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Abstract. When approached using nonlinear finite element (FE) techniques, structural analyses gene-
rate, for real RC structures, large complex numerical problems. Damage is a major part of concrete
behavior, and the discretization technique is critical to limiting the size of the problem. Based on
previous work, the µ damage model has been designed to activate the various damage effects correlated
with monotonic and cyclic loading, including unilateral effects. Assumptions are formulated to simplify
constitutive relationships while still allowing for a correct description of the main nonlinear effects.
After presenting classical 2D finite element applications on structural elements, an enhanced simplified
FE description including a damage description and based on the use of multi-fiber beam elements is
provided. Improvements to this description are introduced both to prevent dependency on mesh size as
damage evolves and to take into account specific phenomena (permanent strains and damping, steel-
concrete debonding). Applications on RC structures subjected to cyclic loads are discussed, and results
lead to justifying the various concepts and assumptions explained.
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1. Introduction

For RC structures, structural analyses generate large complex numerical problems. The
discretization technique proves to be a key step in controlling the size of such problems; moreover,
damage remains a major component of concrete behavior (Simo and Ju 1987, Lubliner et al. 1989,
La Borderie et al. 1994, Jirasek 2004).

Based on previous work Mazars (1986), Pontiroli et al. (2010), the µ damage model Mazars et
al. (2015) offers the simplest and most complete set-up possible; it implies formulating the
following set of main assumptions:

- Concrete behavior is considered as the combination of elasticity and damage;
- The damage description is assumed to be isotropic and directly affects the stiffness

evolution of the material. Let Λ be the stiffness matrix of the original material, then the
matrix for the damaged material is given by
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- The stress tensor σ –strain tensorε relationship is governed by
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- As opposed to classical damage models, d denotes the effective damage. Classically
speaking, damage is a variable that describes the micro-cracking state of the material.
Moreover, d indicates the effect of damage on the stiffness activated by loading. In a
cracked structure, d must serve to describe the effects of crack opening and crack closure.

- Two principal damage modes are considered (cracking and crushing) and subsequently
associated with two thermodynamic variables Yt and Yc, which characterize the extreme
loading state reached respectively in the tensile part and compressive part of the strain
space.

A conventional FE technique is used to validate the relevance of the model. In order to reduce
the size of nonlinear problems for real structures, a simplified FE description is considered for
engineering purposes based on the use of multi-fiber elements for both beams and columns.
Enhancements are introduced to limit the dependence on mesh size during damage evolution as
well as to take specific phenomena into account, such as steel-concrete debonding, the hysteretic
loop and permanent strains due to friction between crack lips and initial stresses. These concepts
yield a tool as good as the conventional finite element calculation for accessing results, including
at the local level (e.g., state of rebar deformation, average crack width) yet with better control over
convergence problems and significant computational time savings.

2. Modeling context

2.1 Constitutive equations

A summary of the µ damage model is proposed below. For a more detailed presentation, see
Mazars et al. (2015).

Like for a previous model Mazars (1986), let's consider the equivalent strain concept.
Below, we define εt and εc as the equivalent strain for cracking and crushing, respectively. (ν is

the Poisson ratio)
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Two independent loading surfaces are now associated
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Yf ttt −= ε and Yf ccc −= ε (6)

such that during gradual Yt(c) evolution, the identity ft(c)=0 holds, else ft(c) < 0.
Yt and Yc define the maximum values reached on the loading path

]max,[SupY ttt εε 0= and ]max,[SupY ccc εε 0= (7)

ε0t and ε0c are the initial thresholds of εt and εc respectively.

2.2 Damage evolutions

The effective damage d is directly correlated with the thermodynamic variables Yt and Yc

through the driving variable Y,
i.e.
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where r is the triaxiality factor (Lee and Fenves 1998), which evolves within the stress space from

0, for the compressive stress zone, to 1 for the tensile stress zone; ε
σ

σ :
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is the

“effective stress”; >< +x and IxI denote the positive part and absolute value of x, respectively.

