errors are only 2.0%

at top floor. Through the comparison, the results of our work showed good agreement with the

ABAQUS and the accuracy of the GPU-based program is good enough for dynamic analysis.

1031

Hongyu Li, Zuohua Li and Jun Teng

(a) (b)

Fig. 8 Top floor displacement result by ABAQUS and GPU-based program: (a) PGA = 100 gal and (b)

PGA = 200 gal

(a) (b)

Fig. 9 Top floor acceleration result by ABAQUS and GPU-based program: (a) PGA = 100 gal and (b)

PGA = 200 gal

(a) (b)

Fig. 10 Base shear result by ABAQUS and GPU-based program: (a) PGA = 100 gal and (b) PGA = 200

gal

1032

A dynamic analysis algorithm for RC frames using parallel GPU strategies

Table 1 Maximum inter-story drift ratio (PGA = 100gal)

Floor
GPU-based program

ABAQUS
Error (%)

Single precision Double precision Single precision Double precision

1F 0.001750 0.001750 0.001719 -1.80 -1.80

2F 0.002452 0.002452 0.002504 2.08 2.08

3F 0.002283 0.002283 0.002388 4.40 4.40

4F 0.001858 0.001859 0.001925 3.43 3.48

5F 0.001315 0.001315 0.001364 3.59 3.59

6F 0.000757 0.000757 0.000768 1.02 1.02

Table 2 Maximum inter-story drift ratio (PGA = 200gal)

Floor
GPU-based program

ABAQUS
Error (%)

Single precision Double precision Single precision Double precision

1F 0.004397 0.004397 0.004512 2.75 2.75

2F 0.006513 0.006513 0.006770 3.80 3.80

3F 0.005857 0.005858 0.006271 3.52 3.51

4F 0.004113 0.004112 0.004302 4.39 4.42

5F 0.002218 0.002219 0.002152 -1.19 -1.23

6F 0.000972 0.000972 0.000981 1.83 1.83

Table 3 Time consuming in each procedure (units: sec)

 PGA = 100 gal PGA = 200 gal

Input data 1.5 1.5

State determination 22.1 22.4

Stiffness matrix 31.4 31.7

Solve equations 73.5 77.6

Equivalent force 6.4 6.5

Total 134.9 139.7

The time elapsed of the benchmark test was decomposed by the internal procedures, listed in

Table 3. The most time consuming procedure in the nonlinear dynamic analysis is the process of

solving the equations of linear system, which takes about 55% of the total computational time. For

comparison, the total computational time using ABAQUS was measured accordingly. The solution

time of the program on the GPU-based platform is approximately equal to 22-27% of the

corresponding time required for the ABAQUS. Though the number of global DOF in this model is

not large, the parallel processing ability of GPU performed very well during the computation, the

time deduction was significant. We can infer that when the number of DOF increases, the

efficiency of GPU will improve accordingly.

5.2 Numerical studies

1033

Hongyu Li, Zuohua Li and Jun Teng

Table 4 Size of models for the test cases

Model Elements DOFs Size of matrix Half-bandwidth Number of elements in banded matrix

1 210 540 540 × 540 185 99,900

2 315 810 810 × 810 275 222,750

3 800 1920 1920 × 1920 485 931,200

4 1300 3000 3000 × 3000 605 1,815,000

5 1920 4320 4320 ×4320 725 3,132,000

6 2400 5400 5400 × 5400 905 4,887,000

7 2860 6480 6480 × 6480 1090 7,063,200

8 3250 7500 7500 × 7500 1505 11,287,500

Table 5 relationship between block size and the time cost (units: sec)

Model
Block size

16 32 64 128 256 512 1024

1 9.63 8.85 8.84 8.83 8.84 9.04 9.57

2 16.59 16.01 16.11 16.10 16.17 16.65 17.24

3 36.82 36.25 36.27 36.22 36.29 36.72 38.09

4 63.38 61.97 61.86 61.90 62.55 64.12 66.45
5 114.88 110.64 110.97 111.06 112.17 114.04 117.78

6 160.37 154.09 155.39 155.61 155.78 159.94 165.10

7 225.76 218.23 218.54 218.36 219.13 225.62 232.32

8 320.24 309.78 311.43 310.62 311.09 320.60 348.85

A CPU-based program was also developed and compared to the GPU version. Note that, the

goal of this paper is to present a GPU-based parallelization, thus CPU-based accelerations such as

SIMD instructions (MMX, SSE, AVX, etc.) are not considered. In general, the performance

increases with the number of threads used. All of our kernels have been implemented in the Core

i5-2300; specifically speaking, we use 4 threads on 4 cores to obtain the best performance possible.

