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Abstract. This paper compares the arc-length and explicit dynamic solution methods for nonlinear
finite element analysis of prestressed concrete members subjected to monotonically increasing loads.
The investigations have been conducted using an L-shaped, prestressed concrete spandrel beam,
selected as a highly nonlinear problem from the literature to give insight into the advantages and
disadvantages of these two solution methods. Convergence problems, computational effort, and quality
of the results were investigated using the commercial finite element package ABAQUS. The work in
this paper demonstrates that a static analysis procedure, based on the arc-length method, provides more
accurate results if it is able to converge on the solution. However, it experiences convergence problems
depending upon the choice of mesh configuration and the selection of concrete post-cracking response
parameters. The explicit dynamic solution procedure appears to be more robust than the arc-length
method in the sense that it provides acceptable solutions in cases when the arc-length approach fails,
however solution accuracy may be slightly lower and computational effort may be significantly larger.
Furthermore, prestressing forces must be introduced into the finite element model in different ways for
the explicit dynamic and arc-length solution procedures.

Keywords: finite element analysis; prestressed; concrete; cracking; tension stiffening; arc-length
method; riks method; explicit dynamic method

1. Introduction

Even though experimental methods still play a key role in research, numerical methods are
increasingly replacing experiments due to their lower cost and time requirements when compared
to experiments. Highly nonlinear problems can be solved by using commercially available
computer finite element software. Nevertheless, finite element analysis, particularly nonlinear
analysis, requires the knowledge of how various modeling techniques might affect the numerical
results. For example, a three-dimensional finite element simulation of a prestressed concrete beam
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inherently introduces modeling challenges since the analysis model needs to provide a solution for
the complex material response of concrete using an appropriate numerical solution method.

Concrete is a strongly nonlinear material and causes many numerical difficulties in finite
element analysis (Prinja and Shepherd 2003, Thevendran et al. 1999). The stress-strain relation of
concrete under uniaxial tension features a peak value for the tensile strength followed by a sudden
drop with negative stiffness. In uniaxial compression, the stress-strain relation contains a strain
hardening branch up to the compressive strength of the concrete and a strain softening regime
thereafter. Cracking in tension and crushing in compression are irreversible processes that can be
defined as damage. These characteristics of concrete constitute the sources of nonlinearity and
numerical challenges for finite element analysis.

Academic research dedicated to the analysis of concrete materials and structures is vast and still
undergoing further development. Various approaches for modeling of concrete are investigated in
such research ranging from continuum plasticity and damage (Jirasek and Grassl 2008, Grassl and
Jirdsek 2006) to those capturing initiation and propagation of discrete cracks (Grassl and Rempling
2007). Various numerical techniques were explored as well (Rabczuk and Belytschko 2006).
However, a great majority of these studies on concrete has not been introduced in practical
calculations of real engineering structures. Engineers and researchers working on the design
aspects of structural engineering, not directly involved in research on modeling and analysis of
concrete structures, must rely on commercially available software and models implemented there
in their work. Therefore, the experience gained on analysis of highly nonlinear structural
engineering problems using commercially available finite element software, ABAQUS (SIMULIA
2008) will be discussed in this paper.

ABAQUS offers two solution techniques for such highly nonlinear problems.
ABAQUS/Standard solves a system of nonlinear static equations iteratively to provide the solution
of a problem at each load increment whereas ABAQUS/Explicit solves equations of motion by
stepping forward in time and using very small increments without solving a system of algebraic
equations at each increment. Both solution procedures in ABAQUS support the concrete damage-
plasticity model which incorporates most of the concrete properties such as cracking, strain
softening in tension, dilation, damage, compression hardening, stiffness degradation, etc.

The explicit dynamic solution procedure provided in ABAQUS/Explicit is generally used to
solve dynamic problems. However, a static solution can also be obtained by using this procedure
provided that the loading rate is very slow (the time within which the finite level of load is
achieved is large) to minimize inertial effects in the structure. To achieve that goal, the maximum
load should be reached within no less than about 10 to 50 times of the longest natural vibration
period of the structure (Simulia 2008). The analysis of metal forming process is a good example
for the application of the explicit solution procedure to static problems (Wagoner and Chenot
2005). Such analysis method, the so-called quasi-static analysis, is also very useful for solving
highly nonlinear problems such as those resulting from sudden stiffness reductions due to concrete
cracking in tension, for which tracing the descending (unstable) part of the equilibrium path is
challenging. The challenge is due to the fact that the peak load is not known and that the final
value of the monotonically increasing load is generally either smaller or larger than that peak
value. In the first case, the unstable (descending) part of the load-displacement curve is not
reached whereas in the second case large imbalance between the load and internal forces results in
dynamic response in which inertia forces are not negligible.

The arc-length method or Modified Riks method (Riks 1979, Crisfield 1981), available in
ABAQUS/Standard, is an alternative method that can be used to solve static nonlinear problems.
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The arc-length method can efficiently capture geometric and material nonlinearity including the
post-cracking response of concrete. The peak load, which is often the most important result for
engineering purposes, can be determined using both arc-length and dynamic explicit methods. It is
the purpose of this work to evaluate advantages and disadvantages of these two approaches in
determining the response of the prestressed concrete members.