Therefore, r is damage-independent and can be determined at each calculation step without
iteration. As was the case with Mazars’ model (1986), the damage evolution law is defined by
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Y0 is the initial threshold for Y. Variables A and B determine the shape of the effective damage
evolution laws and subsequent behavioral laws. [A, B] evolves from [At, Bt] for the “cracking”
curves to [Ac, Bc] for the “crushing” curves. At, Bt, Ac, Bc are all material parameters directly
identified from uniaxial experiments (tensile or flexural tests and uniaxial compression tests).

The proposal for A and B is as follows
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When r = 0 (i.e., compressive stress domain), A=Ac and B=Bc; conversely, when r=1 (i.e.,
tensile stress domain), A=At and B=Bt. k is introduced to calibrate the asymptotic stress value at
large displacements in shear (useful to describe concrete-rebar friction): k=A(r=0.5)/At ; a standard
value for k is 0.7 (see Fig. 1).

It is straightforward to demonstrate that when r is a constant (i.e., radial path), compliance with
thermodynamic principles (Lemaitre et al. 1990) is ensured. When r is a variable however, it has
been shown that these principles are still being respected, even for complex loading situations.

2.3 Model responses

In the σ3 = 0 plane, Fig. 1 displays the plots of both the damage initiation surface (d = 0) and
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Fig. 1 Plane σ3=0: plots of both, the damage initiation surface (dashed line) and the failure surface
(strength envelope from different loading paths), compared to the experimental results provided by
Kupfer et al. (1973)

the failure surface. The resulting plot corresponds to the maximum stress envelope (normalized by
the compressive strength fc), as obtained from curves at the prescribed σ1/ σ2 ratios: three specific
curves are shown in Fig. 1, tension (σ2=0), shear (σ2=-σ1), and compression (σ1=0). This figure
also plots experimental data used for the failure surface and derived from several biaxial tests
along various loading paths on an ordinary concrete specimen (Kupfer and Gurstle 1973). This
model offers very good results, with just a few differences observed near the bisector in the bi-
compression area.

2.4 1D version of the model

It was observed in Section 2.2 that the driven variable for d is Y. From Eq. (7) and for a
uniaxial situation, it is derived that: Y=Yt for tension (r = 1), and Y=Yc for compression (r = 0).

From Eq. (2) and (8) therefore, two expressions are found to describe uniaxial behavior.
- For tension
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where Yt = Sup(εot, max -ε) and Y0t = εot = -σ0t/E; for 1D calculations, it can be useful to
use σ0t as tension damage threshold;

- For compression
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where Yc = Sup(εoc, max -ε) and Y0c = εoc = - σ0c/E; for 1D calculations, it can be useful to
use σ0c as compression damage threshold.

Fig. 2 shows the corresponding uniaxial response with a specific loading path, from OAB in
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Fig. 2 Tension-compression loading path exhibiting the unilateral effect

tension to ODF in compression while highlighting the range of evolution in stiffness due to crack
opening and closure (i.e., the unilateral effect).

We will demonstrate in the following discussion the relevance of this model in describing the
behavior of reinforced concrete structural elements. On the basis of the same experiments on
cyclic RC beams, two approaches, namely a 2D classical FE and a multi-fiber (MF) beam
description, will be used and compared. From this comparison, enhancements will be proposed to
improve the MF description in including an enhanced version of the 1D model.

3. 2D FE description for structural applications

The applications available using the µ model are primarily severe loadings on concrete
structures. Among these applications, earthquakes are a key focus since they generate nonlinear
cyclic loadings on structural elements. The strain rate is small enough to be neglected as an issue,
unlike the case with blasts and shocks. The LMT Laboratory at ENS Cachan (France) conducted
an experimental campaign on reinforced concrete (RC) beams in order to study the phenomena
that play a major role in RC structural responses during an earthquake (Ragueneau et al. 2010,
Crambuer et al. 2013). The phenomena of damage evolution during increased loading, unilateral
effects and energy dissipation due to cyclic loads have all been analyzed. These results will serve
for the subsequent applications.

3.1 Experimental program on a beam under cyclic loading

This entire campaign entailed various longitudinal reinforcement steel ratios, though this paper
only considers the specimens reinforced with four 12-mm rebar (Fig. 3(a)). The concrete tested
was a regular C30/37, whose characteristics are listed in Table 1.