Several 3D frame models were constructed in order to evaluate the performance of the program

on the GPU and CPU. Two indicators have been proposed: the total computational time and

speedup. The different number of DOFs from low to high was adopted in the numerical examples.

Table 4 presents the size of models used in the analysis. Note here, the parallelism was carried out

by mapping the data onto a Stream Processor (SP) as a thread to execute through the kernel

function. In the other words, model 7 is taken for example; each thread has a one-to-one mapping

to the data which means 11,282,500 threads are running simultaneously.

First, the block size of CUDA in the GPU parallelization program is implemented for all tested

cases. Due to paucity of computation time, the analysis was carried out for 100 time steps, and

each time step may contain two or more Newton-Raphson iterations. Table 5 shows the

relationship between block size and the time cost. Since threads should be running in groups of at

least 32 (32 threads per warp) for optimal computing efficiency while using CUDA, some of the

computing capability is wasted when the block size is less than 32. Thus the block size can achieve

relative higher performance ranged from 32 to 256. However, limitation on the architecture of

GPU device is another factor which needs to be considered. For GTX460, the available registers

for each multiprocessor are 4,681 (total 32,768 registers and 7 multiprocessors) If each block uses

1034

A dynamic analysis algorithm for RC frames using parallel GPU strategies

Fig. 11 Computational time for PCG solver Fig. 12 Speedup for PCG solver

Fig. 13 Computational time for entire duration

of Newmark-beta method

Fig. 14 Speedup for entire duration of

Newmark-beta method

too many registers, the number of blocks resided on a multiprocessor will be reduced. Thus, if the

block size is greater than 256, the available registers for a thread will decrease, thereby yielding

lower performance for the parallel computation.

The comparison of computational time for PCG solver is shown in Fig. 11. The speedup

achieved by the parallelized part of the PCG is shown in Fig. 12. As expected, all implementations

of PCG on the GPU could reduce the solution time compared with the CPU. The larger number of

DOFs, the bigger the difference is (see Fig. 12). It also shows that double precision calculations

cost more time than single precision ones. Additionally, the achievement of maximum speedups

reached are 25 and 22 times for single precision and double precision with 7500 DOFs,

respectively.

Fig. 13 presents the differences of computational time for entire duration of Newmark-beta

method, including the time for PCG. Similar to results of the PCG solver, both implementations

achieve similar performance, but the speedup is smaller than the one obtained in the PCG part.

Specifically, the speedups of double precision and single precision are 8.5 and 8 times shown in

Fig. 14, respectively. This is explained by the fact that, with more integrations involved in

nonlinear states, data need to be continuously transmitted from CPU to GPU or from GPU to CPU

1035

Hongyu Li, Zuohua Li and Jun Teng

in each time-step integration (see Fig. 6). Such data transmission is relatively slow compared with

the direct access in the GPU. So, such communication overheads are more time consuming.

Reasonably, the communication time between GPU and CPU is trivial, furthermore, with the

increase of DOFs, the communication time consuming will be not worth mentioning.

Table 6 Total computational time (in seconds) and speedup

DOFs

CPU-based program GPU-based program Speedup

single

precision

double

precision

single

precision

double

precision

single

precision

double

precision

10,800 190,178 247,566 17,453 18,299 10.9 13.5

An additional fine-meshed 3D frame model was computed to evaluate the performance of the

developed program on the GPU-based platform. The model consists of 4,800 beam-column

elements with 10,800 DOFs. The total computational time was measured. It should be noted that

the total computational time refers to the total time taken by the program. The time of data input

and output is also included. Table 6 lists the parameters of the total computational time and

speedup. It can be found that more than 10 times speedup can be reached. We can easily imagine

that, for a regular dynamic analysis, if the common method was adopted without the help of GPU

and parallelized computation, the whole process might take more than two and a half day; however,

it can be finished on the GPU-based platform within five hours. Also, the accuracy of our program

was the same as traditional one, in some ways, ours could achieve better accuracy.

