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Abstract. In this paper, a multilaminate based model have been developed and presented to predict the
strain hardening behavior of rock. In this multilaminate model, the stress–strain behavior of a material is
obtained by integrating the mechanical response of an infinite number of predefined oriented planes passing
through a material point. Essential features such as the variable deformations hypothesis and multilaminate
model are discussed. The methodology to be discussed here is modeling of strains on the 13 laminates
passing through a point in each loading step. Upon the presented methodology, more attention has been
given to hardening in non-linear behaviour of rock in going from the peak to residual strengths. The
predictions of the derived stress–strain model are compared to experimental results for marble, sandstone
and dense Cambria sand. The comparisons demonstrate the ability of this model to reproduce accurately the
mechanical behavior of rocks.
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1. Introduction

It is known that the mechanical behavior of rocks generally is elasto-plastic, dilatants and
strain hardening or strain softening. The identification of the post-peak behavior of rocks, in
which the strain hardening occurs, under various confinement pressure is time-consuming and
need to utilizing a special set up. Hence, the various elasto-plastic constitutive models based
on the associated or non-associated flow rules developed for this purpose (Drucker 1959;
Mroz 1963, 1966; Mandel 1964, Maier and Hueckel 1979; Chang and Hicher 2005, Antunes
and Rodrigues 2008; Gao et al. 2010; Caputo et al. 2013; Samui 2013; Haeri et al. 2013;
Schädlich and Schweiger 2013; Nemcik et al. 2014; Wang and Huang 2014; Haeri et al.
2014a, 2014b, 2014c; Haeri 2015a, 2015b, 2015c, 2015d, 2015e; Fathi et al. 2016; Haeri and
Sarfarazi 2016a, Haeri and Marji 2016b). In previous works prediction of mechanical behavior
of rocks is intricate and need to various parameters. The benefit of this paper is to introduce a
simple and practical model, based on the young modulus and Poisson ratio, in multilaminate
framework for derivation of non-linear behavior of rocks and dens sand. The model
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performance is then evaluated by comparing the predicted and experimental results for marble,
sandstone and dense Cambria sand.

2. Strain distribution around a point

In general continuum mechanics, to define strain distribution at a point, the components are
simply considered on the outer surface of a typical dx, dy, dz element. This method makes the
solution to be considered uniform and the homogeneous strain distribution of the nine
components over the outer surface of such dx, dy, dz element on three perpendicular
coordinate axes. There is a further consideration in addition to the requirement that the
displacements of a granular medium provide due to slippage/widening/closing between
particles that make a contribution to the strain in addition to that from the compression of
particles. Consider two neighboring points on either side of the point of contact of two
particles. These two points do not in general remain close to each other but describe complex
trajectories. Fictitious average points belonging to the fictitious continuous medium can be
defined which remain adjacent so as to define a strain tensor. The problem presents itself
differently for disordered particles compared with the ordered sphere of equal sizes. In this
case, small zones may even appear in which there is no relative movement of particles. This
can lead to specific behavior such as periodic instabilities known as slip-stick, creating non-
homogeneity in strains and displacements. The effects of non-homogeneity in the mechanical
behavior of non-linear materials are very important and must somehow be considered.
Furthermore, these non-homogeneities are mostly neglected in mechanical testing because
strains and stresses are usually measured at the boundary of the samples and therefore have to
be considered reasonably within the whole volume. Solving non-linear problems, the
mechanical behavior depends strongly on the stress/strain path as well as their histories. Upon
these conditions, it may be claimed that the consideration of strain components along three
perpendicular coordinate axes may not reflect the real historical changes during the loading
procedure. In the most extreme case, the definition of a sphere shape element dr (instead of dx,
dy, dz cube) carrying distributed strain similarly on its surface can reflect strain components
on infinite orientation at a point when dr tends to zero.

