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Abstract.  The hybrid-type penalty method (HPM) is suitable for representing failure phenomena 

occurring during the transition from continua to discontinua in materials such as concrete. Initiation and 

propagation of dominant cracks and branching of cracks can easily be modeled as a discrete crack. The 

HPM represents a discrete crack by eliminating the penalty that represents the separation of the elements at 

the intersection boundary. This treatment is easy because no change in the degrees of freedom for the 

discrete crack is necessary. In addition, it is important to evaluate the correct deformation of the continua 

before the crack formation is initiated. To achieve this, we implemented a constitutive model of concrete for 

the HPM. In this paper, we explain the implemented constitutive model and describe the simulation of an 

anchor bolt pullout test using the HPM demonstrating its capability for evaluating progressive failure. 
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1. Introduction 
 

We are still dealing with significant damage to concrete structures due to recent large 

earthquakes. Therefore, it is important to understand the failure mechanism of concrete structures. 

A dominant crack is initiated in a concrete structure by tensile stress, and subsequently the crack 

grows, propagates, and branches until the structure finally collapses. To predict the progressive 

failure of a concrete structure, computation of a discrete crack is essential to evaluate the crack 

accurately. Computer simulation can predict crack growth, propagation, and branching leading to 

failure of the concrete structure. 

The crack models for concrete are classified as the “smeared crack model” (e.g., Bazant and Oh 

1983) and the “discrete crack model” (e.g., Barlenblatt 1962). The discrete crack model describes 

the actual crack well. 

In the smeared crack model, it is difficult to describe an actual crack because the crack width is 
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represented by a large strain at Gaussian points. The precise concentrated stress around the crack 

tip does not appear even though it has an important role for crack propagation. Sato and 

Naganuma (2007) improved the model by using bond slips in the smeared crack context to 

evaluate crack width. 

There are two approaches in the discrete crack model. One is separating elements at the 

intersection boundary to represent the crack. Miehe and Gürses (2007) introduced a discretization 

technique in terms of node doubling as the most natural setting for the brittle fracture problem. 

The other is the extended finite element method (XFEM) (Belytschko and Black 1999) which 

calculates a discrete crack by enriching the displacement interpolation with a discontinuous 

function based on the partition of unity concept. Many researchers have analyzed discrete cracks in 

a concrete specimen using XFEM (e.g., Unger et al. 2007, Theiner and Hofstetter 2009).  

The particle method is one of the methods used to represent a discrete crack. It is suitable in 

qualitative analysis, such as when studying how to demolish a structure, but it is not accurate for 

quantitative analysis. Rabczuk and Belytschko (2007) analyzed cracks in a concrete structure by 

the particle method. 

Another good method to represent a crack is to separate the intersection boundary in each 

elements. Before the initiation of a crack, the separated rigid bodies or elements are tied by spring 

elements or a penalty to represent a continuum. This tied condition is eliminated to represent crack 

initiation. The advantage of this method is its simplicity. There is no need for tracking the crack 

path. 

The rigid body spring model (RBSM) developed by Kawai (1977) is a good method to 

calculate a discrete crack. In this method, a discrete crack is modeled by a spring located at the 

boundary of the elements. Separation of the continuum is easy to model by this method. Initially, it 

obtained good results for the problem of the strong nonlinearity of steel. It was then applied to 

discrete limit analysis of soils and concrete structures (Takeuchi et al. 2005). However, the elastic 

deformation in the continua obtained by RBSM is not accurate, because it models a continuum to 

connect the spring elements between the edges of the rigid bodies. RBSM is still used to model 

realistic behavior of concrete structures from cracking to failure (Gedik et al. 2011).  

The hybrid-type penalty method (HPM), developed by Takeuchi et al. (2000), refined the 

RBSM method for calculating elastic deformation of the elements using the finite element method 

(FEM), and introduced a Lagrange multiplier to satisfy the subsidiary condition of continuous 

displacement in the hybrid-type virtual work formulation. The HPM is suited to analyzing 

progressive failure of concrete structures with the following features: 

• Accurate deformation can be calculated before crack initiation because an elastic element 

(called a subdomain in HPM) is used. Even after crack initiation, it is important to calculate the 

correct deformation within the elastic area between cracks. 

