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Abstract.    This study established the standard recommended values and expansion fracture threshold 
values for the content of steel slag in controlled low-strength materials (CLSM) to ensure the 
appropriate use of steel slag aggregates and the prevention of abnormal expansion. The steel slags used 
in this study included basic oxygen furnace (BOF) slag and desulfurization slag (DS), which replaced 
5-50% of natural river sand by weight in cement mixtures. The steel slag mortars were tested by 
high-temperature (100°C) curing for 96 h and autoclave expansion. The results showed that the effects 
of the steel slag content varied based on the free lime (f-CaO) content. No more than 30% of the natural 
river sand should be replaced with steel slag to avoid fracture failure. The expansion fracture threshold 
value was 0.10%, above which there was a risk of potential failure. Based on the scanning electron 
microscopy (SEM) analysis, the high-temperature catalysis resulted in the immediate extrusion of 
peripheral hydration products from the calcium hydroxide crystals, leading to a local stress 
concentration and, eventually, deformation and cracking. 
 
Keywords:  high-temperature catalysis; basic oxygen furnace slag; desulfurization slag; controlled 
low-strength materials; volume stability behavior 

 
 
1. Introduction 

 
In recent years, natural sandstone has been excessively exploited in Taiwan, and the demand 

largely exceeds the supply. The natural resources are being exhausted due to numerous engineering 
constructions, and the solution is to find replacement resources. The steel industry is associated 
with large-scale industrial sites in various regions. The iron and steel manufacturing process 
consumes a large amount of resources and energy and produces various byproducts and wastes. 
These byproducts can be used as mixing materials (Qasrawi 2009, Lun et al. 2008). Despite the 
uncertainty in the available references and estimations, the world steel industry produced 1.5 
billion tonnes of steel in 2012 (Word steel Association 2013). The amount of slag waste generated 
is calculated to be between 10% and 20% of the raw material used (depending on the quality of the 
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metal, oxide content, oxygen supply volume and furnace efficiency) (Rodriguez et al. 2013). In 
Taiwan, the annual output of basic oxygen furnace (BOF) slag and desulfurization slag (DS), 
which are major sources of industrial waste, is approximately 1.6 million tons, accounting for 25% 
of the mainsolid waste. Appropriate use of these wastes can reduce the amount of waste in landfills 
and the excessive consumption of natural resources. However, too high free lime may affect both 
mechanical properties and durability of concrete (Cengiz et al. 2004, Vagelis 2000). The non-water 
granulated furnace slag eventually expands because of its lime and magnesia contents. To avoid 
the expansion, these contents must be reduced to below 2-3%; otherwise, the slag will not be 
useful (Svanera 2012). After these solid wastes are stabilized using certain procedures (Rafat 
2009), they can be used as controlled low-strength materials (CLSM) aggregates, thus increasing 
the waste material reutilization efficiency, reducing environmental pollution and damage and the 
waste of natural resources and creating profits (Sivakumar et al. 2012, Naganathan et al. 2010). In 
many studies, the furnace slag has been used as concrete (Lizarazo-Marriaga et al. 2011, Chen 
2011, Wang et al. 2014), roadbed (Wu et al. 2007, Wang and Emery 2004) or asphalt aggregates 
(Shen et al. 2009). However, the material properties are difficult to control due to the material 
processing, quality control and material instability. Inappropriate use of the aggregates can result 
in their abnormal expansion, leading to pavement upheaval and damage (Ivanka 2011). The 
present specifications emphasize the strength and workability of the material. But durability is 
affected by the abnormal expansion behavior and its instability over time, is neglected. Multiple 
cases of cracking and expansion after aggregate backfill have been observed in Taiwan and abroad 
(Hwang 2010). Wang et al. (Wang 2010, Wang et al. 2010, Mahmoud 2012) indicated that the 
hydrated oxides CaO and MgO in the steel slag might impact the volume stability. The steel slag 
must be stabilized, controlled, tested and treated appropriately to make it useful in engineering 
applications, f-CaO and f-MgO cause the expansion failure of backfill pavement because curing at 
normal temperatures does not allow for the hydration of the oxides, and abnormal expansion 
occurs only after a long time (Li and Li 2005). The main factor which is governing the expansion 
is the free CaO and MgO contents in cement. The expansion is due to the formation of Ca(OH)2 
and Mg(OH)2 upon the delayed hydration of free CaO and MgO respectively (Tareq and Attar 
2013). Chatterji (Chatterji 1995) stated that the mechanism of expansion for both oxides is the 
same, and its capacity for free CaO is more due to that Ca(OH)2 is more soluble than Mg(OH)2. 
These hydration mechanisms mostly occur after general concrete hardening, resulting in the 
expansion failure of the concrete. This study used tropical curing to evaluate the relationship 
between the content and expansion behavior of BOF and DS in a CLSM cement mortar. Hence, 
the suitability of the material for use in different engineering applications can be known before it is 
used extensively, thus avoiding problems with the engineering quality and even threats to user 
safety. 