The RC beams were designed for testing with a simple three-point bending set-up in a two-way
vertical direction. A custom hinge device ensured a free-rotation condition at the end of the support
beams. The specimens measured 1.65 m long by 0.22 m high by 0.15 m wide. The loading path

Pa Loading path :

O, A, B, O, C, D,
O, B, E, O,D, F C

B
A

O E

D

F
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Fig. 3 Three-point bending tests: (a) specimen geometry and boundary conditions, (b) mesh used for
calculations, (c) experimental results for the entire loading path

was displacement-controlled and included sets of 3 cycles with gradually increasing intensity
(from ±0.5 mm to ±8 mm). Fig. 3(c) shows the force-displacement response of the beam for the
full loading path; more specifically, it indicates: i) a gradual decrease in stiffness due to concrete
damage during the first series of cycles, and ii) the appearance of rebar plasticity after the ±4 mm
cycles and a continued predominance beyond this stage.

3.2 2D finite element descriptions

The calculations presented in this paper have been made on the platform ATLAS developed at
3SR Grenoble (Grange 2015a, b). The test specimen was modeled using Q4 (four nodes) elements
under a plane stress assumption and bar elements for the rebar. The symmetry of the problem was
introduced, and the mesh for the half-beam (711 nodes, 776 elements) was uniform over the
central part of the beam; moreover, boundary conditions were defined so as to correctly represent
the experimental test (Fig. 3(b)). The imposed displacement Uy was applied on both the upper and
lower parts within the central section of the beam.

To avoid mesh sensitivity, the crack band approach based on the fracture energy concept was
introduced into this application (Bazant and Oh 1983). The definition of Gf was derived according
to Planas and Elices (1992) and Bazant (2002), meaning that in the central part of the beam (i.e.,
where damage and plasticity are concentrated), element size is consistent with the crack band
width h

)
EE

(
f

G
h
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with Et being the post-peak tangent stiffness for an equivalent triangular shape of the σ−ε curve.
The model parameter values used were selected in accordance with the data provided in Table 1.

Regarding the rebar, bar elements have been used, in compliance with a simple elasto-perfectly
plastic model, whose parameter values are given in Table 1.

hinge imposed displacement
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Table 1 RC bending tests: experimental data and material specifications for the FE calculations

Experimental data
Concrete model parameters

Steel Concrete

E
GPa

fe
MPa

E
GPa

fc
MPa

E
GPa

ν εt0 εc0 At Bt Ac Bc
Gf

N/m

205 500 28 35 28 0.2 1e-4 3.6e-4 0.8 7000 1.25 395 30

Fig. 4 Bending test on RC beams as an experiment-calculation comparison: (a) comparison of the envelope
of the total experimental response with a calculation driven without any cycle; (b) total path up to ±2 mm

3.2.1 Overall results
A number of situations have been modeled herein. For example, Fig. 4(a) compares, for the

total loading path, the load-displacement calculation curve, performed without any cycle, with the
envelope for the entire set of experimental curves.

Fig. 4(b) then compares the curve resulting from the simulations with experimental points for
the same loading path up to ±2 mm. These comparisons indicate a very good level of agreement.

From these results, it can be concluded that stiffness recovery, as depicted by the µ model,
accurately reproduces the experimental results. Let’s also point out however that introducing
hysteretic loops and permanent strains in the concrete behavior could improve the result in Fig.
4(b).

3.2.2 Local results
Such a modeling approach serves to access the local information that indicates what is taking

place inside the damaged areas in both the concrete and rebar. Fig. 5 shows, at a given stage of the
loading (-3 mm), the damage field on the lateral beam surface predicted by calculation after a
series of cycles extending to ±3 mm (the colored marks indicate where 0.8 < d < 1). During a
cyclic loading, the effective damage d evolves until reaching a maximum value in one direction;
due to a change in the triaxiality factor r from 1 to 0, this maximum value vanishes once the local
stress has been reversed. It can be observed that the effective damage d serves as an indicator of a
crack opening stage. A good level of agreement has been found by means of digital image

(a) (b)
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Fig. 5 RC bending beam, (a) effective damage used as a crack opening indicator (d>0.8) after cycles up
to ±3 mm, (b) cracks observed through digital image correlation with a deflection of -3 mm

Fig. 6 Flaws in the response of the classical multi-fiber beam description for the 3-point bending RC
beam: (a) overestimation of the behavior with the same parameters as those used in the FE description; (b)
cyclic response of the multi-fiber beam description at large deformation, in exhibiting great discrepancy
with the experimental results shown in Fig. 3(c)

correlation analysis during the experiments (Ragueneau et al. 2010).
These results reveal an efficient model and one that has proven to be robust and effective in

describing cyclic behavior. The µ model is thus a good candidate for solving seismic problems.

