
 

 

 

 

 

 

 

Computers and Concrete, Vol. 18, No. 6 (2016) 1175-1194 

DOI: http://dx.doi.org/10.12989/cac.2016.18.6.1175                                          1175 

Copyright ©  2016 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=cac&subpage=8         ISSN: 1598-8198 (Print), 1598-818X (Online) 
 
 
 

 
 
 
 

Minimum reinforcement and ductility index of lightly 
reinforced concrete beams 

 

Alessandro P. Fantilli

, Bernardino Chiaia

a
 and Andrea Gorino

b
 

 
Department of Structural, Building and Geotechnical Engineering, Politecnico di Torino, 

Corso Duca degli Abruzzi 24, 10129 Torino, Italy 

 
(Received July 13, 2016, Revised September 10, 2016, Accepted September 11, 2016) 

 
Abstract.  Nonlinear models, capable of taking into account all the phenomena involved in the cracking 
and in the failure of lightly reinforced concrete beams, are nowadays available for a rigorous calculation of 
the minimum reinforcement. To simplify the current approaches, a new procedure is proposed in this paper. 
Specifically, the ductility index, which is lower than zero for under-reinforced concrete beams in bending, is 
introduced. The results of a general model, as well as the data measured in several tests, reveal the existence 
of two linear relationships between ductility index, crack width, and the amount of steel reinforcement. The 
above relationships can be applied to a wide range of lightly reinforced concrete beams, regardless of the 
geometrical dimensions and of the mechanical properties of materials. Accordingly, if only a few tests are 
combined with this linear relationships, a new design-by-testing procedure can be used to calculate the 
minimum reinforcement, which guarantees both the control of cracking in service and the ductility at failure. 
 

Keywords:  lightly reinforced concrete beams; bending moment; minimum reinforcement; ultimate limit 
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1. Introduction 
 

According to building code requirements (ACI 2014, Fib 2012), a minimum quantity of steel 

reinforcement needs to be provided in the tensile zones of concrete beams in bending (Levi 1985). 

In the serviceability state, a suitable amount of reinforcement prevents the growth of wide cracks 

and, consequently, the penetration of aggressive substances that compromise the durability of 

reinforced concrete structures. At the failure point, the minimum reinforcement area As,min 

guarantees that cracking of concrete in tension occurs before the yielding of rebar, and avoids the 

brittle response of lightly reinforced concrete (LRC) beams. In this way, the ultimate bending 

moment Mu (herein assumed to be coincident with the yielding moment) is larger than the effective 

cracking moment Mcr*, corresponding to the peak of moment during the growth of the first crack. 

According to Maldague (1965), Mcr* is always larger than Mcr, defined as the first cracking 

moment at which the tensile strength of concrete is attained in the tension fiber of the cross- 
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Fig. 1(a) Behavior of LRC beams (Ruiz, Elices 

et al. 1999): three point bending test 

Fig. 1(b) Behavior of LRC beams (Ruiz, Elices et 

al. 1999): load - midspan deflection curves as a 

function of the cross-sectional area of rebar 

 

 

section.  

Similarly, the load applied to a three point bending beam has to satisfy the following condition 

(see Fig. (1)) 

u cr*P P  (1) 

where Pu and Pcr* are the loads that produce Mu and Mcr*, respectively, in the midspan cross-

section of the beam depicted in Fig. 1(a). Hence, when Mu=Mcr* (or Pu= Pcr*) the minimum 

reinforcement for static reasons is correspondingly defined, independently of the midspan 

deflection  of the beam (Fig. 1(b)). In other words, the ductility of LRC beams is defined by the 

strength, whereas the so-called plastic rotation measures the ductility of ordinary and over-

reinforced concrete beams (CEB 1998). This concept is of paramount importance when massive 

concrete structures are realized (Rizk and Marzouk 2011). 

For the theoretical evaluation of As,min, some nonlinear models must be applied, such as the 

bond-slip between rebar and concrete and the fracture mechanics of concrete in tension (Bažant 

and Cedolin 1991). The same mechanisms also influence the crack width and the crack spacing 

during the serviceability state (Fib 2000). Nevertheless, a univocally accepted approach, able to 

predict the crack pattern of reinforced concrete beams, does not exist despite the huge number of 

models available in the current literature (Borosnyói and Balázs 2005). 

In the same way, a global and straightforward approach for the evaluation of As,min was not 

provided by the numerical and experimental analyses performed in the past decades (Carpinteri 

1999). For this reason, code rules suggest the use of simplified formulae for As,min, in order to 

satisfy both the serviceability and the ultimate limit states. To be more precise, the following 

symbolic formula, derived from reinforced concrete ties, is adapted by ACI 318-14 (ACI 2014) 

and Model Code 2010 (Fib 2012) to beams 

ct

 s,min

y

f
A B d

f
     (2) 

Where  = coefficient depending on the model uncertainties, on the different state of stress 

between reinforced concrete beams and ties, and on the depth of the tensile zone: fct = tensile 

strength of concrete: fy = yielding strength of steel rebar; B and d = width and effective depth, 
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respectively, of a beam cross-section. Similar formulae have also been proposed by other building 

codes and Authors (Seguirant, Brice et al. 2010). 

Some geometrical aspects that affect As,min, such as the size effect produced by the beam depth 

(Carpinteri, Cadamuro et al. 2014) and by the bar diameter (Fantilli, Ferretti et al. 2005), are not 

taken into account by Eq. (2). As a result, the evaluation of the minimum reinforcement with Eq. 