6. Conclusions

A parallel algorithm is presented for conducting nonlinear dynamic analysis of 3D frame

structures on a GPU-based platform. In this work, the approach is based on the nonlinear FEM and

implicit Newmark-beta integration algorithm. The PCG method was employed to solve the linear

system of equations in each time-step integration. The fiber beam model was adopted in the finite

element model. Also the material nonlinear is considered.

Parallelization strategies for two main implementations of Newmark-beta algorithm and PCG

solver are presented in this work. In order to test he performance of program, the same analysis

model was conducted on GPU and CPU respectively. The benchmark test shows that the

computation accuracy of the GPU-based program is sufficient for dynamic analysis. The accuracy

requirements can be satisfied by both single precision and double precision. Performance of both

implementations were measured and compared with CPU implementations. The results indicate

that the proposed algorithms on the GPU-based platform would be a high-speed approach for

large-scale structural dynamic analysis.

Based on the proposed algorithm, the computation on the GPU shows a significant prospect.

For larger problems which cannot fit in current GPU’s memory, further research efforts are needed

to propose a design which allows the computation on both CPU and GPU, while reduce mutual

data transfers, to proceed in parallel. Future studies also include dynamic analysis with multiple

GPUs computing, the mixed precision approach, and the refine numerical section integration for

improved accuracy of the analysis of RC structures.

1036

A dynamic analysis algorithm for RC frames using parallel GPU strategies

 Acknowledgments

The present work was supported by the Major International (Sino-US) Joint Research Project

of the National Natural Science Foundation of China (Grant No. 51261120374), the National

Natural Science Foundation of China (Grant Nos. 51278155 and 51378007), Project

(HIT.NSRIF.2014093) Supported by Natural Scientific Research Innovation Foundation in Harbin

Institute of Technology, Shenzhen Technology Innovation Program – Technology Development

Projects (Grant No. CXZZ20140904154839135) and Shenzhen Technology Innovation Program –

Technical Projects (Grant No. JSGG20150330103937411). The authors are grateful to Professor

Didem Ozevin at University of Illinois at Chicago for the critical reading of the paper and the

helpful comments.

References

Adeli, H. (2000), “High-performance computing for large-scale analysis, optimization, and control”, J.

Aerospace Eng., 13(1), 1-10.

Bathe, K.J. and Wilson, E. (1976), Numerical mthods in finite eement analysis, Prentice-Hall, Englewood

Cliffs, New Jersey.

Belytschko, T. (1983), “An overview of semidiscretization and time integration procedures”, Computational

methods for transient analysis(A 84-29160 12-64), Amsterdam, North-Holland, 1-65.

Benzi, M. and Tuma, M. (1999), “A comparative study of sparse approximate inverse preconditioners”, Appl.

Numer. Math., 30(2), 305-340.

Blakely, R.W.G. and Park, R. (1973), “Prestressed concrete sections with cyclic flexure”, J. Struct. Div.,

99(8), 1717-1742．

Bryan, B.A. (2013), “High-performance computing tools for the integrated assessment and modelling of

social-ecological systems”, Environ. Modell. Softw., 39, 295-303.

Chetverushkin, B.N., Shilnikov, E.V. and Davydov, A.A. (2013), “Numerical simulation of the continuous

media problems on hybrid computer systems”, Adv. Eng. Softw., 60-61, 42-47.

Eklund, A., Dufort, P., Forsberg, D. and LaConte, S.M. (2013), “Medical image processing on the GPU-Past,

present and future”, Med. Image Anal., 17(8), 1073-1094.

Fahmy, M.W. and Namini, A.H. (1994), “A survey of parallel nonlinear dynamic analysis methodologies”,

Comput. Struct., 53(4), 1033-1043.

Farhat, C. and Roux, F.X. (1991), “A method of finite element tearing and interconnecting and its parallel

solution algorithm”, Int. J. Numer. Meth. Eng., 32(6), 1205-1227.