4. Simplified modeling for structural applications

To decrease the number of degrees of freedom, 3D Timoshenko multi-fiber beam elements
have been used to treat the same kind of problem (Kotronis and Mazars 2005). Based on a 1D

(b)(a)

(a)

(b)

Damage

1

0.9

0.8

Crack spacing # 7cm
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model, nonlinear fibers were associated with the µ damage model for concrete as well as with an
elastic-perfectly plastic model for rebar. This beam description generates kinematic constraints to
ensure respecting both the continuity of displacement between two elements and all plane sections.
The concrete section of the multi-fiber beam is a matrix containing 5×7 fibers. Differently-sized
beam elements are introduced into the various calculations that follow, with boundary conditions
the same as those in Fig. 3.

4.1 Multi-fiber beam: flaws in the description

4.1.1 Flaws resulting from the choice of material parameters
By relying on the same parameters as those used for the finite element calculation above (Table

1), it can be determined that:
- The description of cyclic loading, when rebar remains elastic, yields a force overestimation
(Fig. 6(a)).
- The description of cyclic loading, when rebar plasticity is activated, overestimates the plastic
strain of reinforcement (Fig. 6(b)) when compared with experimental results (Fig. 3(c)).

4.1.2 Multi-fiber beams and strain localization
Concrete exhibits softening, which in turn leads to strain localization and results that depend on

element size. Strain localization is a major concern in maintaining the objectivity of finite element
calculations. This problem is well known in classical 2D-3D calculations, for which two principal
treatment options are available: i) the solution presented above with material parameters adjusted
to suit element size (Hillerborg et al. 1976), and ii) implementation of regularization methods such
as non-local methods (Pijaudier and Bazant 1987). Such a problem has never before been studied
in the context of a multi-fiber beam description.

To illustrate this point in using multi-fiber beam elements and in considering the beam
presented Fig. 3, we performed calculations for each of the three loading types (i.e., tension, 3-
point bending, 4-point bending). These results are summarized in Table 2 and suggest that
localization only appears with tensile loading.

More generally speaking, a fiber beam description contains localization if the behavior of the
beam element displays softening. Localization is thus present for:

- a plain concrete element, regardless of its loading (tension or bending);
- a RC element if the loading is uniaxial and tensile (localization appears once the concrete

has failed);
- a RC element in bending when the reinforcement ratio is less than a minimum value,

referred to as the fragility ratio (see Eurocode 2 2004).
For other reinforcement ratio values, if bending is dominant (should bending and tension be

combined), no localization is present.
Hillerborg stipulated that the energy dissipated at failure in a unit concrete volume must be

equal to the fracture energy. In the presence of localization, the control of result objectivity would
then be the same as for classical 2D-3D FE calculations. Localization takes place within a band of
elements, and the material parameters must be calibrated with the size h of these elements (Fig.
7(a). In the absence of localization, the damage-cracking processes for one crack are distributed on
both sides of the crack over a volume defined by the distance sc between two cracks (Fig. 7(b)).
Therefore, the concept of crack band cannot be applied here. The calculation must be calibrated so
that the fracture energy is consumed in a sc wide area, leading us to write
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Table 2 Multi-fiber description: various types of loadings applied on the same RC element and the
corresponding damage fields, therefore proving that localization is not always systematic

Type of loading
Overall behavior

(load-displacement)
Damage contour

(at a given loading)
Type

of response

Tensile loading (tie)

Strain is
localized

Four-point bending

Strain is
distributed

Three-point
bending

Strain is
distributed

Fig. 7 Localization processes in a multi-fiber beam description, (a) plain concrete: damage is localized
in a band of elements (size h); and (b) reinforced concrete: damage is distributed along the cracking
zone (sc is the crack spacing)

sch

damage contour

(a) (b)
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∫= εσdsG cf (14)

with

∫=∫ FEMFc dhds εσεσ (15)

The material parameters must then be calibrated in relation to this distance (sc).

