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Abstract. This paper presents a new method for assessing the three-point-bending (3PB) strength of
mortar beams in a non-destructive manner, based on neural network (NN) models. The models are
based on the radial basis function (RBF) architecture and the fuzzy means algorithm is employed for
training, in order to boost the prediction accuracy. Data for training the models were collected based on
a series of experiments, where the cement mortar beams were subjected to various bending mechanical
loads and the resulting pressure stimulated currents (PSCs) were recorded. The input variables to the
NN models were then calculated by describing the PSC relaxation process through a generalization of
Boltzmannn-Gibbs statistical physics, known as non-extensive statistical physics (NESP). The NN
predictions were evaluated using k-fold cross-validation and new data that were kept independent from
training; it can be seen that the proposed method can successfully form the basis of a non-destructive
tool for assessing the bending strength. A comparison with a different NN architecture confirms the
superiority of the proposed approach.

Keywords: non-destructive testing; three-point-bending strength; Pressure Stimulated Currents; non-
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1. Introduction

The structural behaviour of cement based constructions is affected due to various factors like
heavy loads, fatigue, aging and natural disasters. Thus, the investigation of the mechanical status
of such constructions is of high interest to ensure the infrastructures safety conditions. Under this
concept, diagnostic methods for the assessment of the mechanical status are continuously
developed aiming at a real time monitoring of the structural health. Such methods include crack
opening sensors attached on the buildings, accelerometers etc. These methods are mainly used for
the monitoring of surface damages, a fact that limits the internal damage investigation and
assessment. Recently, testing methods both destructive and non-destructive have been introduced
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for the evaluation of cement based materials and structures. Modern techniques mainly based on
non-destructive testing have attracted the attention of scientists and engineers as they are able to
provide flexibility regarding the mechanical health status of a specimen or structure in situ or in a
laboratory (Balayssac et al. 2013). Non-destructive testing techniques infer the internal damage,
based on measurements that do not require destroying the material. However, a model is needed to
produce a correlation between such measurements and the material status.

Neural networks (NNs) (Haykin 1999) offer a successful alternative for producing black box
models without using a priori information about the system. Due to their ability to approximate
successfully nonlinear and complex relationships based solely on input-output data, NNs constitute
good candidates for producing non-destructive testing correlations. In fact, NNs have been used
extensively in the non-destructive testing of concrete. Hybrid multilayer perceptron (HMLP)
networks have been used by Tsai (2010) to predict strength of concrete-type specimens. NN
models have been developed by Demir (2015) in order to predict the compressive and bending
strengths of hybrid fibre-added concretes. The strength of of high-performance concrete has been
modelled using NNs by Yeh (1998). NN and multiple linear regression (MLR) models have been
used to determine the compressive strength of clinker mortars (Beycioğlu et al. 2015).

Radial basis function (RBF) networks (Alexandridis et al. 2012b) form an important network
architecture with many advantages over other NN types including better approximation
capabilities, simpler network structures and faster learning algorithms. As far as the latter are
concerned, the fuzzy means (FM) algorithm (Sarimveis et al. 2002, Alexandridis et al. 2003) is an
innovative approach with important merits, including automatic determination of the size of the
network, i.e. the number of hidden nodes, and fast computational times and has found many
applications in diverse fields including biomedical systems (Alexandridis and Chondrodima 2014),
automatic control systems (Alexandridis et al. 2013), soft-sensors (Alexandridis 2013). etc. The
algorithm was recently hybridized with the particle swarm optimization (PSO) method to further
enhance its prediction capabilities (Alexandridis et al. 2012b).

In order to apply similar methods based on black-box modelling, it is important to define a
suitable set of parameters to use as inputs to the NN. One of the testing methods that is under
laboratory study deals with the recording of weak electric signals that are detected when natural
building materials (i.e. marble, amphibolite etc) or artificial building materials (i.e. cement based,
like cement paste, mortar etc) are subjected to mechanical loading. The detection of these
electrical signals (weak electrical current emissions), is conducted through a novel experimental
technique that is known under the term Pressure Stimulated Currents Technique and the recorded
electrical signals are known as Pressure Stimulated Currents (PSC) (Stavrakas et al. 2004). The
term Pressure Stimulated Currents has first been referred in the literature in order to describe the
emission of a transient (polarization or depolarization) electrical signal, as a result of a gradual
variation of the pressure on a solid containing electric dipoles due to defects (Varotsos et al. 1982
Varotsos and Alexopoulos 1984, Varotsos and Alexopoulos 1986, Varotsos et al. 1998).