• The HPM models a discrete crack by eliminating the penalty that represents separation of the 

elements at the intersection boundary. This treatment is easy because no change in the degrees of 

freedom for a discrete crack is necessary. 

• The concentrated stress at the crack tip can be calculated without the J-integral, which was 

developed by Rice (1968). The HPM makes it easy to obtain accurate concentrated stress around 

the crack using the correct relationship between tensile stress and the displacement of the crack 

mouth opening. 

The authors implemented a constitutive model of concrete material in the original HPM to 

make it possible to compute progressive failure phenomena of a concrete structure. In the present 

paper, we introduce the basic formulation of the HPM and describe an implemented constitutive 
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model of concrete. We applied an empirical expression of the tension-softening curve in the 

constitutive model to represent correct deformation during crack opening. Finally, we validated the 

accuracy of the constitutive model by simulating a pullout test of an anchor bolt embedded in flat 

concrete. 

 

 

2. Theory of HPM 
 

2.1 Governing equation 
 

The basic equation of the elastic problem is as follows 

 , (1) 

 , (2) 

 , (3) 

where σ is the Cauchy stress tensor; f, the body force per unit volume; ε, the infinitesimal strain 

tensor; D, the constitutive tensor; :=(∂/∂xi)ei, the differential operator; 
S
, the symmetric part of 

; and u, the displacement field in ,  is the reference configuration of the continuum body 

with a smooth boundary . Here  is the geometrical boundary, and 

 is the kinetic boundary. The boundary conditions satisfy following conditions 

 , (4) 

 , (5) 

where t is the traction, and n is the field normal to the boundary Γσ.  

Let  consist of M subdomains  with the closed boundary , as shown in 

Fig. 1., that is 

 . (6) 

We denoted by  the common boundary for two subdomains  and  adjoined as 

shown in Fig. 2, and defined it as follows 

 . (7) 

The relation for the displacement of Γ<ab>, which is the intersection boundary between  

and , is as follows 

 

 

 

Fig. 1 Subdomain  and its common boundary  
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Fig. 2 Boundary Γ<ab> between subdomain  and . 

 

 

 . (8) 

This introduces a subsidiary condition into the framework of the virtual work equation with the 

Lagrange multiplier  as follows 

 , (9) 

where  shows the variation of . From the above, the following hybrid-type virtual work 

equation is obtained 

 

  . (10) 

Here, N shows the number of common boundaries of the subdomain, and  shows the virtual 

displacement. The superscripts  and  indicate the subdomains  and  related to 

the common boundary . 

 

2.2 Physical interpretation of Lagrange multiplier 
 

The physical meaning of the Lagrange multiplier  can be considered as a surface force at the 

boundary  as in the following equation 

 , (11) 

where  and  are surface forces at the boundary  on the subdomains  and 

, respectively. In this paper, the Lagrange multiplier  on the boundary  is defined 

as follows 

 . (12) 

Here,  shows the relative displacement on the boundary , and  is the penalty 

function. 

In the case of a two-dimensional problem, Eq. (12) is as follows 

 , (13) 

where,  and  are the relative displacements in the normal tangential directions, 

respectively, to the boundary . Similarly,  and  are Lagrange multipliers in the 
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normal and tangential directions of the surface forces. The HPM can be described as follows by 

the penalty function  using the coefficient  

 . (14) 

The penalty concept is the same as in discontinuous deformation analysis (DDA) which was 

developed by Shi and Goodman (1989), Sasaki et al. (1994). However, representation of contact 

behavior is different between DDA and HPM. DDA represents contact at a point, whereas HPM 

represents contact distributed on the boundary surface. 