(2) is only approximated. Hence, the aim of the present paper is to introduce a more effective 

approach to calculate As,min , which should be based on the real response of LRC beams. A new 

simple procedure, capable of predicting the brittle/ductile behavior of LRC beams and the 

minimum reinforcement, is proposed in the following. It is the result of both the theoretical and 

experimental investigations described in the next sections. 

According to Fantilli, Ferretti et al. (1999), a block of LRC beam in three point bending, failing 

in the presence of a single flexural crack, is modelled. As shown in Fig. 2(a), the portion of the 

beam is delimited by the cracked cross-section (the midspan cross-section 0-0) and the so- 

 

 

2. General model for LRC beams 
 

2.1 Formulation of the problem 
 

 

 

 

Fig. 2(a) General model for LRC beams in 

bending: A portion of the beam with a single 

crack 

Fig. 2(b) General model for LRC beams in 

bending: Slips between rebar and concrete in 

tension 

  
Fig. 2(c) General model for LRC beams in 

bending: Strains of rebar and concrete in tension 
Fig. 2(d) General model for LRC beams in 

bending: Diagram of bending moment 
 

  
Fig. 3(a) Boundaries of the portion of the beam 

with a single crack: Stresses and strains in the 

cracked cross-section 

Fig. 3(b) Boundaries of the portion of the beam 

with a single crack: stresses and strains in the 

Stage I (or perfect bond) cross-section 
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called Stage I cross-section (cross-section 1-1), in which the perfect bond between steel and 

concrete is re-established. Within the block of length ltr (= transfer length), as the horizontal 

coordinate z increases, stresses move from steel to concrete in tension, due to the bond-slip 

mechanism acting at the interface of the materials (Fig. 2). At the level of reinforcement, the slip s 

vanishes in the Stage I cross-section (Fig. 2(b)), where concrete strain c equates steel strain s 

(Fig. 2(c)). In the cross-section 0-0 (Fig. 3(a)), a linear strain profile along uncracked concrete and 

steel in tension is assumed. Conversely, in the cracked zone (of depth hw) crack width w is 

supposed to linearly decrease from the bottom of the beam (where w= w ) to the crack tip (where 

w=0), in spite of the presence of the reinforcement. On the other hand, in the Stage I cross-section 

(Fig. 3(b)), the hypothesis of perfect bond makes the evaluation of steel and concrete strain I, at 

the level of reinforcement, possible by means of the well-known linear elastic formula 

 o

I s c o

o o

M
d x

E I
       


 (3) 

where Mo = bending moment in the Stage I cross-section; Eo∙Io = flexural rigidity of the composite 

cross-section; and xo = distance from the top edge to the neutral axis in the composite cross-

section. Within the transfer length, Mo = M can be assumed (where M = bending moment in the 

cracked cross-section according to Fig. 2(d)). In such zone of the beam, the interaction between 

steel and concrete is described by the following equilibrium and compatibility equations 

   s s

 s

4d p
s z s z

dz A


           

 (4) 

   s c

ds
z z

dz
       (5) 

where s = stress of steel rebar: ps , As , and  = perimeter, cross-sectional area, and nominal 

diameter of rebar, respectively;  and s = bond stress and corresponding slip between steel and 

concrete. 

In the absence of an external axial load (N = 0), the resultant of axial stresses becomes 

 c

 c s  s 0
A

N dA A      (6) 

where c = concrete stresses; Ac and As = cross-sectional areas of concrete and steel rebar, 

respectively.  

Assuming y as the vertical coordinate (Fig. 2(a)), the internal bending moment M can be 

computed as follows 

 c

 c s s
2

A

H
M y dA A c

 
       

 
  (7) 

where H = beam depth; and c = concrete cover (distance from the centroid of the rebar to the 

bottom edge of the cross-section). 

In accordance with Fantilli and Chiaia (2013), steel strain decrements and concrete strain 

increments at the level of reinforcement are similar 
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     s s0 s0 Iz z        (8) 

     c c0 c0 Iz z        (9) 

where s0 and c0 = steel and concrete strains at level of reinforcement in the cracked cross-section; 

and  = similarity coefficient. It should be remarked that the strain c0 can be obtained from the 

corresponding stress, by assuming the linear elastic behavior of uncracked concrete. 

To solve Eqs. (4)-(9), the following boundary conditions are needed 

w

0

w2

h cw
s

h


   (10) 

 tr 0s z l   (11) 

   s tr c trz l z l      (12) 

In Eq. (10), the slip s0 in the cracked cross-section is equal to half of crack width at the level of 

reinforcement. Conversely, in the Stage I cross-section, Eq. (11) and Eq. (12) impose, respectively, 

the absence of slip and its stationary state. The latter condition is equivalent to consider the same 

strain in steel and concrete at level of reinforcement. 