The PSC signals provide important information about the damage processes occurring in the
bulk of the specimen under test. Thus, the PSC experimental technique has been adopted for
various loading modes in order to evaluate its applicability for a wide range of applications.
Specifically, the used specimens were subjected to compressive stress (Stavrakas et al. 2004,
Triantis et al. 2006, Triantis et al. 2007, Kyriazopoulos et al. 2011a, Triantis et al. 2012), and
Three Point Bending (3PB) loading (Kyriazopoulos et al. 2011a). Noticeable PSC recordings have
been reported when marble (Kyriazis et al. 2006) and cement based (Kyriazopoulos et al., 2011a)
specimens are subjected to abrupt changes of mechanical loads up to specific load level and
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consequently the load is maintained constant. During such load changes the PSC shows a spike-
like behaviour while its relaxation back to the background level provides significant information
regarding the mechanical status of the specimen. In previous works the PSC relaxation process
was attempted to be described by an empirical equation described by two exponential decays
(Triantis et al. 2007, Kyriazopoulos et al. 2011a, Kyriazopoulos et al. 2011b, Kyriazis et al. 2006,
Kyriazis et al. 2009). In this work the main query that deals with the physical properties of the
PSC relaxation process and the law that it follows until its relaxation back to its background level
is discussed under the frame of statistical physics and specifically the Tsallis entropy. PSCs in
stressed materials are produced by microfracture creation and evolution mechanisms (Enomoto
and Hashimoto 1990, O’Keefee and Thiel 1995, Vallianatos et al. 2004, Stavrakas et al. 2004,
Hadjicontis and Mavromatou 1994). These mechanisms are the roots of disorder and long range
interactions and thus a generalization of the Boltzmannn-Gibbs (BG) statistical physics known as
non-extensive statistical physics (NESP) (Tsallis 2009, Tsallis 1999, Vallianatos 2013, Sarlis et al.
2010), could be the theoretical ground for their analysis.

According to NESP, the entropy is not additive (Tsallis 2009, Vallianatos 2013), due to the
fact, that is not proportional to the number of the system’s elements in contrary to the BG entropy
SBG. Specifically, according to Tsallis the entropy Sq is defined as (Tsallis 2009)
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where kB is Boltzmann’s constant, pi is a set of probabilities, W is the total number of microscopic

configurations, and � the entropic index. The entropic index � may be used to quantify the non-
additivity of the studied physical system that accounts for the case of many non-independent, long-
range interacting subsystems and memory effects (Tsallis 2009, Tsallis 1999, Vallianatos 2013).
Detailed discussion on the physical interpretation of the Tsalis parameters that are used in this
work may be found in previous works (Stergiopoulos et al. 2015).

A main target is to provide a decision system regarding the estimation of the mechanical status
of a specimen. This, was primarily conducted in a previous publication (Alexandridis et al. 2012a),
when cement based specimens were subjected to low level compressional stress. A series of
laboratory experiments have been conducted in order to record the PSC in cement mortar
specimens. Selected signal characteristics were correlated with the ultimate compressive strength
of each specimen through the use of a neural network, employing a special training algorithm that
offers increased predictive abilities. Results showed that the ultimate compressive strength can be
successfully predicted without destroying the specimen.

In this paper, we extend the work presented by Alexandridis et al. (2012a) by introducing an
NN approach for assessing a different property of mortar beams, namely the three-point-bending
strength. The NN input parameters are extracted using PSC signals; however, in contrast to
Alexandridis et al. (2012a), in this work we use NESP analysis to calculate the characteristic
values which will be given to the NN as inputs. The RBF architecture is used in conjunction with
the FM algorithm, which has been found to produce models with increased accuracy.