This work illustrates that the arc-length method (at least as implemented in
ABAQUS/Standard) experiences convergence problems in solution for some combinations of
concrete material properties and mesh configurations. The explicit dynamic method in
ABAQUS/Explicit overcomes such numerical problems in the solution due to stabilizing effects of
inertia. However, the time increment used in the explicit method has to be very small and the
loading rate must be sufficiently low to make inertia negligible. Thus, the overall computational
effort of the explicit dynamic procedure can be quite significant. Furthermore, as discussed
subsequently, prestressing forces cannot be treated in the same manner with arc-length and explicit
dynamic methods. In the explicit dynamic method, prestressing forces must also be introduced to
the system slowly to prevent dynamic effects which creates the need for an additional quasi-static
analysis before application of the load.

The fundamental advantages and disadvantages of the arc-length and explicit dynamic analysis
are well known (Bathe 1996, Sun et al. 2000), but the manner in which they are manifested in the
analysis of nonlinear problems typical for prestressed concrete structures does not appear to be
documented. Considerable research has been devoted to the use of explicit solution method for the
random vibration analysis of linear structures (Chang 2014, Su and Xu 2014). Sun et al. (2000)
compared the performance of implicit and explicit methods for several dynamic problems
including the impact of an elastic bar and a cylindrical disk on a rigid wall. The study showed that
the cost of the explicit method is much higher than that of the implicit method for quasi-static
problems. Nonlinear finite element analysis of prestressed concrete members has been reported by
many researchers (Kawakami and Ito 2003, Kennedy and Abdalla 1992, Abdalla and Kennedy
1995, Broo et al. 2005). However, no information has been found in the literature that would
advocate use of one method over the other in the analysis of prestressed concrete structures. Thus,
in this study, the arc-length and explicit dynamic solution procedures were compared for the
nonlinear finite element analysis of prestressed concrete members under monotonically increasing
loads in order to evaluate the efficiency of these methods. Efficiency here includes not only
computational effort but also quality of the results obtained which is assessed by comparing with
available experimental results. To this end, a three-dimensional finite element model of an L-
shaped, prestressed concrete spandrel beam was generated and analyzed with arc-length and
explicit dynamic solution procedures in order to gain a better understanding of the overall
advantages and disadvantages of these procedures.

2. General aspects of finite element modeling of prestressed concrete members

In three-dimensional applications of finite element analysis, concrete is usually modeled using
eight-node brick elements with reduced integrations. The element library of ABAQUS/Explicit for
brick elements is limited to eight-node brick elements with reduced integrations whereas
ABAQUS/Standard supports both eight- and twenty-node elements. Conventional reinforcement is
represented by truss elements, which carry axial load only. Therefore, a uniaxial stress-strain
relationship such as the elastic-plastic material idealization is sufficient to define the behavior of
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reinforcement. Using the embedded element option in ABAQUS, an assembly of reinforcement
(i.e., embedded element) is located in the concrete solid (i.e., host element). In this case,
translational degrees of freedom at a node of a reinforcing bar are constrained by the
corresponding degrees of freedom in the concrete solid. This approach assumes that there is
perfect bonding between rebar and concrete interfaces. However, this method neglects the load
transfer in the cracked concrete element around the rebar. The behavior of cracked, reinforced
concrete element is generally represented by introducing an additional ductility to the post-peak
branch of concrete model in tension, the so-called “tension stiffening” effect.

Prestressing strands are also modeled using truss elements embedded in the concrete solid and
perfect bond between concrete/strand interfaces. A proper model for the transfer length of strands
becomes essential in the analysis of prestressed concrete beams, otherwise the beam fails in the
end regions where the stress level in the concrete can be very high, depending upon the transfer of
prestressing force. The simplest modeling approach is to divide the transfer length of a strand into
a number of segments and gradually decrease the cross sectional area of each segment to the beam
ends (Hassan et al. 2007). When the prestressing force is defined as a constant initial stress along a
strand, a strand segment with reduced cross sectional area will be subjected to lower prestressing
force and hence lower stresses are transferred to the concrete.

3. Arc-length method

The arc-length method is a static solution procedure that allows evaluation of the load-
deflection path for a nonlinear structural response including descending branches. The method can
efficiently account for material and geometric nonlinearity. Unlike the force-control approach, in
which the magnitude of the load is specified, or the displacement control approach, in which the
magnitude of a selected displacement is specified and the corresponding load magnitude
computed, the arc-length method does not require specification of either. Instead, as shown in Fig.
1, the advancement from point n-1 to point n on the equilibrium path (specified by unknown
values of the displacement and force) is achieved by the definition of the distance In between these
two points.
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Fig. 1 Arc-length procedure
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To this end, in addition to the governing equation, a constraint equation, as given in Eq. (1), is
necessary for the solution of the simultaneous equations governing the problem in which the load
proportionality factor, A, is an additional unknown. The constraint equation describes the arc
length (1,) of the load-displacement path.