 
 

2. Materials and methods 
 
2.1 Materials and mix proportions 
 
The BOF and DS used in this study were produced by China Steel Corp. (Taiwan) and broken 

and screened by downstream firms. The particle size of the fine aggregate was 0-5 mm, according 
to hazardous industrial waste standard, the toxicity characteristic leaching procedure (TCLP) 
dissolution test was performed to ensure that the concentrations of dissolved heavy metals were 
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is one of the important causes of expansion (Chaurand et al. 2007, Motz and Geiseler 2001, Shi 
and Qian 2000), and lengthy periods of time are required to achieve the potential expansion of slag 
because of the hydration of certain aluminates and calcium oxide in addition to the slow hydro 
carbonation reactions of magnesium oxide (Montenegro et al. 2013). Type I cement (Taiwan 
Cement Corp.), whose properties conformed to ASTM C114-05, was used in this study. The 
natural river sand conformed to ASTM C33. The cement:natural river sand:water mix ratio was 
1:8.37:1.5, and controlled low-strength material (CLSM) cement mortar was produced by 
replacing 0%, 5%, 10%, 20%, 30%, 40% and 50% of the natural river sand by weight with the 
steel slag. The mortar mix ratios are summarized in Table 2. 

 
2.2 Methods 
 
Due the free lime may also be encapsulated inside particle during the formation process 

(Krittiya et al. 2013). Therefore the use of high-temperature catalysis accelerated expansion 
behavior. To examine the expansion of the BOF and DS during high-temperature catalysis, cement 
mortars 2.54×2.54×28.5 cm3 in size were made with different ratios of the various components. 
Two high-temperature test methods, autoclave expansion and heating catalysis, were used for the 
catalysis. The area of expansion failure was quantified using the square method to compare the 
amount of damage for the different samples. Finally, the hydration inside the sample was observed 
by SEM microscopic analysis. The autoclave expansion conformed to ASTM C151. The heating 
catalysis was performed by placing the specimen in a constant temperature and humidity curing 
cabinet for tropical curing at a temperature of 100℃ and relative humidity of 100%. The specimen 
was removed every 24 h to measure its length and record the SEM image. The area of the 
specimen that was damaged (damage area) was quantified using a transparent grid, and then, the 
specimen was placed in the constant temperature and humidity curing cabinet again. The tropical 
curing was stopped after 4 days of repeated action. The damage area was quantified using a 
computer and transparent grid to measure the damage in four planes of the specimen. The small 
grid area was 1 mm×1 mm, and each side of the mortar bar had 7,125 small grids; thus, the four 
sides had a total of 28,500 grids. As shown in Fig. 1, the sample failure points, planes and cracks 
were put on the grids for quantification, and the damage area percentage was calculated using Eq. 
(1). 

ሺ%ሻܽ݁ݎܽ	݁ݎݑݐݑݎ  ൌ 	
∑௨௧௨	௦

ଶ଼ହ
	ൈ 100                   (1) 

Study using two high-temperature test methods to find out the effect of temperature on the 
expansion. The area of the specimen that was damaged (damage area) was quantified using a 
transparent grid to examine extent of the damage. Steel slag replace, high-temperature catalysis 
and curing time relevance, all together presented in the article. 

 
 

3. Results and discussion 
 
3.1 Autoclave expansion 
 
Fig. 2 shows the volume expansion capacity of low-strength mortar with different amounts of 

slag after the autoclave expansion. When the BOF replaced less than 10% of the natural river sand, 
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Expansion behavior of low-strength steel slag mortar during high-temperature catalysis 

3.4 Scanning electron microscopy (SEM) 
 
Fig. 12 shows the SEM microstructure of the DS low-strength steel slag mortar after 