The rest of this paper is structured as follows: In the second section, we describe the materials
and experimental arrangement used to produce the mortar beams. Section 3 describes the
experimental procedure used to collect the training data for the NN. The NN parameter analysis
and calculation is presented in section 4. A brief introduction to RBF networks and the applied
training algorithm, followed by the methods used for model selection and data splitting is given in
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section 5. Section 6 presents the results of applying the proposed non-destructive testing technique
and relative discussion. The paper concludes by outlining the advantages of the proposed approach
and setting some directions for future research.

2. Materials and experimental arrangement

A cement mortar mixture was used to prepare identical specimens in order to conduct the 3PB
tests. The mixture included cement, sand (fine aggregates) and water at weight ratio 1:3:0.5
respectively. Detailed description of the specimen preparation process may be found in previous
works (Stergiopoulos et al. 2013). The dimensions of the specimens were 250 mm long with a
square cross-section of 50 mm 50mm. For obtaining 95% of their total strength the specimens
were used for experiments 90 days after their preparation (Kosmatka et al. 2002). Preliminary 3PB
strength tests have shown that the fracture limit (Lf) of the produced specimens was 3.8kN up to
4.1 kN.

The basic experimental setup for measuring the PSC is shown in Fig. 1. The Instron DX-300
electromechanical loading system (300kN capacity) was used in load control mode to apply loads
to the specimen at a rate of 100 N/s. Two identical rigid metallic cylindrical supporting rollers and
one loading roller were used for performing the 3PB test. The distance of the supporting roller–
specimen contact point from the center of the beam was 90mm. The loading is applied on a third
roller at the top-middle zone of the specimen in order to achieve bending. The three points of
bending were electrically isolated by using Teflon plates of 2 mm thickness.

The PSC was captured by the electrodes and measured using a high sensitivity electrometer
(Keithley, model 6514). The PSC electrodes were placed at the lower side of the beam (tensional
zone) and were attached at the left and right of the specimen’s loading plane. This topology was
decided after several experiments that were conducted in order to estimate the best installation that
ensures the recording of strong PSCs and limits the electrical noise influence. The best electrode

distance (l ) was also investigated and it was empirically found that for the specific type of stored
experiments the distance should be 35 mm approximately. The data was recorded in real time and

Fig. 1 The experimental arrangement and the selected location of the PSC electrodes (Sergiopoulos et
al. 2015)
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on a hard disk through a GPIB interface.The applied mechanical load was recorded with the using
an analog-to-digital (A/D DAQ) data acquisition device (Keithley model KUSB-3108). The whole
setup was placed in a Faraday shield in order to avoid interference from external electrical noise
and the measurements remain unaffected. The details of the complete instrumentation set-up may
be found in a previous work (Stergiopoulos et al. 2013).

3. Experimental procedure

A series of more than 60 cement mortar beams were subjected to 3PB tests according to the
following loading pattern: Initially, a low mechanical load (L0) of the order of 0.2kN, that is
common for all the conducted experiments, is initially applied on the specimens in order to avoid
possible parasitic initial effects caused either by friction or minor movements of the installation
equipment. Sequentially, an abrupt mechanical load increase of high constant rate is applied on the
mortar beam leading the specimen at a higher load value (Lh). The Lh load value is maintained on
the cement mortar beam for a specific time period. The selected time period was 100s
approximately in order to record the complete PSC relaxation process and at the same time to
avoid the activation of any creep mechanisms (Stergiopoulos et al. 2015). For each of the
conducted experiments a different level of Lh was selected and will be henceforth noticed as Lhi.,

where i � is the sequential experiment index number. Specifically, the applied Lhi level varied from
relatively low values (0.33Lf) to significantly high values (0.8Lf) with respect to the ultimate 3PB
strength ( Lf) of the specimens.

The shape of the recorded PSC during the followed loading procedure is well deterministic and
it is presented in previous works (Kyriazopoulos et al. 2011a, Kyriazis et al. 2009, Stergiopoulos
et al. 2015). Specifically, the PSC obtains a spike-like shape reaching its peak value (I0) at the
moment (t0) when the applied mechanical load reaches the level Lh and sequentially, while the
applied load is maintained constant the PSC relaxes back to a background level (Ib). A generalized
plot of the PSC behaviour is shown in Fig. 2.