 

2.2 Material behavior 
 

To model the stress-strain relationship c-c of concrete in compression, the ascending branch 

of the Sargin’s parabola (Fib 2012) is used (Fig. 4(a)) 

 
 

  
Fig. 4(a) Constitutive laws of materials (Fib 

2012): Sargin’s parabola for the concrete in 

compression, and linear elastic law for the 

uncracked concrete in tension 

Fig. 4(b) Constitutive laws of materials (Fib 

2012): Elastic-perfectly plastic law for steel 

rebar 
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 

2

c c
1 2

k
f

k

 
     

    

 for c1 < c ≤ 0 (13) 

where fc = cylindrical compressive strength of concrete (mean value); k = Ec/Ec1 = plasticity 

number (i.e., the ratio between the tangent modulus of elasticity at the origin of the stress-strain 

diagram Ec, and the secant modulus from the origin to the peak of compressive stress Ec1);  = 

c/c1 = compressive strain normalized with respect to c1 (= strain at the peak of stress). 

The following linear elastic constitutive law (Fig. 4(a)) is adopted for the uncracked concrete in 

tension 

c  c cE    for 0<c≤ct = fct/Ec (14) 

According to Model Code 2010 (Fib 2012), the mean tensile strength of concrete fct can be 

estimated from fc (expressed in MPa) 

 
2 3

ct c0.3 8f f    for f c≤ 58 MPa (15a) 

 ct c2.12 ln 1 0.1f f     for fc > 58 MPa (15b) 

After the linear elastic constitutive law in tension, the “fictitious crack model” is adopted to 

reproduce the behavior of cracked concrete. It consists on the following bilinear stress-crack 

opening displacement curve c-w, also shown in Fig. 5(a) (Fib 2012) 

c ct

1

1.0 0.8
w

f
w

 
     

 
 for 0 < w ≤ w1 (16a) 

c ct

1

0.25 0.05
w

f
w

 
     

 
 for w1 < w ≤ wc (16b) 

where w1 = GF/fct; wc = 5∙GF/fct; and GF = 0.073∙fc
 0.18

 = fracture energy of concrete in tension ( fc in 

MPa, GF in N/mm). 

As Mu is the moment at the yielding of steel in tension, the stress-strain relationship s-s of the 

rebar is modeled with the elastic-perfectly plastic constitutive law illustrated in Fig. 4(b) (fib 2012) 

s  s sE    for 0 ≤s <y = fy/Es (17a) 

s yf   for y = fy/Es ≤s <u (17b) 

where Es, fy and u are the modulus of elasticity, the yielding strength, and the ultimate strain of 

steel rebar, respectively. 

Finally, the following bond-slip relationship -s, proposed by Model Code 2010 (Fib 2012) and 

depicted in Fig. 5(b), is used 

where max = 2.5∙fc
 0.5

 ( fc in MPa); f = 0.4∙max  = 0.4; s1 = 1.0 mm; s2 = 2.0 mm; and s3 = cclear = 

clear distance between the ribs of the rebar (in mm). To take into account the possibility of 

max

1

s

s



 
    

 
 for 0 ≤ s < s1 (18a) 
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max    for s1 ≤ s < s2 (18b) 

  2

max max f

3 2

s s

s s


       


 for s2 ≤ s < s3 (18c) 

f    for s3 ≤ s (18d) 

the splitting failure at the interface between rebar and concrete (Giuriani and Plizzari 1998), the 

reduced bond strength 
2
u,split (Fib 2012) has been considered (see the dashed line represented in 

Fig.5(b)) 

 

2.3 Numerical solution of the problem 
 

All the equations previously introduced define the so-called “tension-stiffening” problem, 

which has to be solved within the one-dimensional domain of length ltr. This is possible by 

applying the iterative procedure illustrated in Fig. 6 and described by the following points (Fantilli, 

Ferretti et al. 1999, Fantilli and Chiaia 2013), in which the subscript i refers to the abscissa 0 ≤ zi ≤ 

ltr: 

1. Assign a value to w in the cracked cross-section (see Fig.2 (a) and Fig.3 (a)). 

2. Assume a trial value for crack depth hw (where c < hw < H – Fig. 2(a) and Fig. 3(a)). 

3. Assume a trial value for x (i.e., the distance from the top edge to the neutral axis in the 

cracked cross-section of Fig. 3(a)).  

4. Assuming the linearity of both the strain and the crack profile, define the state of stress in the 

cracked cross-section (Fig. 3(a)) through Eqs. (13)-(17), and calculate the resultant N (Eq. (6)). 

5. If N ≠ 0, then change x and go back to step 4. 

6. Compute the internal bending moment M in the cracked cross-section (Eq. (7)). 

7. Calculate the slip s0 in the cracked cross-section (where zi = 0) (Eq. (10)). 

8. Evaluate the state of strain (I = s = c – Eq. (3)) at the level of reinforcement in the Stage I 

cross-section (Fig.3(b)). 

 

 

  
Fig. 5(a) Residual stress on the crack surface and 

bond stress at the interface of rebar and concrete 

in tension (Fib 2012): Stress-crack opening 

displacement relationship 

Fig. 5(b) Residual stress on the crack surface and 

bond stress at the interface of rebar and concrete 

in tension (Fib 2012): Bond-slip model 

1181



 

 

 

 

 

 

Alessandro P. Fantilli, Bernardino Chiaia and Andrea Gorino 

 

9. Consider l as a small part of the unknown ltr < L (= span of the beam), and define zi = i ∙ l 

(where i = 1, 2, 3, …). 

10. For each i (or zi ) calculate: 

• The bond stress i , related to the slip si-1 (Eq. (18)). 