Fung, T.C. (1997), “A precise time‐step integration method by step‐response and impulsive‐response

matrices for dynamic problems”, Int. J. Numer. Methods Eng., 40(24), 4501-4527.

Fung, T.C. (1997), “Third-order time-step integration methods with controllable numerical dissipation”,

Commun. Numer. Meth. Eng., 13(4), 307-315.

Galoppo, N., Govindaraju, N.K., Henson, M. and Manocha, D. (2005), “LU-GPU: Efficient algorithms for

solving dense linear systems on graphics hardware”, Proceedings of the 2005 ACM/IEEE Conference on

Supercomputing, IEEE Computer Society, November.

Georgescu, S., Chow, P. and Okuda, H. (2013), “GPU acceleration for FEM-based structural analysis”, Arch.

Comput. Method E., 20(2), 111-121.

Göddeke, D. (2010), “Fast and accurate finite-element multigrid solvers for PDE simulations on GPU

clusters”, Ph.D. Dissertation, Technische Universit ät Dortmund, Fakultät für Mathematik,.

Göddeke, D. (2011), Fast and accurate finite-element multigrid solvers for PDE simulations on GPU

clusters (Logos Verlag Berlin GmbH).

Golley, B.W. (1996), “A time-stepping procedure for structure dynamics using gauss point collocation”, Int.

1037

Hongyu Li, Zuohua Li and Jun Teng

J. Numer. Meth. Eng., 39(23), 3985-3998.

Helfenstein, R. and Koko, J. (2012), “Parallel preconditioned conjugate gradient algorithm on GPU”, J.

Comput. Appl. Math., 236(15), 3584-3590.

Huthwaite, P. (2014), “Accelerated finite element elastodynamic simulations using the GPU”, J. Comput.

Phys., 257, 687-707.

Kang, D.K., Kim, C. W. and Yang, H.I. (2014), “GPU-based parallel computation for structural dynamic

response analysis with CUDA”, J. Mech. Sci. Technol., 28(10), 4155-4162.

Kent, D.C. and Park, R. (1971), “Flexural members with confined concrete”, J. Struct. Div., 97(7), 1969-

1990.

Khronos Group (2014), The OpenCL Specification Version 2.0, Khronos OpenCL Working Group.

Komatitsch, D., Erlebacher, G., Göddeke, D. and Michéa, D. (2010), “High-order finite-element seismic

wave propagation modeling with MPI on a large GPU cluster”, J. Comput. Phys., 229(20), 7692-7714.

Komatitsch, D., Michéa, D. and Erlebacher, G. (2009), “Porting a high-order finite-element earthquake

modeling application to NVIDIA graphics cards using CUDA”, J. Parallel. Distr. Com., 69(5), 451-460.

Li, H.Y., Teng, J., Li, Z.H. and Zhang, L. (2015), “Nonlinear dynamic analysis efficiency by using a GPU

parallelization”, Eng. Lett., 23(4), 232-238.

Mafi, R. and Sirouspour, S. (2014), “GPU-based acceleration of computations in nonlinear finite element

deformation analysis”, Int. J. Numer. Methods in Bio., 30(3), 365-381.

Manjuprasad, M., Gopalakrishnan, S. and Appa Rao, T.V.S.R. (2001), “Non-linear dynamic response of a

reinforced concrete secondary containment shell subjected to seismic load”, Eng. Struct., 23(5), 397-406.

Menegotto, M. and Pinto P.E. (1977), “Slender R.C. Compressed members in biaxial bending”, J. Struct.

Div., 103(3), 587-605.

Miao, X., Jin, X. and Ding, J. (2015), “A new hybrid solver with two-level parallel computing for large-

scale structural analysis”, Concurr. Comp-Pract. E., 27(14), 3661-3675.

Mullapudi, T.R.S. and Ayoub, A. (2013), “Analysis of reinforced concrete columns subjected to combined

axial, flexure, shear, and torsional loads”, J. Struct. Eng., 139(4), 561-573.

Nathan, M.N. (1959), “A method for computation of structural dynamics”, J. Eng. Mech., 85(3), 67-94.