4. Parameter analysis

In order to further analyze the experimental results non-extensive statistical physics were used
based on Tsallis entropy. As reported earlier (Stergiopoulos et al. 2015) and since the studied
system involves some multi-fractality it is expected that the PSC relaxation process follows an
equation of the form

q
q

d

dt

ξ
β ξ= − ⋅ (2)

leading to the generalized q-exponential function (Vallianatos and Triantis 2013, Vallianatos et al.
2011, Christopoulos and Sarlis 2014)
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Fig. 2 A typical temporal recording of the PSC and the mechanical loading when the high rate
step stress technique is applied (Sergiopoulos et al. 2015)

where ξ(t) is the normalized PSC during the relaxation phase and may be calculated by using the
following equation
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where Ib is the value of the PSC background level and I0 is the peak value of the PSC (see Fig. 2).
The entropic index q may be used to quantify the non-additivity of the studied physical system

that accounts for the case of many non-independent, long-range interacting subsystems and

memory effects (Tsallis, 2009, Tsallis, 1999). In most, if not all, of the studied applications, �
appears to reflect some (multi) fractality in the system (Tsallis, 2009). τq is a parameter that
reflects to a q-relaxation property.

As reported in previous works (Alexandridis et al. 2012a) a correlation between the electric
charge Q and the damages in the bulk of a specimen exists. Thus, it was decided to attempt the use
of the totally released electric charge during the application of an abrupt load increase as input for
the designed NN. The electric charge Q was calculated during each loading step according to the
following formulation

1

0

( )
t

i

t

Q PSC t dt= ∫ (5)

where t0 is the time the mechanical load reaches its maximum value and t1 the time the PSC
relaxes back to the background level (i.e., 100s after reaching the load Lhi)

5. Neural network models and non-destructive assessment

Neural networks have the ability to identify complex and nonlinear relationships based on
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input-output data from an unknown system and therefore they could be used as tools for predicting
critical properties of mortar beams in a non-destructive framework. During a training stage, the
NN adapts its parameters so as to better approximate a subset of the available data, known as
training data. The training task is usually formulated as an optimization problem, where the design
variables are the network parameters and the objective function is a cost function, expressing the
errors between the true outputs and the network predictions.

NNs can be assigned to different architectures, depending on the interconnection of the NN
nodes and the calculations being performed inside each particular node. The following section
gives a brief presentation of the RBF network architecture and the training algorithm used in this
work.

5.1 RBF networks and the FM algorithm

An RBF network consists three different layers of nodes, namely the input, hidden and output
layer. The input layer has the same dimensionality N with the input space and performs no
calculations but only distributes the input variables to the hidden layer. The latter comprises of L
computational nodes; each node is characterized by a center vector ].ˆ,...,ˆ,ˆ[ˆ ,2,1, Nlll

T
l xxxx = The

activity νl(xk) of the lth node is calculated as the Euclidean norm of the difference between the kth

input vector and the respective center and is given by

, k = 1, 2, …, K (6)

where K is the number of training data, and = [xk,1, xk,2, …, xk,N] is the input vector.

The result of this calculation is given as input to a function with radial symmetry. In this work, we
use the thin-plate-spline function

(7)

The output of each hidden node l is multiplied by a synaptic weight wl and the final output for

the kth data point is produced as a linear combination of the weighted hidden node responses
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Usually, the training procedure for an RBF network is split in two distinct phases: a)

calculation of the hidden layer node centers and b) calculation of the synaptic weights. The

first stage, which is usually the most difficult one, can be implemented through unsupervised
clustering methods, e.g., the k-means algorithm. Alternatively, an innovative approach known as
the fuzzy means (FM) algorithm (Sarimveis et al. 2002, Alexandridis et al. 2003) can be applied to
the selection of the hidden layer nodes. A brief description of the algorithm is given below; more
details can be found in the original publications.