• The strain s,i in the reinforcement, by using Eq. (4) (and Eq. (17(a)) written in the finite 

difference form 

 

 

 
Fig. 6 Flow chart of the general model 
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s,i s,i -1 i

 s

4
l

E
     


 (19) 

• The similarity coefficient i (Eq. (8)) 

s0 s,i

i

s0 I

  
 

  
 (20) 

• The strain of concrete c,i at the level of reinforcement (Eq.(9)) 

 c,i c0 i c0 I        (21) 

• The slip si by means of the finite difference form of Eq. (5) 

 i i -1 s,i c,is s l      (22) 

11. When si = 0 , if s,i ≠ c,i , change hw and go back to step 3. 

For a given w , such procedure calculates the corresponding internal moment M. Thus, by 

varying the assigned crack width, the complete M- w curve can be obtained. This curve starts from 

Mcr (elastically evaluated), which corresponds to w =0. 

 

 

3. Definition of the ductility index 

 

The proposed procedure has been used to plot the M- w curves of 36 ideal LRC beams in three 

point bending (Fig. 7). They are divided into 12 groups of 3 beams, having the same geometrical 

and material properties, but with different amounts of reinforcement in tension. As illustrated in 

Fig. 7, the width B and the span L of the beams are 0.5 and 6 times the depth H, respectively. 

Compressive strength of concrete varies (i.e., fc = 30, 45 and 60 MPa), whereas the same 

properties of steel (i.e., fy = 450 MPa and Es = 210 GPa) are assumed for rebar of diameter . 

Table 1 summarizes the characteristics of all the beams, which are labelled with the acronym 

SX_CYY_Z_W: X depends on the beam depth (X = 1 for 200 mm, and X = 2 for 400 mm); YY 

is the concrete strength (30 MPa, 45 MPa or 60 MPa); Z is the rebar diameter; and W is a number 

(1, 2, or 3) associated to the value of As. 

As an example, the M- w  curves of the beams S2_C30_ 8_1 and S2_C30_ 8_2 are reported 

in Fig. 8(a) and Fig. 8(b), respectively. Two stationary points, concerning the effective cracking 

moment (Mcr*) and the ultimate bending moment (Mu), are clearly evident in both the Figures. 

 

 

 
Fig. 7 Ideal LRC beams in three point bending 
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Fig. 8 Application of the general model to the beams of group 3 (see Table 1 and Table 2): (a) M- w

curve of S2_C30_8_1 beam; (b) M- w curve of S2_C30_8_2 beam and definition of ws and wu; (c) 

DI-As relationship and definition of As,min 

 

 

Fig. 8(a) shows the response of an under-reinforced concrete beam (with Mu< Mcr*), whereas 

the M- w curve illustrated in Fig. 8(b) (with Mu>Mcr*) represents the typical behavior of a beam 

reinforced with As>As,min. The values of Mcr* and Mu, taken on the M - w curves of the 36 ideal LRC 

beams, are collected in Table 2. 

The ductile behavior of LRC beams, as stated by Eq. (1), corresponds to a positive value of the 

following ductility index (DI) 

u cr* u cr*

cr* cr*

M M P P
DI

M P

 
   (23) 

As under-reinforced concrete beams exhibit DI<0, the minimum reinforcement for the 

required ductility can be computed by imposing DI=0. 

Table 2 reports the values of DI calculated for the ideal beams investigated herein. For each 

group of beams (e.g., those of group 3 in Fig. 8(c)), a linear relationship between DI and As is 

attained. In other words, referring to Eq. (23), if Mcr* is assumed to be independent of the quantity 

of rebar, the well-known linear increment of Mu with As can be recognized in Fig. 8(c). Thus, the 

values of As,min, detected for each group with the intersection between the line DI-As and the 

horizontal axis (i.e., DI = 0), are reported in Table 2. Although beams with different geometrical 

properties have been analyzed, the procedure for computing As,min is the same and, therefore, it is 

capable of capturing the size effect. 

If the normalized reinforcement ratio a = As/As,min is introduced (Fig. 9(a)), the existence of a 

linear function DI-a can be argued. This line certainly passes through the point representing a 

beam reinforced with As,min (i.e., a=1 and DI=0). Moreover, the definition of DI suggests another 

point of the line, which corresponds to an unreinforced concrete beam (i.e., a=0). In such a case, 

Mu=0 can be assumed and, according to Eq. (23), DI=–1. As a result, a single and unitary slope can 

be deduced for the linear relationship proposed herein. This is substantially confirmed by the least 

square approximation of all the DI-a couples previously computed for the 36 ideal LRC  
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Table 1 Properties of the ideal LRC beams 

Group Beam 
B 

(mm) 

H 

(mm) 

L 

(mm) 

 

(mm) 

fc 

(MPa) 

As 

(mm
2
) 