The finite strain at any point in three dimensions by coordinates (x, y, z) relate to the
displacements of the sides of an initial rectangular-coordinate box with sides of length dx, dy,
and dz to form the three sides of a parallelepiped. This configuration of strain is established by
considering the displacements of the corner points (x, 0, 0), (0, y, 0), and (0, 0, z). This kind of
strain approach leads to defining a (3×3) strain tensor including six components to present the
displacement gradient matrix at a node. Accordingly, any displacement and corresponding gradient
have to be defined as independent components on three perpendicular coordinate axes.

Fig. 1 shows sphere elements and a typical deformed shape. Obviously there is a certain history
of displacement on any random orientation through the element. These are abbreviated in three,
when a box - shape element is employed. To avoid not missing any directional information of
strain, a spherical element carrying strain components over its surface as tangent and normal to the
surface must be employed. This form of strain, which certainly represents a better distribution,
includes all directional information. Certainly, to obtain the strain components as presented on
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(a) (b)

Fig. 1 (a) Sphere elements, (b) Typical deformed element

planes around box element, strain variation is integrated over the sphere surface. However, a
predefined numerical integration may be employed to ease the solution.

Numerical integration generally simulates the smooth curved sphere surface to a composition
of flat tangential planes, making an approximated polygon to sphere surface. The higher the
number of sampling planes, the closer is the approximated surface to the sphere. Clearly, if the
number of sampling planes is taken as six, the approximated surface is the same as the normal dx,
dy, dz box element.

3. Multi-plane model for granular material

3.1 Background

The basic concept that a number of slip planes contribute to plastic flow was first proposed by
Batdorf and Budiansky (1949) in the context of polycrystalline materials and was extended to
clays by Calladine (1971). Conceptually, the idea was already discussed by Taylor (1958). A
constitutive model for jointed rock masses having a finite set of parallel planes of weakness was
first proposed by Zienkiewicz and Pande (1977). Assuming that soils have an infinite number of
randomly oriented sets of planes, the rock model was extended by Pande and Sharma (1983) for
clays and by Sadrnejad and Pande (1989) for sands. MMS was developed and implemented in the
commercially available finite element code Plaxis (Brinkgreve et al. 2006) by Wiltafsky (2003) as
a user-defined soil model. It was extended by Scharinger and Schweiger (2005) and Scharinger
(2007) to include small strain stiffness effects.

3.2 Multi-plane framework

Grains in a granular materials consisting of contacts and surrounding voids are particulate media
that are mostly considered continuum for ease. The accurate behavior of such particulate materials
is to be investigated through macro-mechanics. However, the macro-mechanical behavior of
granular materials is therefore inherently discontinuous and heterogeneous. The macroscopic as an
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overall or averaged behavior of granular materials is determined not only by how discrete grains
are arranged through the medium, but also by what kinds of interactions are operating among
them. To investigate the macro-mechanical behavior of granular materials, certainly the spatial
distribution of contact points and orientation of grains must be identified. From an engineering
point of view, the main goal is to formulate the macro-behavior of granular materials in terms of
macro-quantities. However, two well-known theories exist which explain the relation between
macro-fields and macro-fields as macro-macro relations in a consistent manner as the average field
theory and the homogenization theory. For a granular material such as sand that supports the
overall applied loads through contact friction, the overall mechanical response ideally may be
described on the basis of the macro-mechanical behavior of grains interconnections. Naturally this
requires the description of overall stress, the characterization of fabric, representation of
kinematics, development of local rate constitutive relations and evaluation of the overall
differential constitutive relations in terms of the local quantities. The representation of the overall
stress tensor in terms of macro level stresses and the condition, number and magnitude of contact
forces has long been the aim of numerous researchers (Christofferson 1981; Nemat-Nasser 1983;
Brewer 1964; Huang et al. 2010; Wu and Xu 2011; Ghadrdan et al. 2015). Multi-plane framework,
by defining the small continuum structural units as an assemblage of particles and voids that fill
infinite spaces between the sampling planes, has appropriately justified the contribution of
interconnection forces in overall macro-mechanics. Upon these assumptions, plastic deformations
are likely to occur due to sliding, separation/closing of the boundaries and elastic deformations
which are the overall responses of structural unit bodies. Therefore, the overall deformation of any
small part of the medium is composed of the total elastic response and an appropriate summation
of sliding, and the separation/closing phenomenon under the current effective normal and shear
stresses on sampling planes. These assumptions adopt overall sliding, separation/closing of inter-
granular points of grains included in one structural unit are summed up and contributed as a result
of sliding and separation/closing surrounding boundary planes. This simply implies
yielding/failure and bifurcation response is possible over any of the randomly oriented sampling
planes. Consequently, plasticity control such as yielding should be checked at each of the planes
and those of the planes that are sliding will contribute to plastic deformation. Therefore, the
granular material mass has an infinite number of yield functions usually one for each of the planes
in the physical space. Fig. 2 shows the arrangement of artificial polyhedron simulated by real rock
grains. The created polyhedrons have roughly 13 sliding planes, passing through each point in the
medium. The location of tip heads of normal to the planes defining corresponding direction
cosines are shown on the surface of the unit radius sphere.

