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Abstract.   It is generally accepted that, in the interest of safety, it is essential to provide a minimum level 
of flexural ductility, which will allow energy dissipation and moment redistribution as required.  If one 
wishes to be uniformly conservative across all of the design variables, curvature ductility and moment 
redistribution factor should be calculated using a probabilistic method, as is the case for other design 
parameters in reinforced concrete mechanics. In this study, simple expressions are derived for the 
evaluation of curvature ductility and moment redistribution factor, based on the concept of demand and 
capacity rotation. Probabilistic models are then derived for both the curvature ductility and the moment 
redistribution factor, by means of central limit theorem and through taking advantage of the specific 
behaviour of moment redistribution factor as a function of curvature ductility and plastic hinge length. 
The Monte Carlo Simulation (MCS) method is used to check and verify the results of the proposed 
method. Although some minor simplifications are made in the proposed method, there is a very good 
agreement between the MCS and the proposed method. The proposed method could be used in any future 
probabilistic evaluation of curvature ductility and moment redistribution factors. 
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1. Introduction 

 
Ductility is the ability of a component or an assembly of components to deform beyond the 

elastic limit. It is expressed as the ratio between the maximum value of a deformation quantity and 
the same quantity at the yield limit state (Elnashai and Di Sarno 2008). Ductility is a desirable 
structural property, because it allows stress redistribution and provides warning of impending 
failure. From a safety point of view, ductility is as critical as strength (Wilson 2009, Kwan and Ho 
2010). Reinforced concrete (RC) beams are under-reinforced by design, so that failure is initiated 
by the yielding of the steel reinforcement, followed (only after considerable deformation and at no 
substantial loss of load carrying capacity) by concrete crushing and ultimate failure. For beams in 
seismic-resistant structures (which are designed to be subject to greater flexural ductility demands), 
tougher requirements for reinforcement detailing are generally imposed, such as the provision of 
confining reinforcement. However, even for beams which are not expected to resist impact or 

                                                       
 Corresponding author, Senior Lecturer, E-mail: h.ronagh@uq.edu.au 



 
 
 
 
 

Hassan Baji and Hamid Reza Ronagh 

seismic loads, it is generally considered essential to provide a minimum level of flexural ductility 
(Ho et al. 2004). 

RC beams are loaded with different patterns of live load. Therefore, for any load combination 
of these live-load patterns, a certain critical section along the beam reaches its ultimate strength, 
while other sections have additional capacity at which the load could be redistributed. In elastic 
analysis, this reserve capacity is not utilised. However, a full inelastic analysis based on hinge 
formation can take advantage of this reserve capacity. The most common way of dealing with this 
is to perform the analysis elastically, but to use a moment redistribution factor to consider the 
redistribution. The amount of moment redistribution depends on the ductility of the inelastic 
regions, the geometry of the beams and the loading pattern.  

The strength and ductility capacities of RC members depend on various geometric and material 
properties, most of which are random in nature. Therefore, there is always uncertainty concerning 
the strength and ductility of RC members. Realistic descriptions of strength and deformation 
require probabilistic models and the implementation of a reliability-based analysis. Compared to 
the number of reliability studies conducted on strength limit states, fewer studies have been carried 
out on ductility limit states, with most of them relying on the MCS method for the analysis (Trezos 
1997, Kappos et al. 1999, Lu et al. 2005).  

In this study, using basic simplifications, a closed-form expression for curvature ductility and 
moment redistribution is derived, based on the method developed by Silva and Ibell (2008). A 
probabilistic analysis is then performed and a closed-form solution is proposed for the statistical 
model of curvature ductility and moment redistribution factor. The MCS method is also used to 
confirm and verify the output of the proposed method, which relies on simple basic equations.. 

 
 

2. Mechanical concept 
 
The provision of minimum ductility is an important requirement imposed by the design codes. 

This minimum ductility in RC members relates to curvature ductility. However, because of 
difficulties in quantifying the curvature ductility in RC members, design codes apply other kinds 
of controls as well, such as imposing limits on rebar percentage or on the tensile strain at the 
furthest steel rebar. On the other hand, the moment redistribution in continuous RC beams is one 
of the simplest applications of member ductility in the design procedure.  