The subsidiary condition shown in Eq. (9) is transformable to a local coordinate system along 

the intersection boundary as follows 

 . (15) 

Here,  and  are the geometric transformations of each subdomain on the 

common boundary  related to the subdomain  and , respectively. The relation 

between these transformation matrices is as follows 

 . (16) 

Therefore, the relative displacement of a local coordinate system along the intersection 

boundary is obtained as follows 

 . (17) 

Substituting Eq. (17) into Eq. (9), we can obtain the following equation 

 . (18) 

 

2.3 Discretized equation by matrix form 
 

The independent linear displacement field  in each subdomain  is assumed as follows 

 . (19) 

Here,  shows the rigid displacement and the rigid rotation at point , and 

 shows a constant strain in the subdomain . 

In the case of a two-dimensional problem, the coefficient in Eq. (19) is as follows: 

  , , 

  , . 

Hear,  and  indicate rigid displacement at the point  in a subdomain,  indicates 

rigid rotation, and , , and  indicate constant strain in a subdomain. In the present paper, 

Eq. (19) is applied for a linear displacement field. In the case of a high-order displacement field, a 

high-order term is added to Eq. (19). 

For the displacement field used in the present paper, the degrees of freedom are the rigid 

displacement and strain at the arbitrary point in the subdomain. The displacement field is 
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expressed in this model using the parameter for an arbitrary point in each subdomain, so that the 

displacement is not defined by the node as in the displacement model of FEM. Therefore, an 

arbitrary polygon, a polyhedron, or a curved surface body can be used as subdomain without 

limiting the element shape. 

We rewrite the Eq. (10) in matrix form for discretization of the hybrid-type virtual work 

equation 

 . (20) 

Here, L is a matrix of a differentiation operator. The displacement field of the Eq. (19) and 

virtual displacement are written simply as follows 

 , where , , (21) 

 , where . (22) 

Consequently, we obtain following equation 

 , where .  (23) 

However, the relative displacement  is described as follows 

 , (24) 

where, , and . 

The discretized equation by substituting the above-mentioned relations in Eq. (20) is obtained 

as follows 

 , (25) 

where, 

, 

, 

. 

Since the virtual displacement  of Eq. (25) is arbitrary, we obtain the following discretized 

equation 

 , (26) 

where, 

, 

. 
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Tri-linear approximation
Experiment

 

Fig. 3 The skeleton curve of compressive stress 

 

 

As described above, the discretized equation of the HPM becomes the simultaneous linear 

equation of Eq. (26). The coefficient matrix of K on the left-hand side can be obtained to assemble 

each stiffness matrix of the subdomain and subsidiary condition on the boundary. The 

discontinuous phenomena of opening, etc., can be expressed without changing the degrees of 

freedom by setting the value of Eq. (12) to zero. 

 

 

3. Implementation of the constitutive model of concrete material 
 

A typical constitutive model of concrete material is generally based on an empirical formula 

obtained from many experiments. For example, a smeared crack model, which is generally used in 

FEM, uses a local coordinate system with normal and tangential directions set relative to the crack 

after crack initiation. The concrete stress is calculated using an empirical formula obtained from 

uniaxial experimental tests. Before applying an empirical formula, the stress tensor is rotated by a 

translation matrix, which is determined by the direction of the crack. 

The empirical formula for concrete is implemented in the HPM as well as the FEM. However, 

as mentioned above, the degrees of freedom are different from the FEM. In the FEM, the strain 

and stress are evaluated at Gaussian integration points. However, in the HPM, the tensile failure of 

concrete is evaluated at the boundary of the subdomain, and compressive failure is evaluated 

within the subdomain. Tensile failure, namely, a discrete crack, is represented by the separation of 

two subdomains at a boundary. The constitutive model of tensile failure is represented by the 

relationship between tensile stress and relative displacement at the intersection boundary between 

two subdomains. This concept is the same with the cohesive crack model. Here, we explain the 

constitutive model of concrete for tensile stress and compressive stress implemented in the HPM 

for a plane stress problem. The problem of a constant-strain triangle element under plane stress is 

used here. The degrees of freedom are defined at the centroid of a triangle element. 