1 

S1_C30_φ4_1 

100 200 1200 4 30 

25 

S1_C30_φ4_2 38 

S1_C30_φ4_3 50 

2 

S1_C30_φ5_1 

100 200 1200 5 30 

20 

S1_C30_φ5_2 39 

S1_C30_φ5_3 59 

3 

S2_C30_φ8_1 

200 400 2400 8 30 

101 

S2_C30_φ8_2 151 

S2_C30_φ8_3 201 

4 

S2_C30_φ10_1 

200 400 2400 10 30 

79 

S2_C30_φ10_2 157 

S2_C30_φ10_3 236 

5 

S1_C45_φ5_1 

100 200 1200 5 45 

39 

S1_C45_φ5_2 59 

S1_C45_φ5_3 79 

6 

S1_C45_φ6_1 

100 200 1200 6 45 

28 

S1_C45_φ6_2 57 

S1_C45_φ6_3 85 

7 

S2_C45_φ8_1 

200 400 2400 8 45 

101 

S2_C45_φ8_2 201 

S2_C45_φ8_3 302 

8 

S2_C45_φ10_1 

200 400 2400 10 45 

157 

S2_C45_φ10_2 236 

S2_C45_φ10_3 314 

9 

S1_C60_φ5_1 

100 200 1200 5 60 

39 

S1_C60_φ5_2 59 

S1_C60_φ5_3 79 

10 

S1_C60_φ6_1 

100 200 1200 6 60 

28 

S1_C60_φ6_2 57 

S1_C60_φ6_3 85 

11 

S2_C60_φ8_1 

200 400 2400 8 60 

201 

S2_C60_φ8_2 251 

S2_C60_φ8_3 302 

12 

S2_C60_φ10_1 

200 400 2400 10 60 

157 

S2_C60_φ10_2 236 

S2_C60_φ10_3 314 
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Table 2 Evaluation of the ductility index, of the minimum reinforcement and of the crack width in the ideal 

LRC beams 

Group Beam 
Mcr* 

(kNm) 

Mu 

(kNm) 
DI 

As,min 

(mm
2
) 

a 
ws 

(mm) 

wu 

(mm) 

ws,EC2 

(mm) 

1 

S1_C30_φ4_1 2.95 2.23 -0.24 

36 

0.70 / 0.42 / 

S1_C30_φ4_2 2.94 3.06 0.04 1.06 0.50 0.56 0.37 

S1_C30_φ4_3 2.94 3.97 0.35 1.41 0.38 0.68 0.27 

2 

S1_C30_φ5_1 3.03 1.98 -0.35 

36 

0.55 / 0.28 / 

S1_C30_φ5_2 3.00 3.18 0.06 1.10 0.42 0.48 0.37 

S1_C30_φ5_3 3.03 4.57 0.51 1.64 0.26 0.64 0.24 

3 

S2_C30_φ8_1 21.99 16.70 -0.24 

136 

0.74 / 0.72 / 

S2_C30_φ8_2 21.88 23.97 0.10 1.11 0.78 0.92 0.68 

S2_C30_φ8_3 21.77 31.31 0.44 1.47 0.60 1.14 0.50 

4 

S2_C30_φ10_1 22.67 13.69 -0.40 

140 

0.56 / 0.48 / 

S2_C30_φ10_2 22.37 25.10 0.12 1.13 0.68 0.82 0.67 

S2_C30_φ10_3 22.44 36.16 0.61 1.69 0.48 1.06 0.44 

5 

S1_C45_φ5_1 3.92 3.27 -0.17 

49 

0.81 / 0.42 / 

S1_C45_φ5_2 3.93 4.63 0.18 1.21 0.40 0.56 0.31 

S1_C45_φ5_3 3.93 6.07 0.54 1.62 0.32 0.70 0.23 

6 

S1_C45_φ6_1 4.03 2.63 -0.35 

48 

0.58 / 0.30 / 

S1_C45_φ6_2 3.99 4.52 0.13 1.17 0.38 0.48 0.33 

S1_C45_φ6_3 4.01 6.57 0.64 1.75 0.24 0.64 0.21 

7 

S2_C45_φ8_1 29.18 16.97 -0.42 

181 

0.55 / 0.60 / 

S2_C45_φ8_2 28.41 31.31 0.10 1.11 0.82 0.96 0.64 

S2_C45_φ8_3 28.23 45.87 0.63 1.66 0.58 1.40 0.41 

8 

S2_C45_φ10_1 29.10 25.48 -0.12 

182 

0.87 / 0.70 / 

S2_C45_φ10_2 29.00 36.77 0.27 1.30 0.62 0.94 0.55 

S2_C45_φ10_3 28.91 48.32 0.67 1.73 0.50 1.18 0.40 

9 

S1_C60_φ5_1 4.69 3.34 -0.29 

58 

0.68 / 0.38 / 

S1_C60_φ5_2 4.65 4.70 0.01 1.02 0.48 0.52 0.36 

S1_C60_φ5_3 4.64 6.13 0.32 1.36 0.38 0.62 0.26 

10 

S1_C60_φ6_1 4.83 2.70 -0.44 

58 

0.49 / 0.28 / 

S1_C60_φ6_2 4.76 4.58 -0.04 0.98 / 0.44 / 

S1_C60_φ6_3 4.75 6.66 0.40 1.46 0.32 0.58 0.25 

11 

S2_C60_φ8_1 34.03 31.97 -0.06 

215 

0.93 / 0.88 / 

S2_C60_φ8_2 33.78 39.06 0.16 1.17 0.80 1.02 0.59 

S2_C60_φ8_3 33.87 46.79 0.38 1.40 0.70 1.30 0.49 

12 

S2_C60_φ10_1 35.25 25.77 -0.27 

218 

0.73 / 0.64 / 

S2_C60_φ10_2 34.40 37.40 0.09 1.10 0.74 0.86 0.65 

S2_C60_φ10_3 34.55 48.82 0.41 1.46 0.58 1.04 0.48 

1186



 

 

 

 

 

 

Minimum reinforcement and ductility index of lightly reinforced concrete beams 

 

 
  

Fig. 9(a) The proposed linear relationships in 

comparison with the results of the general 

model: DI vs. a (Eq. (24)) 

Fig. 9(b) The proposed linear relationships in 

comparison with the results of the general model: 

w / c vs. a (Eq. (25)) 

 

 

beams (Fig. 9(a)). In other words, by means of the following equation, the ductility index, 

previously introduced for a single group of beams, can be generally applied to all the LRC beams 

regardless of the size and of the material properties (Fig. 9(a)) 

1DI a   (24) 

 

3.1 Control of cracking 
 

In addition to the static requirement of Eq. (1), the minimum reinforcement must also guarantee 

cracking control in the serviceability state (Levi 1985). Hence, the conventional crack width in 

service, ws, can be defined on the hardening branch of the M - w curves when M=Mcr* (Fig. 8(b)). 