For conventional RC beams with normal reinforcement, the slope of the post-yield part of the 
steel strain-stress and moment-curvature curves can usually be neglected. This always produces 
results that are more conservative. In a similar manner, the effect of compressive rebar is also 
neglected in the current study for the sake of simplicity, despite it having a positive effect on 
curvature ductility. Nevertheless, the proposed method could be extended to include compression 
rebar in future studies. 

 
2.1 Curvature ductility 
 
Derivation of curvature ductility requires a nonlinear section analysis. However, by the basic 

simplifications made in this study, and by using the equivalent stress block for concrete, it can be 
derived as a closed form. Fig. 1 shows the mechanical principles that are used in the design of RC 
beams. The width of the equivalent stress block is given by the product k1k3 ଷ݂

ᇱ. The factor k2 

represents the stress block depth factor. 
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In the case of yielding steel, the stress in the extreme compressive fibre of concrete could be 

appreciably lower than the cylinder strength,
'

cf . The stress-strain curve for concrete is 

approximately linear up to '0.70 cf  (Park and Paulay 1975). Therefore, by using elastic theory and 

assuming that the concrete stress does not exceed this value when the extreme steel yields, the 
neutral axis parameter at yield is calculated as shown in Eq. (4). 

2
1 1k n

n



 

   
                            (4)

 

In Eq. (4),   is the tensile rebar percentage and n  is the ratio of modulus of elasticity of 
steel to concrete. By substituting Eqs. (2) to (4) in Eq. (1), the final expression for curvature 
ductility in a singly-reinforced rectangular beam section can then be derived, as shown in Eq. (5). 

'

1 2 3 2

2
1 1 1

c
s cu

y

n
nf

k k k E
f




 


 
   

 
                   (5)

 

In Eq. (5), factor 1 2 3k k k  represents the equivalent stress block parameters, while the 
'

2

c
s cu

y

f
E

f


 
factor relates to material properties. The last multiplier represents the cross-sectional dimensions. 
Eq. (5) represents the capacity of a rectangular section for curvature ductility, which can be 
thought of as a kind of deflection capacity. By rearranging the parameters appearing in Eq. (5) and 
using α1 and β1 instead of k1k3 and k2 as stress block parameters, Eq. (6) results. 

'

1 1 2

1c
s cu

y

f
E g

f   



                         (6)

 

In Eq. (6), the parameter g is defined as
2

1 1 1g n
n




 
     

 
. By this simplification, the 

curvature ductility is written in the form of a product of different variables that are related to the 
geometry and material specifications. 

 
2.2 Moment redistribution factor 
 
Possibly the simplest application of member ductility is the ability of a RC flexural member to 

redistribute moment (Oehlers et al. 2010). The basic idea for moment redistribution in continuous 
RC beams is that the demand rotation required for the development of plastic hinges at the ends 
and middle of spans should be less than the rotational capacity of the plastic hinge or hinges that 
yield first. As shown in Fig. 2, a beam that is fixed at both ends, and which can approximately 
represent an interior span of a multi-span beam, is considered. 

The rotational capacity, or ductility, in members can easily be transformed to section curvature 
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ductility, using the concept of plastic hinge length. Equivalent plastic hinge length is used to find 
the rotational capacity of the plastic region along a beam. It is assumed that the RC beam has a 
constant flexural stiffness, EI, along its length, and that plastic hinges are first formed at the ends 
of the beam. The end hinges should show adequate ductility and should deform sufficiently to 
allow the formation of another hinge at the middle of the beam span. 

The demand ductility (rotational or curvature) depends on the geometry of the RC beam, the 
type of loading and the plastic hinge length in critical regions. Referring to Fig. 2 and using the 
moment-area method, the demand rotation for the formation of plastic hinges at the ends and the 
middle of the beam can be calculated as shown in Eq. (7). 

2

2 12
u

demand u

ll
M

EI

  
  

                          (7)
 

Using the concept of equivalent plastic hinge length, the rotational capacity of end hinges can 
also be calculated as shown in Eq. (8), (Park and Paulay 1975).  