Consider a system with N normalized input variables ui, where i=1, …,N. The domain of each
input variable is partitioned into an equal number of one-dimensional triangular fuzzy sets, c. Each
fuzzy set can be written as

, i=1,…,N, j=1, …, c. (9)

T
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( )2( ) logl l lg v v v=

ˆky

ˆ lx

{ }, , ,i j i jA a δα=
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where ai,j is the center element of fuzzy set Ai,j and δα is half of the respective width. This
partitioning technique creates a total of cN multi-dimensional fuzzy subspaces Al, where l=1,
…,cN. The multi-dimensional fuzzy subspaces are generated by combining N one-dimensional
fuzzy sets, one for each input direction.

Each one of the produced fuzzy subspaces is a candidate for becoming an RBF center, but only
a subset of them will be finally selected, depending on the distribution of data within the input
space. The selection is based on the idea of the multidimensional membership function μ

Al (xk) of

an input vector xk to a fuzzy subspace Al which is given by Nie (1997)

( )
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where rl(xk) is the Euclidean relative distance between Al and the input data vector xk
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Eq. (11) defines a hyper-sphere on the input space with radius equal to . The objective

of the training algorithm is to select a subset of fuzzy subspaces as RBF centers, so that all the
training data are covered by at least one hyper-sphere. Expressing this requirement in terms of Eq.
(11), the subset of fuzzy subspaces is selected so that there is at least one fuzzy subspace that
assigns a nonzero multidimensional degree to each input training vector. The maximum possible
number of selected RBF centers is equal to the number of training data, although, depending on
the distribution of data in the input space, a smaller number of centers is usually produced.

Following the determination of centers by the fuzzy means algorithm, the synaptic weights are
calculated using linear regression of the hidden layer outputs to the real measured outputs (target
values). The regression problem can be trivially solved using linear least squares in matrix form
via the following equation

(12)

where Z contains the outputs of the hidden layer nodes and Y the target values.

5.2 k-fold cross validation for model selection

The training stage is usually followed by a model selection phase, where the objective is to
select the number of hidden nodes. Usually a large number of hidden nodes produces lower errors
as far as the training data are concerned. On the other hand, such a selection leads to overfitting,
i.e. excessively fitting the model to the training data; this reduces the generalization ability of the
model, as the network ends up in learning the noise that is present in the training data and its
ability to model new, different data points is severely impaired. Successful completion of the
training phase means that the NN model should be capable of producing accurate estimations of
the output variables given a new set of input data.

In order to avoid the overfitting phenomenon, a technique known as k-fold cross-validation is

Nδα

( )
1T T T −

= ⋅ ⋅ ⋅W Y Z Z Z
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used for model selection. According to this method, the available data are split into k mutually
exclusive subsets, known as folds. For each fold k, the network is trained using all folds except
from k. The resulting model is then used to obtain predictions for all the datapoints belonging to
the fold that was left out. This procedure is repeated k times, each time leaving a different fold out
for obtaining predictions and the rest of the folds for training. Usually 10 folds are applied, a
number which was also adopted in this study. When the k-fold method is completed, a prediction

for each datapoint is available, where datapoint i has not been used for training the model.

Evaluation and model selection can then be performed using different error metrics. In this work,
the root mean square error (RMSE) and the coefficient of determination R2 are used. These two
coefficients can be calculated as follows

( )
2

1

ˆ

RMSE

K

i i

i

y y

K
=

−

=
∑ (13)

(14)

In the above equation, ȳ stands for the mean value of the output variable. Both RMSE and R2

can be used as indicators for selecting the most appropriate model, which in this case means
selecting the appropriate network size, and for evaluating the network performance.