A=+y1% — Au? (1)

The load magnitude Py at the new point on the equilibrium path is defined as:

Ptotal = }‘Pref (2)

where P is the reference load vector and A is the load proportionality factor, which is an
unknown representing the load. Nonlinear equilibrium equations are solved together with the
constraint equation using Newton's method defining one arc-length step. The result is the nodal
displacement vector, u and the load proportionality factor, A.

4. Explicit dynamic method

The static response of a prestressed concrete beam can also be investigated by using the explicit
dynamic procedure. For the static solution of the problem, inertial effects produced by the
structural mass should be minimized in explicit dynamic analysis. By either increasing the mass
density of concrete or decreasing loading rate, the oscillation of the beam can be limited and
inertial forces made negligible (Fig. 2). In practice, if the loading period T over which the load is
increased to its final value, is sufficiently larger than the longest natural period of the structure, the
inertial effect is usually negligible. The figure also illustrates that dynamic response initiates when
the load reaches a local maximum in the static equilibrium path. Therefore, the descending part of
that path cannot be traced using dynamic explicit method as it requires some sort of displacement
control (enforced in the arc-length approach) to reach a static equilibrium. However, one can still
determine the peak load using the explicit dynamic approach.

The time increment, At, used in the explicit dynamic analysis is automatically determined by
the numerical stability limit of the explicit method implementation used in ABAQUS. There is a
close relationship between the stability limit and the time required for a stress wave to cross the
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Fig. 2 Explicit dynamic procedure
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smallest element dimension in the model. When the model consists of elements with very small
dimensions, a small time increment has to be used and total computational effort will increase,
given a fixed loading period, T. The number of load increments, m, required to complete the
analysis is m=T/At. Computational effort for the explicit dynamic analysis is proportional to the
product of the number of time increments, m, and the total number of degrees of freedom.

An optimum value for the loading period, T, can be easily found if the longest period of natural
vibration, T,, is known (or estimated). As a starting point, the explicit dynamic analysis has been
performed here for a loading period, T, which is a value in the range of ten to fifty times larger
than that period of the lowest frequency of vibration, T, (i.e., T=10T, to 50T,) (Simulia 2008). For
such a loading period, inertial effects are generally negligible, but computational effort might be
high. In the subsequent analyses, the loading period has been gradually reduced until a significant
variation due to inertia is observed in the analysis results. The magnitude of inertial forces can be
evaluated by monitoring the ratio of kinetic energy to total strain energy during the analysis. When
that ratio is less than 0.5 percent, the resulting response has been found to be essentially quasi-
static (Sun et al. 1999, Malm and Holmgren 2008).

Furthermore, the natural period does not remain constant during the analysis and increases
when the structural stiffness reduces due to concrete cracking or steel yielding. Therefore, the
loading period initially determined based on the fundamental period of the elastic structure is
likely to be inadequate to ensure that inertial effects are minimized for the entire duration of
analysis.

5. Modeling of prestressing force

Concrete cracking reduces both torsional and flexural stiffness of prestressed concrete beam
and causes significant increase in deflections. However, prestressing forces delay cracking under
flexure. Therefore, prestressing strands should be modeled properly in order to capture concrete
cracking at the appropriate load level, as well as the corresponding deflection of the beam with
sufficient accuracy. A significant modeling aspect of prestressed concrete beams is to define
appropriately the initial stress state due to prestressing at the beginning of the analysis. Using the
arc-length method in ABAQUS/Standard, the prestressing force in a strand can be defined as an
initial stress that is assumed to be constant along the truss element of the strand in the model.
Then, in the first increment of the arc-length analysis, the structure will reach the equilibrium state
for this initial stress condition. If the same modeling approach for prestressing forces is applied in
the explicit dynamic procedure, the initial stress state creates an impact loading in the beam and
the transient response includes oscillations with amplitudes that can be large. Therefore,
prestressing forces in the explicit dynamic analysis must be modeled in an alternate manner,
utilizing either a direct or an indirect procedure.

In the direct modeling approach, the geometry and material states of the beam, when subjected
to prestressing effects only, are obtained using the static analysis procedure in ABAQUS/Standard
and transferred to ABAQUS/Explicit as an initial condition. Since the beam is already in
equilibrium at the end of the static analysis, the initial condition defined at the beginning of the
explicit dynamic analysis does not lead to impact loading. However, ABAQUS/Standard and
ABAQUS/Explicit process data in different ways and the forces transferred from
ABAQUS/Standard may not be in perfect equilibrium in ABAQUS/Explicit, which causes minor
oscillation of the beam. These oscillations, however, will become negligible in the rest of the
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explicit analysis.