4.2 Multi-fiber description with enhancements and use of adapted parameters

4.2.1 Cracking stage
As illustrated above, application of the Hillerborg method can no longer be based on beam

element length, like for the FE description, but instead on the spacing between cracks sc. Hence, sc

must be known in advance from previous calculation, experimental observation or from rules
proposed in design codes. In order to demonstrate the relevance of this approach, in the present
case, sc has been chosen based on results of the previous FE calculation conducted on the same
beam (sc =0.07 m, see Fig. 5). The tensile behavior was calibrated in accordance with Eq.
(15). This step can be performed from the µ model by adjusting the post-peak curve parameters
according to the At and Bt values (Eq. (11)). The choice for the beam considered herein is At=1
and Bt=8000, instead of the corresponding values given in Table 1 for the 2D FE calculations.

On the basis of these findings, it can be concluded that:
- The overestimation previously described in the cracking phase disappears (Fig. 8(a));
- This result is clearly insensitive to a change in mesh size (Fig. 8(b)), thus demonstrating that

this procedure leads to an objective calculation.

Fig. 8 Calibration of the multi-fiber (MF) description model parameters to show: (a) a comparison of
results from the previous 2D finite element calculation with those of the MF beam using parameters
derived from crack spacing considerations; and (b) independence of the MF result with respect to mesh
size

a b
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4.2.2 Cyclic behavior
In a Timoshenko beam, the behavior of each fiber is uniaxial. To improve replication of the

concrete cyclic behavior, we have upgraded the 1D version of the µ model presented in Section 2.4
by introducing a hysteretic loop as well as the permanent strain generated from friction between
the crack lips and the release of initial stresses.

Hysteretic loop
During unloading or reloading, the hysteretic loop is described using a specific partition of the

total strain, i.e.: σt = σ + σd, where σ =Ε(1‒ di)ε and, as shown in (Pontiroli et al. 2010), the
damping stress (σd) is given by

)().(.)1()( 21 εεεββσ &signfdEd iiid −+=  (i=t,c) (16)

β2 and β1 are related to damping, respectively with and without damage. The sign is - for
unloading ( 0<ε& ) and + for reloading ( 0>ε& ). di is used to distinguish the damage value in

tension (dt) from that in compression (dc); moreover, fi(ε) is associated with di and its driven
variable Yi; it also provides both the shape and size of the loop

)(4)(
2

2

i

i

i Y
Y

f −= ε
ε

ε (i=t,c) (17)

Permanent strains
This principle consists of considering a shift (εft, σft) in the σ −ε axis, such that

))(1()( ftift dE εεσσ −−=− (18)

Assuming the same concurrent point (εfc, σfc) for elastic unloading in compression, we obtain

fcfcftcft dE σεεσ +−−= ))(1( (19)

εft depends on the damage value in compression; it equals εft0 if dc=0. Assuming a constant
value regardless of dc for the stress at crack-closure ),( 0ftft Eεσ = from (19) it can be deduced
that

c

cfcft

ft
d

d

−

−
=

1

0 εε
ε (20)

εft0 and εfc are material parameters.
The resulting σ −ε curve is shown in Fig. 9(b), and the corresponding material parameters are

listed in Table 3. The curve improvement only modified the unloading and reloading responses.
For a monotonic loading in tension or compression, the σ−ε curve remains exactly the same as
before. Let's note (Fig. 9(b)) that permanent strain is created whenever damage evolves in tension
but vanishes during unloading. Conversely, the permanent strain created in compression is
definitive.
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Table 3 Concrete material parameters for enhanced MF calculations

E
GPa

σ0t

MPa
Gf

N/m
At Bt

σ0c

MPa
Ac Bc εft0 εfc β1 β2 

28 2.8 30 1 8000 -10 1.25 395 -0.35e-4 4e-4 0.05 0.20

Fig. 9 Enhanced MF beam: (a) rebar-concrete bond curve obtained by introducing a sliding stage into the
global steel fiber behavior, and (b) concrete curve including hysteretic loops and permanent strains

4.2.3 Multi-fiber beams and the steel-concrete bond
It is widely acknowledged that debonding between concrete and rebar occurs at large

deformations. This phenomenon is especially sensitive whenever cracks open and steel yields. In a
fiber beam description, given that no interaction is taking place between the fibers except at their
ends and that the damage-fracture processes are distributed, debonding cannot be reproduced. This
point leads to overestimating the plastic strain, as observed in Fig. 5(b).