Fig. 2 Soil grains, artificial polyhedrons, and sampling points
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Fig. 3 Direction cosines, weighted coefficient, demonstration of 13 planes

In an ideal case, the normal integration is considered as summing up the individual macro
effects corresponding to the infinite number of macro sampling planes. The choice of 13 planes for
the solution of any three dimensional problems is a fair number. The orientation of the sampling
planes and direction cosines of two perpendiculars on plane coordinate axes and weighted
coefficients has been shown in Fig. 3.

For an employed numerical integration rule and the calculation of a stress tensor of each plane,
upon the stress condition exceeds the yield limits, plastic sliding or widening/closing take place as
an active plane. Therefore, one of the most important features of a multi-plane framework is that it
enables the identification of the active planes as a matter of routine. The application of any stress
path is accompanied by the activities of some of the 13 defined planes at any point in the medium.
The values of plastic strain on all the active planes are not necessarily the same. Some of these
planes initiate plastic deformations earlier than others. These priorities and certain active planes
can change due to any change of direction of the stress path. A number of active planes may stop
activity while some inactive ones become active and some planes may take over others with
respect to the value of the plastic shear strain.

4. The variable deformations hypothesis in multilaminate framework

For application of the variable deformations hypothesis into multilaminate framework, it is
assumed that the 13 sliding planes have the both of the normal and shear strains. Deformation for
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Fig. 4 The normal and shear stresses (σn, τ1 and τ2) on the one of the sampling planes 

Fig. 5 The normal and shear strains (εni, γ1i and γ2i) on the one of the sampling planes 

each plane is different from other planes because the 13 sliding planes have different orientations
and various direction cosines of two perpendiculars on plane coordinate axes. The summation of
these deformations can be a proper representative for deformation of a point at each loading step.

4.1 Determination of the normal and shear strains in 13 sliding planes

Each sampling plane has a special direction cosine that is li1, mi1, ni1 and two perpendicular
direction cosines on plane coordinate axes that are li2, mi2, ni2 and li3, mi3, ni3 (Figure 3). When
the specimen is subjected to tri-axial stress (σ1 and σ2=σ3), the normal and shear stresses (σn, τ1 
and τ2) is applied on the sampling planes (Fig. 4). 

This normal and shear stresses can be formulated as:
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The normal and shear strains (εni, γ1i  and γ2i) take place on the sampling planes As a result of 
these stresses (Fig. 5).
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These strains are given by the following equations
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Where E and G are Young modulus and elastic shear modulus respectively and G=E/2(1+ν); ν 
is the Poisson’s ratio. The real strains for each sampling plane are calculated by applying of
weighted coefficients (Fig. 3) into above strains as follows
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Finally, the principal strains (ε1, ε2 and ε3) can be calculated by illustrating these local strains on
the principal strain axis (Fig. 5) as follows
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4.2 The variable deformations hypothesis

The variable deformations hypothesis is on this base that rock sample shows different behavior
under constant confining pressures i.e. elastic behavior, yield behavior and plastic behavior. Fig. 6
shows the Elasto-Plastic behavior of rocks under certain confining pressure as deviator stress
versus axial strain and deviator stress versus lateral strain.
Tables 1 to 3 show the parameters used in simulation.