In the indirect modeling approach, the prestressing force in a strand is introduced via an
artificial reduction in strand temperature. Without transferring any data from ABAQUS/Standard
to ABAQUS/Explicit, the response of prestressed concrete beam is evaluated with two consecutive
explicit analyses. In the initial analysis, a temperature change is slowly applied to the prestressing
strands to generate the intended prestressing effect, after which the temperature remains constant
and the second explicit analysis is conducted to determine the beam response to the desired load. It
should be noted that temperature change does not affect the physical properties of concrete or steel
in ABAQUS, and it is used solely as a way to create the desired initial stresses in the strands. The
required temperature change, AUy, can be obtained using Eq. (3), in which o represents the
thermal expansion of the strand, Eg is the elastic modulus of strands and f,. is the effective
prestress after losses.

ast AUst = fpe /Est (3)

6. Modeling of concrete

Concrete is an inhomogeneous material and exhibits properties that vary broadly from one
analysis to another. The stress-strain relation of concrete in compression has a nonlinear ascending
branch up to ultimate strength, followed by a strain softening region. Concrete in tension,
however, cracks at very low stress levels. The behavior of concrete under multi-axial stress states
is even more complex. Consequently, defining a material model for concrete that represents its
response with a high level of fidelity is a very challenging task (Chen 1982, Kwak and Filippou
1990). The concrete damage plasticity model available in ABAQUS is used in this study for both
the arc-length and the explicit dynamic analyses because it is the only concrete model offered in
both ABAQUS/Standard and ABAQUS/Explicit. In a previous study (Mercan et al. 2010), this
model was shown to offer the flexibility needed to represent various properties of concrete. The
concrete damage-plasticity model in ABAQUS relies on the methodology proposed by Lubliner et
al. (1989) for monotonic (i.e. unidirectional) loading and by Lee and Fenves (1998a, b) for cyclic
loading. The concrete damage-plasticity model brings together isotropic damage elasticity and
non-associated multi-hardening plasticity. The concrete damage-plasticity model assumes two
failure modes; cracking in tension and crushing in compression.

In general, the resistance of cracked concrete is often ignored in design for simplicity.
However, neglecting the post-cracking behavior of concrete may lead to significant error in the
nonlinear finite element analysis of prestressed concrete structures. The post-cracking response of
concrete plays an important role in deflections, crack width, bond-slip, and shear transfer etc.
(Gopalaratnam and Shah 1985). Cracking initiates once the stress level at an integration point in a
concrete element reaches the concrete tensile strength. Cracking introduces gradual strength
decrease at this integration point in accordance with the post-peak response of concrete model in
tension. However, the cracked reinforced concrete element can still transfer load through the rebar
as full kinematic compatibility between concrete and rebar has been enforced in the model used in
this study. Effects such as bond-slip, present in real rebar-concrete interactions, are approximated
in the concrete model by modifying the tension softening region relative to that for plain concrete
as shown in Fig. 3, the so-called “tension stiffening” behavior (Nayal and Rasheed 2006).
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Fig. 3 Tension stiffening of concrete due to concrete-rebar interaction

Defining proper tension stiffening behavior plays an essential role in the quality of the results
and the performance of the algorithm used. Numerical solution of a model generated with
ABAQUS/Standard might be unstable if too small amount of tension stiffening effect is introduced
into the concrete model. It is commonly suggested that numerical stability can be achieved for the
solution of an arc-length analysis when the ultimate tensile strain of concrete, including the effect
of tension stiffening, is equal to a value ten times larger than that of plain concrete (Simulia 2008).
However, due to stabilizing effect of inertia, the explicit dynamic procedure does not experience
numerical instability even if the post-cracking response of plain concrete is used in the concrete
model and tension stiffening effect is ignored.

The post-peak response of concrete in tension can be defined using fracture energy, Gf, which
is a material property indicating the energy required to open a unit area of crack in a plain concrete
specimen (Hillerborg et al. 1976, Marzouk and Chen 1995). The fracture energy, which is equal
to the area under tensile stress — opening displacement curve, ot(w), can be approximately
calculated using Eq. (4) where ft is the tensile strength of concrete and wt is the total cracking
displacement. In this equation, a linearly descending post-cracking regime for concrete in tension
is assumed. The tension stiffening effect (i.e., the interaction between cracked concrete and steel)
is generally taken into account by using a fracture energy value for reinforced concrete, which is
larger than that for plain concrete.

G, = [0, (w)dw~ fTW (@)

7. Modeling of an L-Shaped, precast, prestressed concrete spandrel beam

The relative merits of the arc-length and explicit dynamic methods were demonstrated by
evaluating the response of an L-shaped, prestressed concrete spandrel beam under monotonically
increasing loads. Such beams were suited for this study since they exhibit a complex structural
response to loading and thus constitute a good test for various aspects of the model. There is also a
practical reason for this choice as the spandrel beams have been widely used in the perimeter of
precast concrete frames. They support deck beams and are connected to column corbels at their
ends. The cross section of an L-shaped spandrel beam is under the combined effects of shear,
torsion and bending, as shown in Fig. 4. The vertical loads acting on the beam ledge create biaxial
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bending due to the asymmetric shape of the cross section. The eccentricity of the vertical loads
also causes a torsional effect, which leads to twisting of the member. Prestressing forces further
complicate the behavior of a spandrel beam.
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Fig. 5 Spandrel beam configuration (all dimensions are in mm)