 

3.1 Constitutive law for compressive stress 
 

A constitutive model can be based on a hardening rule and a yield surface in a stress space 

derived by experiment. First, we describe the hardening rule. The dashed line of Fig. 3 shows a 

typical compressive stress-strain relationship for concrete. The minimum stress of this curve 

indicates the compressive strength fc. The stiffness degrades gradually during increasing stress 

until fc. After the stress exceeds fc, softening phenomena take place until ultimate strain. The solid 

line in Fig. 3 shows a tri-linear approximation for the skeleton curve, which was also adopted in  
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Fig. 4 Yield surface under biaxial stress 

 

 

the RBSM by Takeuchi et al. (2005). The first degrading point of the skeleton curve is designated 

as the first compressive yield stress fc1 whose value is defined as 50% of the fc value. After fc1, the 

tangential stiffness is set to 50% of the initial stiffness value. The second degrading point, namely 

the second compressive yield stress fc2, is defined as 95% of the fc value because if the fc value is 

used for the second degrading point, the second tangential stiffness is less than the actual value. 

After fc2, the tangential stiffness is set to zero until the ultimate compressive strain cu. After cu, the 

stress is released until the strain equals a×cu, where a is the coefficient depending on the material. 

When the relative displacement is greater than acu, the stress is kept to a value of 0.2 fc. 

The compressive strength fc changes with the transition of the stress under biaxial stress states. 

A yield surface under various biaxial stress states was proposed by Kupfer et al. (1969) as shown 

in Fig. 4 (solid line). It can be expressed as , where fc is defined by the principal 

stresses and . This yield surface is adopted in this paper.  

When fc1 and fc2 are defined by fc1 = 0.5fc and fc2 = 0.95fc as the yield surface , 

the surfaces of the degrading points fc1 and fc2 are shown in Fig. 4 with dashed lines. The tangential 

Young’s modulus ET is determined by the position in Fig. 4 under the current principal stresses 

and . The incremental stresses are calculated with the following equation 

,                               (27) 

where , , and  are the incremental stress, incremental strain, and stress-stain  

relationship matrix, respectively.  is defined as 

,                         (28) 

where  and  are the tangential Young’s modulus and Poisson’s ratio, respectively. In Eq. 

(27), axial and shear stiffness are degraded with the same ratio that assumes a constant Poisson’s 

ratio. 

The origin-oriented model was adopted for hysteresis behavior. The stress and strain behavior 

of the method is shown in Fig. 5. When strain is reversed during the loading process on the 

skeleton curve such as at the point C or E in Fig. 5, it has a linear behavior on a straight line 

oriented to origin point O. When the strain is greater than the maximum reversal point, it returns to  
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Fig. 5 The hysteresis rule in compressive stress 
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Fig. 6 Surface force and tensile strength 

 

: Tensile strength

: Fracture energy

Released

according to 

 

Fig. 7 The tension softening curve for concrete 

 

 

the skeleton curve. The incremental stress  is calculated by Eq. (27) using the tangential 

stiffness ET which is obtained from the slope of this straight line.  

 

3.2. A constitutive law for tensile stress 
 

The HPM is capable of separating two subdomains by simply eliminating the penalty. This 

feature is suitable for representing a discrete crack in the concrete. When the surface force σn at the 

boundary Γ<ab> reaches tensile failure strength ft, we can then eliminate the penalty and compute 

the discrete crack as shown in Fig. 6. 