Noor, A.K. (1997), “New computing systems and future high-performance computing environment and their

impact on structural analysis and design”, Comput. Struct., 64(1), 1-30.

nVidia Corporation (2013a), CUDA C Programming Guide.

nVidia Corporation (2013b), CUBLAS library.

Ohsaki, M., Miyamura, T., Kohiyama, M., Hori, M., Noguchi, H., Akiba, H. and Koichi, K. (2009), “High-

precision finite element analysis of elastoplastic dynamic responses of super-high-rise steel frames”,

Earthq. Eng. Struct. D., 38(5), 635-654.

Phoon, K.K., Toh, K.C., Chan, S.H. and Lee, F.H. (2002), “An efficient diagonal preconditioner for finite

element solution of Biot’s consolidation equations”, Int. J. Numer. Meth. Eng., 55(4), 377-400.

Sasani, M. and Kropelnicki, J. (2008), “Progressive collapse analysis of an RC structure”, Struct. Des. Tall

Spec., 17(4), 757-771.

Scott, B.D., Park, R. and Priestley, M.J.N. (1982), “Stress-strain behaviour of concrete confined by

overlapping hoops at low and high strain rates”, ACI J., 79(1), 13-27.

Smolinski, P. (1990), “Convergence of multi-time step integration methods”, Comput. Struct., 35(6), 719-

724.

Spacone, E., Fillippou, F.C. and Taucer, F.F. (1996), “Fiber beam-column model for nonlinear analysis of

RC frames: Part I. Formulation”, Earthq. Eng. Struct. D., 25(7), 711-725.

Stroud, A.H. and Secrest, D. (1966), Gaussian quadrature formulas, Prentice-Hall, Englewood Cliffs, New

Jersey.

Turek, S., Göddeke, D., Becker, C., Buijssen, S.H. and Wobker, H. (2010), “FEAST-realization of hardware-

oriented numerics for HPC simulations with finite elements”, Concurr. Comput.-Pract. E., 22(16), 2247-

2265.

Walpole, W.R. and Shepherd, R. (1969), “Elasto-plastic seismic response of reinforced concrete frame”, J.

1038

A dynamic analysis algorithm for RC frames using parallel GPU strategies

Struct. Div., 95(ST10), 2031-2055.

Weber, D., Bender, J., Schnoes, M., Stork, A. and Fellner, D. (2013), “Efficient GPU data structures and

methods to solve sparse linear systems in dynamics applications”, Comput. Graph. Forum., 32(1), 16-26.

Wei, C. and Luca, C. (2015), “New GPU computing algorithm for wind load uncertainty analysis on high-

rise systems”, Wind Struct., 21(5), 461-487.

Wilson, E.L., Farhoomand, I. and Bathe, K.J. (1972), “Nonlinear dynamic analysis of complex structures”,

Earthq. Eng. Struct. D., 1(3), 241-252.

Yagawa, G., Soneda, N. and Yoshimura, S. (1991), “A Large scale finite element analysis using domain

decomposition method on a parallel computer”, Comput. Struct., 38(5-6), 615-625.

Yamada, T., Ohbo, N. and Itami, H. (2008), “Three-dimensional analysis method of seismic resistance of

large tunnel structure using large-scale numerical computation of soil-tunnel system”, Proceedings of the

World Tunnel Congress 2008, Agra, India, September.

Yang, D.P., Peterson, G.D. and Li, H.S. (2012), “Compressed sensing and Cholesky decomposition on

FPGAs and GPUs”, Parallel Comput., 38(8), 421-437.

Yang, Y.S., Hsieh, S.H. and Hsieh, T.J. (2011), “Improving parallel substructuring efficiency by using a

multilevel approach”, J. Comput. Civil Eng., 26(4), 457-464.

Yang, Y.S., Yang, C.M. and Hsieh, T.J. (2014), “GPU parallelization of an object-oriented nonlinear

dynamic structural analysis platform”, Simul. Modell. Prac.Theo., 40, 112-121.

Yassin, M.H.M. (1994), “Nonlinear analysis of prestressed concrete structures under monotonic and cycling

loads”, Ph.D. Dissertation, University of California, Berkeley.

CC

1039