Obviously, this value can only be computed in the case of a ductile response of the LRC beams 

(i.e., Mu>Mcr*). On the other hand, at the ultimate condition (i.e. M=Mu) the corresponding crack 

width is wu (Fig. 8(b)). 

Similarly to the case of DI in Fig. 9(a), ws and wu need to be normalized. As the two variables 

that mainly affect crack width are the diameter  of rebar and concrete cover c (Beeby 2004, 

Beeby 2005), these values can be divided by the factor 

∙c

1-
, where the exponent  varies between 

0 and 1. Assuming a linear regression, the total square deviations of ws and wu, both computed 

with the general model, are minimum when =0. In other words, concrete cover appears as the 

most important parameter governing crack width (Beeby 2004).  

Hence, a general relationship between the normalized service crack width and a can be 

represented by the following equation (see Fig. 9(b)) 

s ψ ω
w

a
c
    (25) 

where  = -0.013 and  = 0.035. 
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As shown in Fig. 9(b), for a given value of concrete cover, ws decreases with a, and 

contemporarily wu increases. Thus, to reduce crack width in the serviceability stage (i.e., ws), the 

total area of rebar needs to be increased.  

 
 

4. Experimental results compared with the predictions of DI 
 

To further verify the accuracy of the proposed linear relationship, the predicted values of DI 

(i.e., Eq. (24)) are compared with those measured in 32 LRC beams tested in different 

experimental campaigns (Bosco, Carpinteri et al. 1990, Brincker, Henriksen et al. 1999, Carpinteri 

1989, Carpinteri, Ferro et al. 1999, Elrakib 2013, Lange-Kornbak and Karihaloo 1999, Ruiz, 
Elices et al. 1999). Specifically, 14 homogeneous groups of at least two beams in bending, which 

unequivocally fail in tension (having the same geometrical and material properties, but different 

amounts of reinforcement), are taken into consideration. As shown by Table 3, where the main 

properties of the 32 beams (labelled with the original names given by the Authors) are reported, a 

wide range of geometrical sizes and material strengths are investigated. A certain variation of fy 

within groups of homogenous beams is tolerated, especially for the rebar which do not show a 

well-defined yielding stress. 

In such situation, as illustrated in Fig. 8(c), As,min can be evaluated when the values of DI are 

known from the tests, generally performed on three point bending beams, with the exception of the 

four point bending tests by Elrakib (2013). The experimental values of Pcr* and Pu, and of DI (Eq. 

(23)) as well, are included in Table 4. In the same Table, the minimum reinforcement area, 

computed for each homogeneous group of LRC beams (Fig. 8(c)), and the corresponding values of 

a = As/As,min are also collected. 

Both the points [DI, a] experimentally measured, and the proposed linear function (i.e., Eq. 

(24)), are depicted in the diagram of Fig. 10(a). In spite of the dispersion of the results, the tests 

confirm the linear dependence of DI and a, as stated by Eq. (24), especially when DI0. 

Conversely to the direct calculation methods, the proposed procedure for the evaluation of As,min,  

 

 

  

Fig. 10(a) The results of the proposed linear 

relationships compared with: the experimental 

data of DI 

Fig. 10(b) The results of the proposed linear 

relationships compared with: the values of ws 

computed in accordance with Eurocode 2 (CEN 

2004) 
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Table 3 Properties of LRC beams tested in different experimental campaigns 

Group Beam 
B 

(mm) 

H 

(mm) 

d 

(mm) 

L 

(mm) 

fc 

(MPa) 

fy 

(MPa) 

As 

(mm
2
) 

References 

I 
A_1 

150 100 90 600 75.7 
637 13 

(Bosco, 

Carpinteri et al. 

1990) 

A_2 569 39 

II 
B_1 

150 200 180 1200 75.7 569 
20 

B_2 59 

III 

C_1 

150 400 360 2400 75.7 

637 25 

C_2 569 79 

C_3 441 201 

IV 
HSC_0.14 

100 100 90 1200 98.5 740 
13 (Brincker, 

Henriksen 

et al. 1999) HSC_0.25 25 

V 
B_1 

150 200 180 1200 24.4 489 
28 

(Carpinteri 

1989) 

B_2 57 

VI 

D_1 

200 800 720 4800 24.4 456 

79 

D_2 157 

D_3 236 

VII 
A012-06 

100 100 90 600 40.0 604 
20 

(Carpinteri, 

Ferro 

et al. 