( )capacity u y pl   
                          (8)

 

In Eq. (8), y and u  are the yield and ultimate curvature at the end sections of the beam, 

while pl is the equivalent length of the plastic hinge. Generally, due to the high complexity and 

difficulty involved, the behaviour of plastic hinges in RC members is investigated experimentally 
(Zhao et al. 2012). As shown in Table 1, in this study, one of these empirical expressions for 
plastic hinge length is used. The relationship between the parameters of ultimate uniform load, u , 

moment redistribution factor,  , ultimate moment at beam ends, uM , and elastic moment, eM , 

can be written simply as in Eq. (9). 
 

 

Fig. 2 Typical RC beam geometry 
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Table 1 Summary of statistical models of random variables 

Variable Bias1/Mean COV2/Std3 PDF4 Reference 

Dimension 

b 1.00 0.04 Normal 
Szerszen and Nowak 

(2003) 
d 1.00 0.04 Normal 

sA
 

1.00 0.015 Normal 

Concrete 

'

cf  
Nominal+7.5 MPa 6.0 MPa Lognormal

Attard and Stewart 
(1998) 

cE   ' 0.51641.01 4370.3 cmf  0.15 Normal 

cu   
'

0.2093'

'4

4.11
2.8133cm

cm

c cm

f
f

E f


 0.19 Normal 

1    .0998'1.2932 cf


 0.09 Normal 

1    0.091'1.0948 cf


 0.03 Normal 

Rebar steel 
sE  1.005 0.033 Lognormal Lu and Gu (2004) 

yf  489 MPa 0.068 Beta 
Bournonville et al. 

(2004) 
Plastic 
hinge pl  0.077 8.16 bz d  0.198 Normal Lu and Gu (2004) 

1 - Mean/Nominal 
2 - Coefficient of Variation 
3 - Standard Deviation 
4 - Probability Density Function 

 

2

(1 ) (1 )
12

u
u e

l
M M

     
                     (9)

 

Equating Eqs. (7) and (8) and substituting Eq. (9) results in Eq. (10) for the demand curvature 
ductility at the critical end sections. 

1
1

2 1 p

l

l




  
                                (10) 

The curvature ductility demand in Eq. (10) should be equal to the curvature ductility capacity 
obtained in Eq. (6). Rearranging Eq. (10), the allowable  for a fixed-end beam with singly 
reinforced rectangular section can be obtained as per Eq. (11). 

 
1

1

1 2 1pl

l 




 
 

  
                        (11)

 

Eqs. (6) and (11) are used as basic equations to calculate curvature ductility and moment 
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redistribution factor in this study.  
 
 

3. Statistical models 
 
The important parameters for estimating the curvature ductility and moment redistribution 

factor are shown in Eqs. (6) and (11). The curvature ductility is a function of many other 
parameters that are related to dimensions and materials. In this section, all random variables are 
reviewed and the nominal, mean and standard deviations, as well as best-fit probability density 
function for each variable are selected from the available literature.  

Uncertainty in the concrete equivalent stress block and the ultimate strain of concrete require a 
full statistical analysis of the stress-strain curve of the concrete material. The statistical models for 
the equivalent stress block parameters of concrete are taken from the study by Attard and Stewart 
(1998). In their probabilistic analysis of concrete stress blocks, they used the lognormal 
distribution as the probability density function for the concrete compressive strength. Statistical 
models for other main random variables are derived from current literature. A summary of the 
probabilistic models for all basic random variables is presented in Table 1. In this table, ௖݂

ᇱ 
represents the specified or nominal concrete compressive strength, and ௖݂௠

ᇱ  shows the mean 
concrete compressive strength of concrete. 

 
 

4. Probabilistic analysis 
 
The curvature ductility of RC beam sections and the moment redistribution factor can be 

predicted by means of a structural analysis based on the material properties and member geometry. 
Eqs. (6) and (11) represent examples of these predictions. The main variables, such as sectional 
dimensions or material properties, are random in nature, and as such the member’s behavioural 
parameters (like curvature ductility and moment redistribution factor) are probabilistic.  