The stress in the concrete decreases gradually with the progress of the crack opening 

displacement after exceeded tensile failure. This behavior is called tension softening. Concrete is 

considered as a quasi-brittle material compared with a brittle material such as glass. Hilerborg et 

al. (1976) introduced fracture energy for this tensile softening behavior in the fictitious (or 

cohesive) crack model. The fracture energy Gf is the area enclosed by the tension softening curve 

and has a unique value representing the strength of concrete material with a tensile strength ft. In  
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Fig. 8 The test results of tension softening curve (after JCI 2001) 

 

 

the HPM, the tension softening curve is defined as shown in Fig. 7 as the relation between the 

normal-direction stress σn and crack opening displacement σn  

Many tests have been conducted by many institutes and universities in order to obtain the 

tension softening curve and fracture energy Gf. In a Research Committee report on fracture 

mechanics test methods for concrete by the Japan Concrete Institute (JCI) (2001), the French 

International Union of Laboratories and Experts in Construction Materials, Systems, and 

Structures (RILEM) has recommended a test method to obtain fracture energy based on a three-

point bending test of a notched beam. Several institutes and universities have reported results of 

round-robin tests with this method. The black lines in Fig. 8 show the results of these tests. In the 

HPM, we apply a tension-softening curve which corresponds to these test results. 

Nakamura et al. (1999) compared many empirical derivations of the tension-softening curve in 

their paper. It was determined that the empirical expression by Hordijk et al. (1986) (Eq. (29)) was 

well matched with past experiments, and they used this expression as a standard for comparison 

,                (29) 

where wc, the limited virtual crack opening displacement (mm) when the tensile stress is zero, is 

given by 

,                              (30) 

where ft is the tensile strength (MPa), and Gf is the fracture energy (N/mm). 

Eq. (29) is adopted for the tension-softening curve in the present paper since it corresponds 

better to the test results than other proposed empirical expressions. Eq. (29) uses the limited virtual 

crack displacement  which is the crack displacement when the tensile stress is zero. It is 

practical and useful for code to be able to change the status of failure after wc.  

The red lines in Fig. 8 shows examples of tension softening curves using Eq. (29). The red 

dashed line shows the curve for a tensile strength ft=4.0 MPa and fracture energy Gf=0.15 N/mm, 

and the red solid line is ft=2.5 MPa and Gf=0.05 N/mm. The test results are almost all within these 

two lines. Therefore Eq. (29) is capable of representing various materials in concrete. According to 

this committee report, the average value of the fracture energy in these tests was 0.141 (N/mm). 

The origin-oriented model is used for hysteresis behavior of tensile stress as well as  
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Fig. 9 The hysteresis rule in tensile stress 

 

 

compressive stress. When the relative displacement δnis reversed in the tension softening curve as 

shown at point B or D in Fig. 9 for the maximum tensile strain, it has linear behavior on a straight 

line that is oriented toward origin O. When it exceeds the maximum tensile strain, it returns to the 

skeleton curve, e.g., along the path E-D-F in Fig. 9. 

In this way, after crack initiation, accurate stress and displacement can be calculated because 

the fracture energy is determined directly. 

However, the location of the discrete crack depends on the division of the mesh. There is an 

error due to the difference in the exact crack location. To correct this error, the division of the mesh 

can be changed by predicting of the location of the crack, or a finer mesh can be used.  

 

 

4. Validation 
 

To validate the HPM with a newly implemented concrete constitutive model, an anchor bolt 

pullout test which shows typical progressive failure was simulated. 

 

4.1 Description of an anchor bolt pullout test 
 

The crack model was implemented in the HPM to solve a progressive failure problem. This was 

validated by a simulation of an anchor bolt pullout test. The details of this experiment are reported 

in “Application of fracture mechanics to concrete structures” (1993) which was carried out by the 

“Committee of fracture mechanics applied research” of the JCI. The anchor bolt pullout test is one 

of the round robin tests. 

Two specimens were tested. The first specimen (Model #1) was the same as that used in 

common tests conducted by RILEM (1991). The second specimen (Model #2) was the same as the 

test specimen used by Lun (1990) who experimentally confirmed the progressive crack and 

fracture mechanisms by laser speckle.  