As proposed by various authors, Richard et al. (2011), Wang et al. (2004), one way to introduce
bond degradation and the relative sliding of rebar over concrete in a multi-fiber beam description
is to split the total strain in the steel fiber into two parts: a first part associated with the proper
strain of the steel (ɛe+ɛp), and the second part related to the sliding strain (ɛs) occurring at the
steel/concrete interface

ε = εe + εp + εs (21)

ɛe, ɛp, and ɛs are the elastic strain (ɛe=σ/E), plastic strain and sliding strain, respectively. Plastic
strain depends on the selected elasto-plastic model. For a perfectly plastic model, the tensile
response is

σ = εeΕ  if εp = 0, and σ = fe if εp > 0 (22)

Braga et al. (2012) proposed a modified steel bar model to account for bond slips in
considering a nonlinear monotonic relationship for sliding. In order to minimize computational
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effort, the present proposal is based on the following assumptions:
- Sliding strain evolves from a threshold and, assuming that the main sliding evolution occurs

when plasticity is activated, this threshold is assumed to be the plastic threshold.
- A linear link exists between plastic strain and sliding deformation.
From these assumptions, the proposed sliding strain is

εs = κεp if εp > 0, and εs = 0 otherwise (23)

For a cyclic loading, as the tensile load decreases (unloading), two stages appear: 1) a partial
recovery of ɛe; and 2) from a given stage to zero stress,  ɛs gradually vanishes and both ɛe and ɛs

reach 0 when the strain rate sign changes. Then in continuing loading, as the load moves to
compression, assuming that no sliding is possible when cracks are closed, ɛs=0 and (as shown in
Fig. 9(a)) the sliding strain gradually reappears upon reloading in tension up to its previous value
and then increases with ɛp.

Fig. 10 Enhanced MF beam cyclic response: (a) experiment-calculation comparison up to ±2 mm, (b)
comparison for a set of 3 cycles at ±6 mm, and a global cyclic loading path, with experiment (c),
calculation (d)

(a)

(c)

(b)

(d)
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4.2.4 Results obtained with these enhancements
With this new behavior and the material parameters given Table 3, the RC beam response is

presented Fig. 10. This figure includes comparison experiment-calculation for three different
loading paths:

- a cyclic path during the cracking stage to up ±2 mm Fig. 10(a);
- a cyclic path of 3 cycles at ±5 mm for which steel plasticity and rebar-concrete debonding

are activated Fig. 10(b);
- the total path up to ±8 mm Fig. 10(c), (d).
A very accurate description of the experimental response can indeed be observed.

Fig. 11 Cracking fields in a RC beam at -3 mm after a loading path up to ±3 mm: (a) damage field
from a 2D FE calculation, and (b) damage field from a multi-fiber beam calculation

4.3 Multi-fiber beam description and cracking indicators

Once improved, a multi-fiber beam description can also provide local information relative to
cracking. Fig. 11 shows, for a given stage of loading (-3 mm after a global loading path up to ±3
mm), a comparison between the damage field obtained by the 2D FE description, which highlights
crack locations, and the damage field obtained by the enhanced MF description presented above
which is a distributed field. A good level of consistency can be observed between both.

Furthermore, a set of crack opening indicators can be derived. As mentioned in Section 4.1.3,
an accurate description of the cracking phase is obtained by introducing crack spacing. Knowing
such data ahead of time can pose a problem however. Experimental values (whether physical or
numerical) may be used, or else one can rely on the set of rules proposed in design codes Eurocode
2 (2004), Model Code (2010). Given this knowledge, the calculation allows accessing a mean
crack opening value.