 
4.1 Curvature ductility 
 
According to Eq. (6), the curvature ductility is a product of random variables which, based on 

central limit theorem (Benjamin and Cornell 1975), can be modelled by a lognormal distribution. 
In order to find its mean and standard deviation, the mean and standard deviation of parameter g 
should first be calculated. This parameter is a function of ρn which, in turn, is a function of the 
sectional dimensions and modulus of elasticity of steel and concrete. We consider ρn to be a 
random variable that is again a product of other random variables and thus follows lognormal 
distribution. In order to simplify the calculation, the g function in Eq. (6) is approximated as 
shown in Eq. (13). 

2
1 1 1 1 2g n n n

n
  


 

        
               (13)

 

The magnitude of ρn is relatively small, so the number 1 under the square root could be 
neglected. In order to find the mean and the standard deviation of g, the mean and the standard 
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deviation of this function should first be evaluated. Assuming independency amongst these 
random variables, and by taking advantage of central limit theorem, the parameter ρn is expected 
to follow lognormal distribution. Its nominal value, bias factor and coefficient of variation are 
calculated as shown in Eqs. (14) to (17). 

( ) sn sn
n n

n n cn

A E
t n

b d E
 

                        (14)
 

A Es s
t

b d Ec

 


  


                            (15) 

2 2 2 2 2

t A E b d Es s c
V V V V V V    

                     (16)
 

2 2

ln ln(1 )t tV  
  &  

2

ln ln

1
ln( ) ln(1 )

2t t tV   
            (17)

 

In Eqs. (14) to (17), subscript n denotes the nominal value of the random variables. Parameters 
V and λ represent the coefficient of variation and bias factor, respectively. The probability 
distribution function of variable g is not of importance, and only its mean and standard deviation 
are required in order to find the mean and coefficient of variation of curvature ductility. Using Eq. 
(13) and taking advantage of specific properties of lognormal distribution, the expectation and the 
variance of the function g can be calculated as shown in Eqs. (18) to (23). 

1 2n n ng t t  
                            (18)

 

( ) 1 ( ) ( 2 )E g E t E t                            (19) 

( ) ( ) 2 ( ) 2 2 ( , )Var g Var t Var t Cov t t                    (20) 

2 2( ) ( ) ( )Var t E t E t   & 
2( ) ( ) ( )Var t E t E t              (21) 

( , ) ( ) ( ) ( )Cov t t E t t E t E t                      (22) 

2 2

ln ln

1
( ) exp( )

2t tE t    
                     (23)

 

Using the above equations, the bias factor and the coefficient of variation of function g are 
calculated as shown in Eqs. (24) to (26). 

2 2/2 /2 /8ln lnln ln
2 8

2
( ) 1 2 1

(1 )
tt tt t

g t

t

E g e e
V

    
        

          (24) 
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variation shows higher disagreement between the MCS and the proposed method. However, 
because of the low coefficient of variation, this disagreement is of less importance. 

The bias factor and coefficient of variation of the function g can now be used in the estimation 
of the probability density function of the curvature ductility. It is assumed that all variables are 
uncorrelated. There is a small correlation between g and the rebar percentage. However, this 
correlation is negligible. Again, using the central limit theorem, the curvature ductility as a random 
variable follows lognormal distribution. Thus, its nominal, bias factor and coefficient of variation 
are evaluated as shown in Eqs. (27) to (29). 

'

1 1

2

n n cn sn cun n n n
n

yn sn

f E b d g

f A

   
                   (27)

 

'1 1

2

E b d gs cufc

f Ay s

  



       


 


                    (28)

 

2 2 2 2 2 2 2 2 2 2

'1 1
4E b d g f As cu y sfc

V V V V V V V V V V V   
         

     (29)
 

In Eq. (28), it can be seen that the yield strength of steel appears with a multiplier of 4, which 
shows its relative importance among the random variables in evaluating the probability model of 
curvature ductility. The curvature ductility follows the lognormal distribution, regardless of the 
probability density function of the contributing random variables. Therefore, of main random 
variables, only the nominal, bias factor and the coefficient of variation are required for evaluating 
the probability density function of curvature ductility. 