7.1 Description of the experiment

An experimental study of full-size, L-shaped, prestressed concrete spandrel beams was selected
from the literature (Lucier et al. 2007). The spandrel specimen, as shown in Fig. 5, had a length of
13.7 m (45 ft) and a web with a depth of 1.5 m (5 ft) and width of 0.2 m (8 in). The ledge of the
spandrel was 0.2 m by 0.2 m (8 in by 8 in) section and terminated at a 0.3 m (12 in) distance from
both ends of the spandrel. The prestressing strands were low relaxation, 1860 MPa (270 ksi), 12.7
mm (%2 in) diameter seven-wire steel strands with initial prestressing forces of 100 kN (22.5 kips)
for Type A and 68.5 kN (15.4 kips) for Type B, as shown in Fig. 6. The cylinder strength for
concrete in compression was measured as 49.6 MPa (7,190 psi). A 152x152 mm (6x6 in)-W4xW4
mesh of welded wire fabric was placed on both sides of the spandrel web. More details related to
the reinforcement assembly can be found in Lucier et al. (2007).

In the test set-up, both ends of the spandrel beam rested on teflon-coated bearing pads with
reduced friction and were laterally supported with 25 mm (1 in) diameter tie-back bolts. The
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specimen was also laterally supported within the span at the mid-height elevation by means of
deck-ties, connecting the spandrel to 3 m (10 ft) wide double-tee deck beams. The spandrel ledge
supported these double-tee deck beams on which hydraulic jacks were attached.

= 25mM grid
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EEE
ABAEEA

B Type A 13™™ dia. strand (100 kN)
4 Type B 13™™ dia. strand (68.5 kN)

Fig. 6 Prestressing strand details

Due to the self-weight of the spandrel specimen and testing equipment, the vertical reaction
force of 98 kN (22 kips) was measured at the bearing support. Three load levels: service (dead +
live), service with snow (dead + live + snow) and fully factored (1.2 dead + 1.6 live + 0.5 snow),
were considered for the spandrel supporting an 18.3-m (60-ft) span double-tee. The load was
increased until each of these load levels was reached and then released. Finally, the spandrel was
loaded up to failure. During the experiment, the vertical and lateral displacements at the top and
bottom of the spandrel mid-span, and the rotation of the spandrel quarter-span and the vertical
reaction at the end support were monitored.

7.2 Description of the finite element model

The spandrel beam test specimen described above was modeled in ABAQUS. Due to the
symmetry of the spandrel geometry and loading with respect to the mid-span, only one-half of the
spandrel was modeled and symmetry boundary conditions were applied to the mid-span cross
section. In the test setup, the bearing pad at the end support was in contact with 0.3 m by 0.2 m (12
in by 8 in) surface area at the bottom of the spandrel web. This surface was forced to remain plane
in the model by defining planar constraint equations and a single point in the middle of this surface
was fixed against vertical translation. Such modeling technique eliminates singularity problems
and bypasses a need for much more complex contact analysis.

The tie-back bolts were modeled using linear spring elements with the stiffness of 200 KN/mm
(570 k/in), assumed to be equal to the axial stiffness of a 1-m long bolt with the diameter of 25 mm
(1 in). The deck ties made of 76mmx152mmx9.5mm (3inx6inx3/8in) steel plates were also
modeled using spring elements at the mid-height elevation of the front face of the spandrel web.
For each deck tie, two linear spring elements with the stiffness of 1,910 kN/mm (10,900 k/in) per
spring were defined in order to accommodate the finite size of the connections.
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The concrete solid of the spandrel was modeled using 8-node brick elements with reduced
integration and hourglass control. The concrete solid was analyzed for three different mesh
configurations; coarse, intermediate, and fine with the average element size of 203 mm (8 in), 102
mm (4 in), and 51 mm (2 in), respectively. The elastic modulus of concrete was calculated as 33
GPa (4,800 ksi) for the compressive strength of 49.6 MPa (7,190 psi), using the elastic modulus
equation given the ACI Committee 318 building code document (2011). The uniaxial stress-strain
relation of concrete under compression is assumed as shown in Fig. 7. Post-peak behavior of
concrete in tension was defined using a concrete fracture energy of 1.75 kN/m (0.01 kips/in) and a
tensile strength of 3.5 MPa (0.509 ksi).

Fig. 7 Uniaxial stress-strain relation for plain concrete in compression

The steel reinforcement assembly, welded wire mesh and prestressing strands were modeled
using linear truss elements with a typical element size of 50 mm (2 in). Elastic-perfectly plastic
material behavior was assumed for all steel elements with the elastic modulus of 200 GPa (29,000
ksi). The yield strengths for mild steel, welded-wire-mesh reinforcement and prestressing strands
were taken as 445 MPa (64.5 ksi), 675 MPa (98 ksi), and 1,675 MPa (243 ksi), respectively. A
transfer length of 510 mm (20 in) was modeled by gradually reducing the cross section of the
strand at one end. The loss in the initial prestress forces was assumed as 15% excluding the effect
of elastic shortening of concrete (Hassan 2007). Thus, the effective prestressing forces of 85 kN
(19.1 Kips) for Type A strands and 57.8 kN (13.1 kips) for Type B strands were considered in the
model.