5.3 Variable selection, data splitting and training

Training an NN model suitably in order to be used as a tool for non-destructive assessment
initially requires the selection of proper input variables. In this work a set of parameters based on
the PSC measurements and non-extensive statistical physics are used, namely the entropic index q,

the q-relaxation property τq, the PSC background level Ib and the electric charge Q . Additionally,

we feed the NN with the mechanical load value Lh , as different values were used per specimen.
A total of 67 datapoints were available, where each datapoint includes measurements for the 5

aforementioned variables to be used as inputs, together with the measured ultimate 3PB strength of

the specimens ��, which denotes the output variable of the network. Out of the 67 datapoints, 60

were used in the 10-fold cross validation procedure in order to train and select the best RBF
network model as described in the previous section. The remaining 7 datapoints, which did not
take any part whatsoever in the training and model selection procedures, were used for final
evaluation and testing of the model. Testing the resulting model in a new set of data is crucial in
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Fig. 3 Measured ultimate 3PB strength versus RBF network predictions. The black line corresponds to

perfect fitting and the dashed lines correspond to ±0.1 kN modelling error

order to assess its true performance, as the model could have been overfitted in the training data
even through the cross-validation procedure (Rao et al. 2008).

In order to train the RBF network, the FM algorithm was applied, testing in each cross-
validation cycle all possible RBF networks with fuzzy partitions ranging from 4 to 30 fuzzy sets.
The fuzzy partition producing the best R2 in the cross-validation data was selected and used to
obtain predictions for the testing data.

6. Results and discussion

Results of the RBF network training procedure are summarized in Table 1, where the RMSE
and R2 pointers are depicted for the data used for cross-validation and the testing data separately,
together with the selected number of fuzzy sets and the resulting number of RBF centers. In order
to compare results with a different NN implementation, feedforward neural networks (FFNN)
trained with the Levenberg-Marquardt algorithm (Hagan and Menhaj 1994) were also tested. To
be more specific, two-layered networks were used, and the number of nodes per layer was selected
based on an exhaustive search procedure, testing all possible combinations in the range 5-30
nodes.

Fig. 3 gives a schematic overview of the ultimate 3PB strength measurements versus the
predictions casted by the RBF network that produced the best results as far as the cross-validated
data were concerned. Results for the testing data, which were excluded from the k-fold cross
validation method and were kept completely independent from training, are also included in the
same figure.
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Table 1 Results for the RBF network training procedure and comparison with FFNN

RBFNN FFNN

Cross-validation RMSE (kN) 0.07 0.12

Cross-validation R2 0.76 0.70

Cross-validation maximum error (kN) 0.17 0.21

Testing RMSE (kN) 0.07 0.09

Testing R2 0.83 0.77

Testing maximum error (kN) 0.12 0.14

# of hidden nodes 18 [12 8] *

# of fuzzy sets 18 -

*For FFNNs the number of hidden nodes is given in the form (1st layer nodes 2nd layer nodes)

The plotted results, together with the values of the statistical pointers RMSE and R2 indicate
good modelling performance for the RBF-based predictor. This is also confirmed by the maximum
errors generated by the RBF model, which remain relatively low. It should be noted that the RBF
model performs satisfactory not only on the cross-validation data, but also on new testing data that
have not been used at all in any stage of the training and model selection procedures. Based on the
above, the RBF model could be used to successfully predict the ultimate 3PB strength
measurements in a non-destructive manner, based only on the PSC readings. Finally it is important
to note that based on the statistical indicators, the RBF model performance is clearly superior
compared to the FFNN, in terms of higher prediction accuracy. This result could be attributed to
the training approach followed in the case of RBF networks: calculation of the synaptic weights
using linear regression guarantees a global minimum, while the FM algorithm provides a good
selection of RBF centers. The superiority of RBF networks over FFNNs has been also confirmed
by other researchers (Park et al. 2002)

7. Conclusions

This work presents a new method for predicting the 3PB strength of mortar beams using NN
models. Assessment of the 3PB strength is performed in a completely non-destructive way, by
measuring pressure stimulated currents generated by subjecting the specimens to low mechanical
stress. Non-extensive statistical physics based on Tsallis entropy are used to extract meaningful
features which are fed as input to an RBF network. The network is trained with the FM algorithm,
which presents certain remarkable advantages, including increased prediction accuracy. A 10-fold
cross validation procedure is used for model selection, while a small portion of the data is
excluded from this procedure and kept for testing the produced model. Results show that the
proposed approach can be used successfully for assessing the 3PB strength, whereas it outperforms
a different NN training technique.
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