It is generally considered that this opening appears beyond the peak stress ft (Fig. 13(b)). For a
length sc equal to the distance between cracks, the crack opening wc is therefore expressed as

wc= sc (ε − εt0)     (where εt0 is the peak strain) (24)

Within the framework of the French national research program CEOS.fr (Mazars and Coste
2014), tests have been carried out on large beams in 4-point bending (length=6.1 m, width=1.6 m,
height=0.8 m, see Fig. 12). During these tests, cracking was analyzed using digital image

(a)

(b)
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Fig. 12 CEOS.fr experiments on large 4-point bending RC beams: (a) test device system, and (b)
reinforcement pattern for the RL6 beam (dimensions in mm)

Fig. 13 Four-point RC bending tests, (a) crack pattern measured from the digital image correlation analysis
within the central zone of the beam (mean spacing = 0.206 m), (b) the stress-crack opening curve, (c) load-
displacement response, and (d) crack width (mean value at the upper reinforcement layer) vs. applied load

ft

Stress

Displ.

wc

(a)

(b)

(d)

(c)

beam jacks
central section of the beam

1600
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Table 4 Four-point RC bending tests (RL6): Experimental data and material specifications

Experimental data
Concrete model parameters

Steel Concrete

E
(GPa)

E
(GPa)

ft
(MPa)

Gf
(N/m)

fc
(MPa)

E
(GPa)

σ0t

(MPa)
At Bt

σ0c

(MPa)
Ac Bc

195 40 4.67 75 63.75 40 4.67 1 11500 -150 1.5 355

correlation Fig. 13(a), thus providing access to both the spacing and crack width in the pure
bending zone (Rospars and Chauvel 2014).

Just like for the previous beam, this calculation has been performed using a multi-fiber beam
description. The concrete cross-section is a matrix composed of 8×16 fibers; in addition, the pure
bending zone (1.6 m) has been divided into 10 elements.

The Hillerborg method was implemented on the basis of crack spacing obtained on the RL6 test
beam (mean value: 0.206 m), and this calculation was conducted using model parameters estimated
from the material properties (Table 4).

Fig. 13(c) reveals the good correlation for global behavior (load-displacement). From Eq. (25),
the average crack width is determined at the level of the upper reinforcement, and the high quality
of the results obtained Fig. 13(d) is now apparent.

5. Conclusions

Based on the finding that damage is a major part of concrete behavior, the first part of this
paper presented a new damage model (the “µ model”) relying on the principles of isotropic
damage mechanics. Two thermodynamic variables were defined in order to describe, within a 3D
formulation, the unilateral behavior of concrete (i.e., crack opening and closure), which is essential
for cyclic loadings and particularly the seismic response of concrete structures. Furthermore, the
mate-rial parameters are easy to identify from individual tensile and compressive tests alone. A
series of applications using classical FE calculations has yielded satisfactory results when
compared to experimental results, thus attesting to the model's effectiveness.

To reduce the size of nonlinear problems for real structures, a simplified FE description has
been considered for engineering purposes; it is based on the use of multi-fiber beam elements for
beams as well as columns. Enhancements were included both to avoid dependence on mesh size as
damage evolves and to take into account specific phenomena such as steel-concrete debonding,
hysteretic loops and permanent strains on the concrete.

These concepts have helped build a tool for accessing results, along with a conventional finite
element calculation. Results include the local level (e.g., state of rebar deformation, average crack
width) though with a better control of convergence problems and considerable computational time
savings.

Along these same lines, other improvements are ongoing and include:
- for the 3D and 1D µ model, a description of the strain rate effect via a variation in the initial

threshold of the driving damage variable, so as to model high-velocity loading effects;
- for simplified approaches: i) based on the enhanced modeling presented herein, the deve-

lopment of equivalent lattice modeling for RC walls; and ii) the introduction of section
warping to treat torsion and shear effects (Capdevielle et al. 2015).
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In conclusion, this model and the strategy proposed to achieve simplified modeling have
provided a useful tool for engineering applications; moreover, this tool can cover a wide array of
problems, whether monotonic or cyclic, encompassing quasi-static and dynamic loadings.
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