Before the analysis of the spandrel model with the arc-length solution approach, the model was
first analyzed with load-controlled static procedure to determine the state of strains and stresses in
the beam due to its self-weight and prestressing forces. Stresses in strands after losses were
introduced as an initial stress state. At the end of this preliminary static analysis, the reaction force
at the support was obtained as 100 kN (22 kips). Next, the spandrel model was analyzed using arc-
length procedure for which the double-tee loads acting on the spandrel ledge were controlled at
each analysis step. The initial arc length increment was taken quite large (e.g., 0.01 out of a total
arc length of 1.0) since severe nonlinearity was not expected in the solution for low load levels.

This allowed for a faster advancement along the equilibrium path at early stages of loading.
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The subsequent arc length increments were automatically determined by ABAQUS, based on the
number of iterations needed to converge.

The explicit dynamic approach also requires an initial analysis stage for defining prestressing
effects in the model. These prestressing forces were introduced with artificial temperature changes
in strands. For each strand type (i.e. Type A or Type B) a different temperature change was
defined to achieve the required prestressing force after losses. After this initial prestressing
analysis stage, the spandrel beam model was analyzed using explicit dynamic analysis for which
the double-tee loads were increased at each time step.

7.3 Loading rate in explicit dynamic analysis

During the explicit dynamic simulation, the inertial effects must be minimal in order to obtain
the static response of the spandrel beam. The magnitude of the inertial effects highly depends on
the loading rate used in the analysis. The loading rate should be selected in such a way that the
finite load level is reached within 10 to 50 times of the fundamental period, T,, of the structure.
For this reason, the modal analysis of the spandrel model was performed and resulted in the
fundamental period of 0.075 sec. Thus, the finite load level should be achieved between the
loading periods of 0.75 sec and 3.75 sec (i.e., 10T, and 50T,). This is obviously a rule of thumb
estimate as the real rate of loading depends also on the level of the final load to be applied.
Nevertheless, it has been used here as a guide.

The sensitivity of the explicit dynamic analysis results to loading period was investigated.
Three different loading periods; 1 sec, 0.5 sec and 0.25 sec, were analyzed with intermediate mesh
configuration. The analysis results, as shown in Fig. 8, were plotted against the test results in terms
of support reaction vs lateral deflections at the top and bottom of the spandrel mid-span. The
displacements toward the inner face of the spandrel (the face that is connected to the double-tee
beams) were assumed positive. The top of the spandrel web moved inward at the mid-span and
had positive displacements whereas the bottom of the spandrel moved outward. The support
reaction in the figure began with zero value as the self-weight of the specimen (100 kN) were
excluded from the support reaction.

Fig. 8 The effect of loading period on explicit dynamic analysis results
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All three loading periods yielded the similar results for the support reactions up to 400 kN (90
kips), for which the spandrel concrete cracking initiated. For support reactions greater than 400 kN
(90 kips), spandrel stiffness reduced due to concrete cracking and hence larger lateral
displacements occurred. Loading periods of 0.5 sec and 1 sec yielded similar spandrel response,
indicating inertial effects are minimal for both loading periods. However, for 0.25 sec loading
period, the spandrel model exhibited stiffer response in the inelastic region which can be attributed
to dynamic effects. After concrete cracking, the stiffness of the spandrel decreased and the natural
period of vibration increased. Thus, the minimum loading period leading to the quasi-static
response also increased and the loading period of 0.25 sec became inadequate to prevent dynamic
effects in the inelastic region.

Another and perhaps more meaningful way to evaluate the magnitude of dynamic effects is to
check the maximum ratio of kinetic energy to strain energy during the analysis. The energy ratios
for different loading periods and mesh configurations are shown in Fig. 9. For 0.25 sec loading
period, the maximum energy ratio was greater than the limit of 0.5 percent, which supports the
finding, discussed earlier, that the dynamic effects were significant in this case. As shown in Fig.
9, the loading period of 0.5 sec had the maximum energy ratio of 0.5 percent and was the
minimum allowable loading period to ensure negligible dynamic effects.
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Fig. 9 Energy ratios for different loading periods and mesh configurations

8. Comparison of the solution procedures for the spandrel beam example
8.1 Mesh configuration

The robustness of the arc-length and explicit dynamic procedures was assessed for fine,
intermediate and coarse mesh configurations. For the fine mesh configuration with the maximum
element size of 51 mm (2 inches), the arc-length method failed to converge on the solution while
the explicit dynamic method performed well, as shown in Fig. 10.
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The arc-length analysis resulted in a severely nonlinear zone around the region where the tie-
back springs were located. The horizontal reaction force in the spring can be large and the element
in the concrete solid, associated with this reaction force, experienced large inelastic deformations.
It should be noted that such localized inelastic deformations had not been observed for the arc-
length analyses with coarse and intermediate meshes as the tie-back forces were distributed over a
larger volume of solid concrete elements. Consequently, the arc-length method failed to converge
on the solution for the fine mesh. However, the explicit dynamic method overcame such mesh-
related problems. The loading period of 1 sec was used to minimize the dynamic effects in the
simulation, as noted in the preceding section. Even though large inelastic deformations still
appeared around the tie-back springs, the explicit dynamic algorithm effectively found the solution
to this highly nonlinear problem.