In order to compare the above with the results of the MCS method, Fig. 4 depicts the variations 
in the means and the coefficients of variation of curvature ductility with respect to the extreme 
tensile rebar. As expected, perfect agreement exists between the assumed lognormal distribution 
and the MCS results. The results show that the probability density functions of all contributing 
random variables are not important, and that knowing only the nominal values, bias factors and 
coefficient of variation is adequate. The approximation in the form of g does not show any 
appreciable effect on the results and, as mentioned previously, because of the low coefficient of 
variation of the g function, this approximation is reasonable. According to this result, the curvature 
ductility is well modelled by the lognormal distribution and its statistical properties are calculated 
as presented in the above. 

 
4.2 Moment redistribution 
 
At this stage, using Eq. (11), the probability density function of the moment redistribution 

factor can be evaluated based on the probability density function of the curvature ductility and the 
plastic hinge length. It was found that the curvature ductility follows lognormal distribution. Here, 

we have a linear function of moment curvature, 1m   . The probability density function of 

m is not lognormal. However, the mean and the standard deviation of function m can be calculated 
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as shown in Eq. (30). 

1m 
  

 & m 
 

                       (30)
 

The exact probability density function of m may be evaluated using the monotonic and 
one-to-one behaviour of linear transformation. Although the function m does not follow lognormal 
distribution, it could be approximated well using this distribution. Eqs. (31) and (32) show the 
exact and approximated probability density functions of m, respectively.  

ln

lnln

ln( 1)1 1
( ) exp

2( 1) 2
M

m
f m

m



 



 

   
   

                (31) 

ln

lnln

ln1 1
( ) exp

22
m

M

mm

m
f m

m


 

  
   

                  (32)

 

Fig. 5 illustrates both the exact and the approximated probability density functions of m for a 
wide range of strains at the extreme tensile rebar. The curve with the highest density is for low 
strain (here, 0.0075), while the curve with the lowest density belongs to high strain at the extreme 
tensile rebar (here, 0.025). 

As is evident from Fig. 5, when the strain at the extreme tensile rebar increases (which is 
synonymous with increasing the curvature ductility), function m could be accurately approximated 
by the lognormal distribution. The error in this approximation is negligible, especially when the 
strain at the extreme tensile rebar becomes larger. It is worth mentioning that, because of high 
ductility, the high-strain region of the extreme tensile rebar is of more influence in the moment 
redistribution of RC beams. 

 

 
Fig. 5 Comparison of exact and approximated probability density function of function m 
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Statistical data on the plastic hinge length are rare. In this study, the model proposed by Lu and 
Gu (2004) is used, in which they proposed a normal distribution for the plastic hinge length. In 
their study, the coefficient of variation of the model error was found to be around 0.2. For small 
coefficients of variation, the normal distribution can be approximated using lognormal distribution. 
Here, using this approximation, and knowing that 1   approximately follows lognormal 

distribution, the product of the normalised plastic hinge length (with respect to span length) and 

1   also follows lognormal distribution. By defining a new variable, Eq. (11) is rewritten as 

Eq. (33). 

 
1 1

1 1
1 1

1 2 1p

x
l x x

l 




    
  

  
                 (33)

 

The variable x and its mean and standard deviation are calculated as shown in Eqs. (34) to (36). 
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Eq. (32) shows that β is a one-to-one and monotonically increasing function with respect to 
variable x used above. Using this property of function β, its probability density function and 
cumulative density function can easily be calculated as Eqs. (37) and (38) (Benjamin and Cornell, 
1975). 
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In Eqs. (36) and (37), functions   and Φ represent the probability density function and 
cumulative density function of standard normal distribution, respectively. These equations show 
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that the probability density functions of the moment redistribution factor can be evaluated using 
simple standard normal distribution. The entire procedure shown above for finding a closed-form 
expression for the moment redistribution factors of RC beams is derived from the central limit 
theorem, based on the monotonically increasing behaviour of the derived function, which relates 
the moment redistribution, the plastic hinge length and the curvature ductility. 