1999) 

A025-06 39 

VIII 
A012-12 

100 100 90 1200 40.0 604 
20 

A025-12 39 

IX 
B501 

250 400 361 3300 43.2 
480 157 

(Elrakib 

2013) 

B502 515 226 

X 
B751 

250 400 361 3300 60.6 
495 192 

B752 501 270 

XI 

A_012_06#1 

100 100 80 600 43.0 485 

13 (Lange-Kornbak 

and Karihaloo 

1999) 

A_012_06#3 

A_025_06#1 
25 

A_025_06#3 

XII 
D1-R2X 

50 75 64 300 39.5 538 
5 

(Ruiz, Elices et 

al. 

1999) 

D1-R3X 10 

XIII 
D2-R1X 

50 150 128 600 39.5 538 
5 

D2-R2X 10 

XIV 
D3-R1X 

50 300 255 1200 39.5 538 
10 

D3-R2X 20 

 
 
based on the measure of the ductility index and not affected by size effect, is generally valid. 

Indeed, if the non-dimensional parameters DI and a are introduced, the simplified hypotheses used 

in the general model (i.e., the linear crack profile, the cohesive and the bond-slip models, the  
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Table 4 Evaluation of the ductility index and of the minimum reinforcement in LRC beams tested in 

different experimental campaigns 

Group Beam 
Pcr* 

(kN) 

Pu 

(kN) 
DI 

As,min 

(mm
2
) 

a References 

I 
A_1 11.8 7.0 -0.41 

30 
0.42 

(Bosco, Carpinteri 

et al. 

1990) 

A_2 12.5 15.2 0.22 1.31 

II 
B_1 19.6 10.3 -0.47 

52 
0.38 

B_2 20.9 23.1 0.11 1.14 

III 

C_1 36.7 15.7 -0.57 

138 

0.18 

C_2 38.8 32.4 -0.17 0.57 

C_3 43.2 54.0 0.25 1.46 

IV 
HSC_0.14 3.5 3.2 -0.07 

14 
0.91 (Brincker, 

Henriksen 

et al. 1999) HSC_0.25 3.6 5.9 0.63 1.81 

V 
B_1 11.3 10.1 -0.11 

37 
0.77 

(Carpinteri 

1989) 

B_2 14.1 17.7 0.26 1.55 

VI 

D_1 35.2 27.8 -0.21 

141 

0.56 

D_2 43.4 45.3 0.04 1.11 

D_3 45.6 60.6 0.33 1.67 

VII 
A012-06 7.1 6.3 -0.11 

22 
0.89 

(Carpinteri, Ferro 

et al. 

1999) 

A025-06 7.0 12.3 0.76 1.77 

VIII 
A012-12 3.2 3.1 -0.03 

20 
0.97 

A025-12 3.1 5.7 0.84 1.93 

IX 
B501 37.6 44.0 0.17 

135 
1.17 

(Elrakib 

2013) 

B502 44.5 75.5 0.70 1.68 

X 
B751 39.3 50.5 0.28 

140 
1.36 

B752 46.1 79.4 0.72 1.92 

XI 

A_012_06#1 6.9 4.4 -0.36 

20 

0.64 (Lange-Kornbak 

and Karihaloo 

1999) 

A_012_06#3 7.0 4.8 -0.31 

A_025_06#1 7.0 8.8 0.26 
1.28 

A_025_06#3 7.3 9.2 0.26 

XII 
D1-R2X 3.6 2.7 -0.25 

7 
0.72 

(Ruiz, Elices et al. 

1999) 

D1-R3X 3.6 5.0 0.39 1.44 

XIII 
D2-R1X 6.8 2.8 -0.59 

12 
0.41 

D2-R2X 6.5 5.3 -0.19 0.81 

XIV 
D3-R1X 11.3 5.9 -0.48 

28 
0.35 

D3-R2X 11.3 8.9 -0.22 0.70 

 

 
constitutive law of steel rebar, the constant bending moment inside ltr) seem to be irrelevant to 

assess the brittle/ductile behavior of LRC beams. In other words, they affect in the same manner 
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both the values of Pcr* and Pu in Eq. (23), and, despite the nonlinearities, a linear DI -a function is 

obtained and confirmed by several tests. 

As a consequence, a simple-to-apply procedure, requiring the use of Eq. (24) and the results of 

tests on a single full-scale beam, can provide the minimum reinforcement for static reasons. 

Indeed, from the ductility index measured in the tests (i.e., DI
*
 in Fig. 10(a)), the corresponding 

value of the normalized reinforcement ratio a1 can be obtained through Eq. (24) (or graphically in 

Fig. 10(a)). Then the calculation of the minimum reinforcement for ultimate conditions is possible 

(i.e., As,min=As/a1, where As is the reinforcement of the tested beam). 

 

4.1 Control of cracking 
 

The available tests devoted to the evaluation of the minimum reinforcement area do not report, 

in general, any data regarding crack width. Therefore, the values of ws computed for the ideal LRC 

beams by means of Eq. (25) are compared with those of Eurocode 2 formula (CEN 2004) 

 s,EC2 r,max sm cmε εw s    (26) 

In Eq. (26), crack spacing sr,max is related to the conditions of widely spaced rebar (because of 

the weak reinforcement present in LRC beams), and the strain difference (sm-cm) refers to the 

stress level produced by Mcr*. 

The values of ws,EC2 computed for the ideal beams are collected in Table 2, and the points 

[ws,EC2/c, a ] are reported in the non-dimensional diagram of Fig. 10(b). In the latter, crack width 

calculated with the general model and Eq. (25) are also depicted. The values are dispersed within 

this non-dimensional chart, even if Eq. (25) appears as the upper bound approximation of 

Eurocode 2 predictions, which seems not to consider the size effect on crack width (Yasir Alam, 

Lenormand, et al. 2010). 