The failure of the arc length method to converge is to be expected when the equilibrium path is
not smooth. The calculations with this method require the tangent stiffness matrix of the system,
which does not exist at some points if the equilibrium path is not smooth. This is likely to happen
in the analysis of problems involving concrete whose constitutive equation has a sudden change
due to cracking in tension, as shown in Fig. 3. When the stress field is complex (as in the case
discussed in this study) and the elements are small enough that some of them do not contain any
rebar, reaching a peak load in tension, and consequently encountering a point of a sharp turn on
equilibrium path is particularly likely. This difficulty is, of course, inconsequential in explicit
dynamic analysis in which case the tangent stiffness matrix is not used at all.

Fig. 10 Arc-length method vs. explicit dynamic method for fine mesh

8.2 Material model

The arc-length and explicit dynamic methods were also compared for different post cracking
responses for concrete, i.e., tension stiffening magnitudes. As discussed above, the effect of
tension stiffening can be introduced in the concrete model by using the fracture energy concept.
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The fracture energy value of 1.750 N/mm (10 Ibf/in) was used to represent the case with
tension stiffening or reinforced concrete and the value of 0.175 N/mm (1 Ibf/in) was used for
virtually no tension stiffening or plain concrete. These fracture energy values were determined
using equation (4) and the stress-strain relationships for concrete in tension as shown in Fig. 11.
The tension stiffening effect for reinforced concrete was introduced into the model, as discussed in
Section 6, by assuming the ultimate tensile strain of 0.1 mm/mm for reinforced concrete, which is
larger than that of plan concrete by a factor of 10 (Simulia 2008). The opening displacement was
assumed to be equal to the maximum element size used in the model. In this case it was 102 mm (4
in) as the intermediate mesh was considered. In Fig. 11, the strain softening region of the plain
concrete was steeper than that for reinforced concrete, which was likely to make it harder for the

arc-length method to achieve convergence in the former.

The results from the explicit dynamic and arc-length analyses with and without tension
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stiffening effects are shown in Fig. 12. Both the arc-length and the explicit dynamic methods
provided numerical solutions when the tension stiffening effect was included in the concrete
model. However, the arc-length analysis without the effect of tension stiffening could not
converge on the solution and failed right after concrete cracking initiated in the spandrel while the
explicit dynamic procedure continued without interruption.

The tension stiffening effect for the concrete is closely related to the amount of steel distributed
along the member. Therefore, it is not appropriate to ignore the tension stiffening for the spandrel
beam since the steel ratio for a typical prestressed concrete spandrel beam is relatively high.
However, this effect may pose problems for the analysis of lightly reinforced concrete beams for
which tension stiffening is small.

8.3 Computational accuracy

The arc length and explicit dynamic methods, even though successfully providing a solution,
exhibited small discrepancies in the load-deflection results due to several reasons. First, the
comparison of a truly static solution with a dynamic solution with slowly increasing load always
show some discrepancy as they are based on different sets of equations. Such discrepancy exists
even if both solutions are perfectly accurate. Second, both the arc length method and any possible
method for the dynamic analysis involve additional numerical errors which may superimpose,
leading to a more pronounced discrepancy between static and dynamic analysis of essentially static
problems. The explicit dynamic approach although considered efficient in the analysis of problems
with complex material behavior, is also known as a method in which control of error can be
limited. It may be achieved only by reducing the time step. As a result dynamic solution of a static
problem using explicit approach may deviate from the static solution more than the solution using
other dynamic solution algorithms (implicit).

In order to evaluate the accuracy of the arc-length and explicit dynamic methods for the
spandrel beam example, the quarter-span rotations obtained using these methods were compared
with experimental results, as shown in Fig. 13. The results were presented for all mesh
configurations even though the arc-length method could not converge on a solution for the fine
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Fig. 13 Effect of analysis methods and mesh configurations
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mesh. Explicit dynamic analyses were performed for a loading period of 1 sec. The arc-length
method, if converging to a solution, generally provided the load-rotation results closer to the test
measurements than the explicit dynamic method. The results of the explicit dynamic analysis were
more sensitive to the mesh refinement than those of the arc-length method. Mesh refinement from
coarse mesh to intermediate mesh configuration had a minor effect in the results of the arc-length
analysis. However, from the practical viewpoint, one can say that all of the simulations in Fig. 13
provided comparable approximations of the experimental results.

8.4 Computational effort

The effectiveness of the solution methods can also be evaluated in terms of computational
effort required to reach a solution for the spandrel beam example considered here. The
computational effort or CPU (process) time generally depends on the solution approach and the
size of the problem. Thus, CPU time consumed by these two solution methods was compared for
different mesh configurations. The coarse, intermediate, and fine mesh models included 754,
2,504, and 18,928 solid concretes elements, respectively. For the explicit dynamic analysis, three
loading periods, 2 sec, 1 sec, and 0.5 sec, were also considered. CPU time spent by the initial
analysis for prestressing and self-weight loads was excluded. The analyses were performed with
IBM BladeCenter Linux Cluster with AMD Opteron 2218 processors.