The schematic test model is shown in Fig. 10. The anchor bolt is embedded in a flat concrete 

block. The size of Model #1 was l=900 mm, thickness b=100 mm, Model #2 was less than half the 

size of Model #1 with l=350 mm, b=80 mm. The embedded depth of the anchor bolt was d=150 

mm in Model #1 and d=60 mm in Model #2.  

The embedded anchor bolt was pulled up while the concrete block was held down by the two 

support bars. A lifting force was applied to the top of the anchor bolt. The ratios of the distances 

from the supported point to anchor bolt a divided by the sizes of concrete blocks l were 0.33 in 

Model #1 and 0.17 in Model #2. This ratio for Model #1 was larger than for Model #2. 
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Fig. 10 Schematic of the test model 

 

  
(a) Model #1 (b) Model #2 

Fig. 11 Simulation model 

 

 

Both side of the anchor are considered slippery because they are coated with lubricant. 

 

4.2. Simulation model 
 

Simulation models of Model #1 and #2 are shown in Fig. 11. We solved half of the experiment 

considering symmetry. On the left-hand side we applied symmetric boundary conditions. The 

supported points are indicated with triangle marks. Only the vertical direction was fixed, because  
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Table 1 Material properties 
(a) Concrete 

 Model #1 Model #2 

Compressive strength fc (MPa) 32.6 34.3 

Tensile strength ft (MPa) 2.8 3.4 

Young’s modulus E (MPa) 2.47 × 10
4
 2.94 × 10

4
 

Poisson’s ratio  0.167 0.167 

(b) Anchor bolt 

 Value 

Young’s modulus E (MPa) 2.059 × 10
5
 

Poisson’s ratio  0.3 

 

  
(a) Model #1 (b) Model #2 

Fig. 12 The tension softening curve of the concrete 

 

 

the concrete block could be rotated during the pullout test. The static load was applied to the top of 

the anchor bolt. The incremental load was divided into small values. The bottom and right side had 

free boundary conditions. The mesh size was chosen so a reasonable crack path could be obtained. 

The material properties of the concrete and anchor bolt are shown in Table 1. These values 

were set according to the JCI report (1993). For Model #1 we used the material properties reported 

by participant T2-3 to compare with the results of the tests conducted by T2-3. The material 

properties of Model #2 were specified in advance before the test. The adhesion value at the side of 

the anchor bolt was specified as a small value of 0.01 MPa. The adhesion value at the anchorage 

zone was 14 MPa. 

The tension softening curves that were used are shown in Fig. 12. Fig. 12(a) shows the tension 

softening curve for Model #1 which had a tensile strength ft=3.4 MPa and a fracture energy 

Gf=0.06 or 0.09 N/mm. Fig. 12(b) shows the curve of Model #2 which had ft=2.8 MPa and 

Gf=0.08 N/mm. As the tensile strengths in both curves are small compared to the test results, the 

tension softening curve was reduced by using a small Gf value. 

Nonlinear algorithm is very important to accurately calculate the tensile cracking and 

compressive failure problem in concrete. Takeuchi’s extended rmin method (2005) was suited for  
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Anchor bolt Support points

start

 

Fig. 13 Crack shape after the test 

 

 
(a) Experiments (b) Analysis 

Fig. 14 Comparison of crack patterns 

 

 

this purpose and used in the presented paper, which was originated by Yamada (1968).  

 

4.3 Numerical results 
 

4.3.1 Results of Model #2 
With Model #2, the propagation of the dominant crack can be recognized by the photograph 

which was taken after the experiments and shown in Fig. 13. Broken parts were set to their 

original shapes after the experiments. Cracks started from anchor tip and propagated to both sides. 

Interestingly, they diverged toward supported points and the side of concrete block. The crack 

shapes on both sides were nearly symmetric. We assumed this symmetry at our simulation. 