high-temperature catalysis. Fig. 12(a) shows the result for the 20% DS sample. After 24 h of 
catalysis, a C-S-H colloid and laminar calcium hydroxide (CH) were observed, along with a small 
amount of lime (CaO), and the structure became more porous. Fig. 12(b) shows that after 72 h of 
catalysis, the amount of the C-S-H colloid increased as the amount of laminar calcium hydroxide 
(CH) decreased. Fig. 12(c) shows the image of the 30% DS sample after 24 h of high-temperature 
catalysis. In this case, laminar calcium hydroxide (CH) occupied most blocks, and the C-S-H 
colloid only occupied a small area. Fig. 12(d) shows that after 72 h of catalysis, the amount of the 
C-S-H colloid increased while the amount of laminar calcium hydroxide (CH) decreased. The 30% 
DS sample had more calcium hydroxide (CH) than the 20% DS sample. Fig. 13 shows the SEM 
microstructure of the low-strength BOF steel slag mortar after high-temperature catalysis. Fig. 
13(a) shows the image of the 20% BOF specimen after 24 h of catalysis. A large amount of 
calcium hydroxide (CH) was observed, but no C-S-H colloid was apparent in the image. Fig. 13(b) 
shows that after 72 h of catalysis, the calcium hydroxide (CH) content increased, and the structure 
was compact. Fig. 13(c) shows the image of the 30% BOF specimen after 24 h of catalysis. The 
laminar calcium hydroxide (CH) and C-S-H colloid were found to intercross each other. Fig. 13(d) 
shows that after 72 h of catalysis, the calcium hydroxide (CH) content increased, but no C-S-H 
colloid was observed. Based on these results, similar hydrates of mostly laminar calcium 
hydroxide (CH) and a small amount of C-S-H colloid were produced after 24 h of catalysis 
regardless of the BOF content. After 72 h of catalysis, the hydration products varied as the BOF 
content increased. As the BOF content increased from 10% to 30%, the calcium hydroxide (CH) 
content decreased, and the amount of the C-S-H colloid increased in most cases. However, for 
BOF contents of 40% and 50%, the calcium hydroxide(CH) content increased, and the amount of 
the C-S-H colloid decreased to zero. In the DS sample with a higher f-CaO content, the micropores 
between the crystals were not filled with the C-S-H colloid or ettringite. The f-CaO hydration 
produced flaky calcium hydroxide crystals distributed throughout the bulk. As f-CaO was slowly 
hydrated, the calcium hydroxide crystals grew continuously, extruding peripheral hydration 
products (Mu et al. 2001). Therefore, the differential expansion pressure resulted in microcracks 
and initiated differential expansion burst. Under rapid catalysis at high temperatures, the calcium 
hydroxide crystals extruded peripheral hydration products instantly, making it difficult for the 
other hydration products to diffuse into the gaps between the flaky calcium hydroxide particles. 
The gaps between the crystals could not be filled, resulting in a local stress concentration and, 
eventually, deformation and cracking. 

 
3.5 Comprehensive analysis 
 
Figs. 5 and 8 show the volume expansion capacity results for the mortars with different 

amounts of steel slag after high-temperature catalysis. According to the trend curve, the expansion 
behavior of the DS mortar with a higher f-CaO content was more apparent than that of the BOF 
mortar with a lower f-CaO content after the high-temperature catalysis, indicating that the hidden 
f-CaO obviously expanded after the hydration was accelerated by the high temperature. This result 
is consistent with Kuo (Kuo and Shu 2014), the application of high-temperature catalytic 
technology can accelerate free lime reaction. When more than 20% of the natural river sand was 
replaced by DS, giving a mortar with a high f-CaO content, the samples fractured after 48 h of 
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catalysis. For the BOF mortars with lower f-CaO contents, fracturing did not occur until 30% of 
the natural river sand was replaced with BOF. The expansion capacity of the 20% BOF mortar was 
almost less than 0.9%. The DS mortar exhibited obvious swelling as the amount of DS increased. 
Based on the autoclave expansion results, when the expansion capacity exceeded 0.10%, fracturing 
occurred, the volume stability and durability were affected. The same trend was observed for the 
damage area ratios shown in Figs. 6 and 9. The damage area ratios of the stable mortars with less 
than 10% steel slag were less than 0.6%. However, when the damage area ratio was significantly 
higher than 0.8%, fracturing might have occurred.  

 
 

4. Conclusions 
 
This study suggested the standard recommended values and expansion fracture threshold values 

for the content of steel slag in controlled low-strength materials (CLSM), the results obtained are 
as follows 

 The effects of the steel slag content varied based on the free lime content, but the percent of 
the natural river sand replaced by steel slag should not exceed 30%; otherwise, fracture failure 
might occur.  

 Both the autoclave expansion and high-temperature catalysis results showed that fracturing 
occurred when the expansion capacity, which might influence the volume stability and durability, 
exceeded 0.10%. However, the expansion capacity was lower than 0.05% after tropical curing for 
96 h, and no obvious deformation or damage was observed.  

 The autoclave expansion showed that the expansion value of DS, which had a higher free 
lime content, was higher than that of the BOF. The steel slag was incompletely stabilized or 
overused, which affected the engineering durability severely.  

 The damage area ratios of the stable mortars with less than 10% of the natural river sand 
replaced with steel slag were less than 0.6%. Fracturing might have occurred when the damage 
area ratio was greater than 0.8%.  

 Although the high-temperature catalysis could briefly simulate the autoclave expansion 
acceleration, it took 96 h to obtain similar results. The equipment, however, is more universal than 
the autoclave expansion and operates safely. It can also be used at the same conditions as those 
employed in practical applications.  

 Based on the SEM analysis, the calcium hydroxide crystals extruded peripheral hydration 
products instantly during the rapid high-temperature catalysis, resulting in a local stress 
concentration and, eventually, deformation and cracking.  
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