The arc-length procedure used less CPU time than the explicit method for coarse and
intermediate mesh configurations, as shown in Fig. 14. However, the fine mesh had no basis for
comparison as the arc length method did not converge on any solution. When the number of solid
elements increased approximately threefold by changing the mesh configuration from coarse to
intermediate, CPU time increased by a factor of 3 for the arc-length procedure and a factor of 1.5
for the explicit dynamic procedure. Additionally, from intermediate to fine mesh, the number of
elements increased by a factor of 8, but CPU time increased only by a factor of 5 for explicit
dynamic procedure. Also, for loading periods used in the explicit dynamic method, the factors of

8:00 - '_g
(5]
€600 v
= 0 e
o 5:00 = e L &o
£ 400 553 E E'l
= 4 r ~ Q0 o é‘_ D —~ & :
= = o = : L
200 5255 B85 5% %\Q
[ X = (8] () = c
100 - oS g Lﬁu% Eg %%
0:00 % S //&\
Coarse Intermediate Fine

Fig. 14 Comparison for process (CPU) time



34 Bulent Mercan, Henryk K. Stolarski and Arturo E. Schultz

increase on CPU time due to mesh refinement were similar.

Consequently, the arc-length method required less process time than the explicit dynamic method
for the spandrel beam example considered here. However, the process time for the explicit
dynamic procedure was much less sensitive to the change of the problem size than that of the arc
length method. In other words, for very large problems, the explicit dynamic procedure can be
more process time efficient.

9. Conclusions

In this study, the advantages and disadvantages of the arc-length and explicit dynamic finite
element approaches were investigated in the context of strongly nonlinear structural response.
Therefore, the three-dimensional, non-linear finite element analysis of an L-shaped, prestressed
concrete spandrel beam under monotonically and quasi-statically increasing loads was considered
as a model problem in this work.

The analysis results showed that the arc-length approach fails while the explicit dynamic
method still yields a solution when (a) the effect of tension stiffening for concrete is small and (b)
the mesh configuration is refined. The small value for tension stiffening corresponds to a steep
change in the response of concrete in tension due to cracking. The mesh refinement generates
more concrete elements within a region surrounded by steel rebar. These concrete elements are
more prone to localized inelastic deformations as they are not engaged with steel reinforcement.
Thus, in the analysis of lightly reinforced concrete structures, for which the tension stiffening for
concrete is expected to be small, the arc-length method is likely to fail converge on a solution.
When both methods yield solutions, those solutions are close to each other provided that prior to
the explicit dynamic analysis of a static problem, the loading period over which the load is
increased to its final value (the rate of loading) is determined so as to make the dynamic effects
negligible. Also, even for the coarse mesh, the results of the arc-length method are in good
agreement with the experimental results.

The explicit method requires somewhat more computational effort than the arc-length method.
However, as indicated above, it is less sensitive to various model parameters and, consequently,
more robust in the sense that it provides a solution in cases where the arc length method is likely to
fail. The computational cost of the explicit method can be minimized by careful selection of the
loading period over which the load is increased to its final value. In conclusion, a loading period
(T) equal to fifty times the fundamental period (T,) of a concrete structure is probably too long
even assuming that when the stiffness of the structure decreases due to concrete cracking, the
fundamental period of the structure increases and hence the influence of dynamic effects increases
as well. However, since the spread of inelastic zones is somewhat different for different mesh
configurations, the minimum loading period ensuring negligible dynamic effects depends to some
extent on the mesh, even though the fundamental period of a linear-elastic structural model is
virtually independent of the mesh configuration. The present investigation indicates that a loading
period (T) equal about 10-15 times the fundamental period (T,) is adequate.

Based on these findings, it may be concluded that from the viewpoint of computational
efficiency, the arc-length method should be preferred over the explicit dynamic analysis for three-
dimensional, nonlinear finite element analysis of prestressed concrete beams under monotonically
increasing loads so long as convergence to a solution is achieved. There appears to be a strong
correlation between loading period, fundamental period, and mesh size (element size).
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Furthermore, unlike the explicit dynamic approach, the arc-length method allows the tracing of the
complete equilibrium path, including any descending branches. However, the explicit dynamic
analysis is a robust technique which is able to provide a solution in cases with a complex material
behavior or a refined mesh when the arc-length method fails. It should be noted that for
unreinforced, brittle materials some of these observations may apply, but the lack of reinforcement
will also have an influence not investigated in this work. Therefore, the observations and
recommendations are limited to reinforced or prestressed concrete.
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Notation
The following symbols are used in this paper

E. = elastic modulus of concrete;
elastic modulus of strands;

N
I

fre = effective prestress in strands;
f, = tensile strength of concrete;
Gy = fracture energy for concrete;

I, = arclength;

m = number of increments;
n = apointon the equilibrium path;
P = reference load;
Pww = total load;
T = loading period;
T, = the longest period of natural vibration;
w = opening displacement of concrete;
w, = total opening displacement of concrete;
At = time increment;

Au = displacement increment

AUy = temperature change for strands;
o = thermal expansion coefficient for strands;
o(w) = postcracking tensile stress in concrete as a function of opening displacement;

A = load proportionality factor.