Fig. 14 shows the crack pattern of Model #2. Fig. 14(a) shows the experimental result for the 

right half of Fig. 13. Fig. 14(b) shows the numerical deformation with an amplification factor of 

20.0 for recognizing crack width. The contour shows the maximum principal stress σ1.  
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Experiment

Analysis (      = 0.09 N/mm)

Analysis ( = 0.06 N/mm)

 

Fig. 15 Relationship between normalized load and displacement 

 

   

(a) F/  = 0.33 (b) F/  = 0.54 (c) F/  = 1.05 

   

(d) F/  = 1.20 (e) F/  = 1.259 (f) F/  = 1.264 

Fig. 16 Deformation and contour of maximum principal stress σ1 

 

 
At first, the crack initiated at the bottom of the anchor bolt and propagated to the left; then it 

branched in the upper and lower directions. The crack pattern was well matched with the 

experiment. The propagation of the progressive crack was well simulated. The red color of the σ1 

contour corresponds to tensile strength where the crack subsequently occurred. Concrete near tip 

of the crack was under concentrated stress as indicated by the red region of the contour shown in 

Fig. 14(b). These concentrated stresses can be represented by considering a discrete crack which is 

realized by separating the subdomains.  

 

 1 (MPa) 

2.8 
1.9 
0.9 
0.0 
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4.3.2 Results of Model #1 
In the tests of Model #1, the results of the experimental tests were compared with the analysis 

using normalized force F/  to avoid the difference in compressive strength, where F is the 

subjected load, b is the thickness of the concrete block, d is embedded depth of the anchor bolt, 

and  is calculated by following equation 

  (31) 

where fc is the compressive strength (MPa).  

Fig. 15 shows the relationship between the normalized force and crack displacement. The broad 

blue line shows the experimental results, and red lines show the numerical results. The solid line 

and dashed line show the results for Gf=0.06 and 0.09 N/mm, respectively. The result for Gf=0.06 

N/mm was well matched with the experimental results.  

Fig. 16 shows the transition of numerical deformation (amplification factor 50.0) with the 

contour of the maximum principal stress σ1. The notation (a)-(f) corresponds to the yellow circle 

markers in Fig. 15. The initial slope of the curve, which is approximate, represents that the 

prediction of the deformation before the crack was accurate (Fig. 15(a)). The numerical result 

corresponds well to the experimental results after crack initiation (Fig. 15(b) and (c)). The 

relationship between normalized force and crack displacement was also accurately predicted 

during the process of dominant crack propagation (Figs. 15(d)-(f)). 

We presented simulations of two anchor bolt pullout tests with the proposed HPM, which is 

applicable to a flat concrete structure. In Model #1, the quantitative validation was confirmed. The 

numerical result of relationship between normalized force and displacement was well matched 

with the experimental result. In Model #2, qualitative validation was also confirmed. The crack 

shape in the numerical result was well matched with the experimental result. 

 

 

5. Conclusions 
 

A method to simulate progressive concrete failure was presented and proved by performing 

experimental tests. The presented method is an extension of the hybrid-type penalty method 

(HPM) with a constitutive model (discrete crack model) for concrete. The discrete crack is 

evaluated at the intersection boundary between subdomains of HPM. Nonlinearity of compressive 

behavior is considered in the compressive stress-strain components of the subdomain of HPM 

based on the tri-linear approximation function of an empirical stress-strain relationship. In the 

intersection boundary of the subdomain, it is easy to simulate the tensile stress behavior and crack 

displacement using the empirical expressions which were introduced by Hordijk et al. (1986). 

To confirm the validity of the new HPM, we carried out simulations of anchor bolt pullout 

tests. First, the pullout strength was compared in the test Model #1, and we obtained good 

agreement in the relationship between force and displacement. Secondary the progressive crack 

was compared with the observed record of the test Model #2. The tip and branch of the crack 

corresponded well to the test results. These agreements with the qualitative and quantitative 

simulation proved the correctness of the proposed numerical method. 

It is important that the method is able to simulate flat concrete. More complicated problems 

such as failure of reinforced concrete can be solved based on the method proposed here. In the 

future we shall extend the method to evaluate failure phenomena of reinforced concrete. 
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