Table 1 Parameters used in simulation

Multilaminate
number (i)

Direction cosines of
integration points

External
loadings

Normal load on
each

multilaminate
plane

Shear stress on
each

multilaminate
plane in first

direction

Shear stress on each
multilaminate plane
in secound direction

1,2, ,….,13
Li1,mi1,ni1,li2,mi2,ni

2,li3,mi3,ni3
σ1 σ2

σ
3

i
nσ i

1τ
i
2τ
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Table 2 Parameters used in simulation

Normal strain
in each plane

Shear strain
in first direction
for each plane

Shear strain in second
direction for each plane

Young
modulus

and elastic
shear modulus

weighted coefficients
for each plane

i
nε

i
1γ

i
2γ E G Wi

Table 3 Parameters used in simulation

Poison
ratio

π
real strains for each plane are calculated by

applying of weighted coefficients into above
strains

principal
strains

Volumetric
strain

Deviator
stress

ν 3.142
i
nε , i

1γ , i
2γ 1ε 2ε 3ε ΔV Δσ 

Fig. 6 The schematic curves of strain hardening behavior of rock

Three explicit ranges are identified in Fig. 6 i.e. elastic range, yield range and plastic range.
Therefore, different deformation coefficients can be calculated for each range i.e. Elastic modulus,
Yield modulus and Plastic modulus (Fig. 6). Also three different Poisson’s ratios are defined in
each range. The introduced parameters in each range are defined as follow
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Em is ratio of the differential axial stress to the differential axial strain or the slope of the stress-
strain curve and vm is the ratio of differential lateral strain to differential axial strain. m is related to

three introduced range i.e elastic range, yield range and plastic range. final
1σ and initial

1σ are the final

axial stress and the initial axial stress in each range, final
3ε and initial

3ε are the final lateral strain and

the initial lateral strain in each range. final
1ε and initial

1ε are the final axial strain and the initial axial

strain in each range.
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To determine how deformations vary during load increasing, the stress-strain curve has been
divided into n (n=14) equal loading steps (Fig. 6). The analysis shows that the ε1

n+1-ε1
n increase

dramatically in two stage of loading i.e. in the start of the yield range and in the start of the plastic
range. This finding has been identified from stress-strain curve of different rocks (Chang and
Hicher 2005). These parameters and findings are implemented into multilaminate framework to
predict the elasto-plastic behavior of rocks under different confining stresses. The preference of
this method is that the young modulus and poison ratio was linear in each loading steps, but its
values is different from previous steps. By this approach it’s possible to determine the mechanical
behavior of material under external loading.

4.3 The methodology of the model calibration

To predicate the stress-strain curve of a rock sample under confining stress of σ3, firstly it need
to extract the elastic modulus, yield modulus and plastic modulus, En and νn, from stress-strain

curve of rock sample under constant confining stress of 3σ ′ using Eq. (5). Then the value of new

confinement stress (σ2= σ3) is inserted into Eq. (1) and the axial stress σ1 is applied into Eq. (1) in a

small constant rate. For each increment of σ1, the i
nσ , i

1τ and i
2τ is calculated in 13 multilaminate.

At the start of the load increment, the modulus and poison ratio of elastic range are inserted into
Eq. (2). From Eq.(2) and (3), the real strains for each sampling plane are calculated and the
principal strains (axial and lateral strains) are determined from Eq. (4). The young modulus of
plane is elastic or plastic deformation of plane, based on loading steps, in direction of normal
vector. It’s to be notes that ε1

n+1-ε1
n is calculated for each increment of σ1. When ε1

n+1-ε1
n increased

dramatically, it shows that the yield behavior has been initiated. Therefore the modulus and poison
ratio of yield range are inserted into Eq. (2) and the principal strains are calculated from Eq.(4) for
each increment of σ1. Another increasing in ε1

n+1-ε1
n clears that the plastic behavior has been

initiated. Therefore the modulus and poison ratio of plastic range are inserted into Eq. (2) and the
principal strains are calculated from Eq. (4) for each increment of σ1. The next dramatically
increasing in ε1

n+1-ε1
n shows that the calculations were finished. Therefore, it’s possible to register

the stress-strain curve of a rock sample under confining stress of σ3,

(a) (b)