Accordingly, Eq. (25) can be used as an additional design relationship to determine the 

minimum reinforcement for controlling crack width. When the normalized maximum crack width 

is established (i.e., wlim/c in Fig. 10(b)), it is possible to obtain the normalized reinforcement ratio 

a2=(wlim/c-)/. Then, if a2< 1, As,min computed with Eq. (24) is also sufficient to guarantee 

w<wlim. On the other hand, in the case a2>1, As,min needs to be increased by means of the 

multiplying factor a2 obtained from Eq. (25). Indeed, an increment of the minimum reinforcement 

should be provided to reduce crack width in service. 

For the 14 groups of LRC beams previously considered, whose properties are reported in Table 

3 and Table 4, the minimum reinforcement A
(j)

s,min is determined with Eqs. (24)-(25) for two values 

of wlim (i.e., 0.6 and 0.3 mm). For the same beams, the formulae of ACI 318-14 (ACI 2014) and 

Model Code 2010 (Fib 2012) are also applied, and all the values are reported in Table 5. 

In some cases (e.g., the beams of group I in Fig. 11(a)), the increment of the minimum 

reinforcement area is not necessary. This is true not only for wlim=0.6 mm but also for wlim=0.3 

mm, which is the limit value suggested by Eurocode 2 (CEN 2004) for the most aggressive 

exposure classes. Such a reinforcement is nearly coincident with that computed with Model Code 

2010 (Fib 2012), but it is lower than that suggested by ACI 318-14 (ACI 2014). In fact, the latter 

often over-estimates the minimum reinforcement (Said and Elrakib 2013). However, in other cases 

(e.g., the beams of group XIV), with respect to the minimum reinforcements computed with the 

two building codes (ACI 2014, Fib 2012), an increment of steel rebar is necessary to maintain 

crack width lower than wlim = 0.3 mm (see Table 5 and Fig. 11(b)).  

Conversely to rigorous methods, based on the results of the material characterization tests (see  
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Table 5 Minimum reinforcement calculated in accordance with the proposed model, ACI 318-14 (ACI 

2014), and Model Code 2010 (Fib 2012), for some LRC beams tested in different experimental campaigns 

Group 

A
(j)

s,min (mm
2
) 

References Eqs. (24)-(25) 

wlim = 0.6 mm 

Eqs. (24)-(25) 

wlim = 0.3 mm 

ACI 318-14 

(ACI 2014) 

MC2010 

(Fib 2012) 

I 27 27 49 27 (Bosco, Carpinteri et 

al. 

1990) 

II 45 70 103 56 

III 161 222 218 119 

IV 14 14 30 16 
(Brincker, Henriksen 

et al. 1999) 

V 38 59 76 28 (Carpinteri 

1989) VI 302 343 435 159 

VII 22 22 23 12 (Carpinteri, Ferro 

et al. 1999) VIII 21 21 23 12 

IX 202 281 297 152 (Elrakib 

2013) X 231 322 352 195 

XI 19 30 27 14 
(Lange-Kornbak 

and Karihaloo 1999) 

XII 7 7 9 5 
(Ruiz, Elices et al. 

1999) 
XIII 12 20 19 9 

XIV 37 48 37 18 

 

  
Fig. 11(a) The minimum reinforcement 

calculated in accordance with the proposed 

model, ACI 318-14 (ACI 2014), and Model 

Code 2010 (Fib 2012): The beams of group I 

(see Table 5) 

Fig. 11(b) The minimum reinforcement 

calculated in accordance with the proposed 

model, ACI 318-14 (ACI 2014), and Model Code 

2010 (Fib 2012): The beams of group XIV (see 

Table 5) 
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for instance Carpinteri (Ed) 1999), the models proposed herein (i.e., Eqs. (24)-(25)) only require 

few full-scale beam tests to calculate As,min. Such approach has been successfully applied to 

evaluate the minimum reinforcement of the precast plates of a bridge (Fantilli, Cavallo et al. 

2015). 

 

 

5. Conclusions 
 

According to the analyses previously described, the following conclusions can be drawn 
• When the ultimate bending moment equates the effective cracking moment, which is the 

condition for computing the minimum reinforcement for static reasons (As,min) in LRC beams, the 

ductility index DI, given by Eq. (23), is equal to zero. 

• The numerical results of a general model, and the data measured in several experimental 

analyses, show that the values of DI linearly increase with the normalized reinforcement ratio 

a=As/As,min (Eq.(24)), regardless of the beam size and of the material properties. 

• A further linear relationship between the normalized service crack width ws/c and the ratio a 

can also be obtained from the general model (Eq. (25)). This relationship is the upper bound 

approximation of crack widths, if estimated in accordance with Eurocode 2 (CEN 2004). 

• With respect to the current approaches, Eqs. (24)-(25), accompanied by tests on a single full-

scale LRC beam in bending, define a rigorous but practical tool for the evaluation of the minimum 

reinforcement. As the design-by-testing procedure can be adapted to different limits of crack 

width, it can be used to satisfy both the ultimate and the serviceability limit states. 

 

Finally, further studies should be devoted to hybrid structures, in order to extend the present 

approach to LRC beams reinforced with fibers and steel rebar. 
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