Fig. 7 Comparison of experimental with model results for marble (different confining stress);(a) test
results, (b) model results
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(a) (b)
Fig. 8 Comparison of experimental with model results for marble (different confining stress);(a) test
results (Chang and Hicher 2005), (b) model results

5. Verification of model results

To present the ability of the proposed model, the tri-axial test results conducted on Marble,
sandstone, dense cambria sand are produced by the model.

5.1 The prediction of the elasto-plastic behavior of marble

Fig. 7(a), (b) shows the comparison of the model result with tri-axial tests for marble as stress
deviator versus axial strain. Also, the comparison of volumetric strain versus axial strain are
shown in Fig. 8(a), (b).

From the comparison between these Figures, the ability of the model to reproduce the main
features of the marble behavior has been demonstrated.

5.2 The prediction of the Elasto-Plastic behavior of sandstone

Fig. 9(a), (b) shows the comparison of the model result with tri-axial tests for sandstone as
stress deviator versus axial strain. Also, the comparison of stress deviator versus lateral strain are
shown in Fig. 10(a), (b).

(a) (b)
Fig. 9 Comparison of experimental with model results for sandstone (different confining stress): (a)
test results (Chang and Hicher 2005); and (b) model results.
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(a) (b)
Fig. 10 Comparison of experimental with model results for sandstone (different confining stress): (a)
test results; and (b) model results

(a) (b)
Fig. 11 Comparison of experimental with model results for dense Cambria sand (different confining
stress): (a) test results ; and (b) model results

(a) (b)
Fig. 12 Comparison of experimental with model results for dense Cambria sand (different confining
stress) (a) test results; (b) model results

From the stress-strain behavior curves shown in Fig. 9 and 10, it’s clear that the calculated
results are very close to the test results.

5.3 The prediction of the elasto-plastic behavior of dens cambria sand

To show the capability of the proposed model in predicting the Elasto-Plastic behavior, the tri-
axial test results presented by Chang et al. (2005) were produced and compared with the test
results. Fig. 11(a), (b) shows the comparison of the model result with tri-axial tests for dens
Cambria sand as stress deviator versus axial strain. Also, the comparison of volumetric strain
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versus axial strain are shown in Fig. 12(a), (b). The model predicts a strain-hardening phenomenon
as it assumed, also it’s clear that the calculated results are very close to the test results.

Whereas the model has predicted tally results for determination of the Elasto-Plastic behavior
of marble, sandstone and dense cambria sand Consequently it can be used to predict the Elasto-
Plastic behavior of rocks and dense sand.

6. Conclusion

Upon the presented multilaminat framework, it needs to describe a simple relation between
forces and relative displacements on any contact plane, which thus requires fewer material
parameters. A multilaminate based model incorporating the variable modulus hypothesis was
developed for prediction of elasto-plastic behavior of rocks. This model needs two different sets of
the slope of the stress-strain curve and Poisson’s ratio earned from there different stage of
deformation i.e. elastic range, yield range and plastic range. The main feature of this model is that
the developed model predicts the Elasto-Plastic behavior of rock without the classic plasticity
formulation. Aside from modeling simplicity, the variable modulus approach is more realistic and
hardening behavior can be predicted through the change of two introduced parameters. The ability
of the model to reproduce the behavior of the rocks and dense sand has been demonstrated. To
present the ability of the proposed model, the test results conducted on marble, sandstone and
Quartz mica schist are produced by the model. A good accuracy was obtained between numerical
simulations and experimental results.
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