The point of maximum likelihood of function β is not too distant from its mean, and the 
behaviour of this function could be linearly approximated around the mean point. First Order 
Second Moment (FOSM) approximation might be used in order to find its mean and standard 
deviation, as is seen in Eqs. (39) to (41). 
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A comparison of the mean and coefficient of variation values of the β function derived by the 
MCS and the proposed method is shown in Fig. (6). The results in this figure show perfect 
agreement between the proposed method and the MCS. The linear approximation of the β function 
about the mean value shows a very good agreement with the result obtained from the MCS, with a 
high simulation number. The span-to-depth ratio of 20 and a normalised plastic hinge of 0.0358 are 
used in Fig. 6 to find the expectations of the β function. 
 
 

(a) Mean value (b) Coefficient of variation 

Fig. 6 Comparison of proposed and MCS methods for mean and coefficient of variation of moment 
redistribution factor 
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5. Worked example 
 
To show the efficiency of the proposed method, a design case is considered in this section. A 

fixed RC beam with the span-to-depth ratio of 20 and a normalised plastic hinge of 0.035 is 
considered. This case is near the lower bound assumptions considered in the design codes for 
evaluating moment redistribution factors. The nominal compressive strength of concrete is 
assumed to be 40MPa, and G60 rebar steel with a nominal yield strength of 420MPa is used. All of 
the nominal values of the material-related random variables, like the modulus of elasticity of steel 
and concrete and concrete ultimate strain, are taken from ACI 318 (2011) design code. Other 
statistical data for all random variables in this study are shown in Table 1. 

The described closed-form procedure is used, along with the MCS method. Fig. 7 shows the 
mean value and the 25th percentile value (which has 75% chance of being exceeded) for the 
moment redistribution factor, as well as the code-specified moment redistribution factors. Good 
agreement exists between the MCS and the proposed method for both mean and 25th percentile 
values. 

 

(a) Mean value (b) 25th percentile value 

Fig. 7 Comparison of MCS and proposed method for mean and 25th percentile values of moment 
redistribution factor 

 

(a) Based on code-specified value (b) Based on mean value 

Fig. 8 Comparison of MCS and proposed method for chance of being exceeded  
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(a) CDF (b) PDF 

Fig. 9 Probabilistic distributions of moment redistribution factor using proposed method 
 
 
It may be useful to evaluate the reliability of the code-specified moment redistribution factors. 

In Fig. 7, the 25th percentile values of moment redistribution factors were shown for different 
extreme tensile rebar strains. The reliability of the ACI 318 specified moment redistribution factors 
are now plotted against extreme tensile rebar strain. Based on ACI 318 code, the moment 
redistribution factor shown in Fig. 7 is calculated as shown in Eq. (42). 

10 0.2t                                 (42) 

In Eq. (42), εt is the strain at the extreme tensile rebar. This strain must be greater than 0.0075. 
In Fig. 8, the chances of the mean and code-specified values being exceeded are illustrated for 
both the MCS and the proposed method. It is worth mentioning that, in the MCS method, the 
normalised plastic hinge length follows normal distribution, while the proposed closed-form 
method assumes that this variable follows lognormal distribution. The results for code-specified 
values of the moment redistribution factor are quite close, while the agreement is not so close for 
the mean value. In Fig. 8(b), the mean value used for probability estimation is not the same. As can 
be seen in Fig. 7(a), there is a small difference (in the order of 5%) between the MCS and the 
proposed method in estimating the mean value. Therefore, the error accumulates in finding the 
probability of exceedance for the mean value, because of the error in the mean value itself and in 
the probability density function. 

The probability density function (PDF) and cumulative density function (CDF) of the β 
function can be easily plotted using Eqs. (37) and (38). Fig. 9 illustrates the PDFs and CDFs of the 
β function for a range of extreme tensile strains of rebar. The code-specified values are shown on 
the CDF curve. Even though the current use of high-speed computers allows large numbers of 
simulations to be completed in a few seconds, closed-form solutions for the PDF and CDF of any 
function can provide a deeper understanding of the role of each variable. 

This case study has shown that the proposed closed-form solution probabilistic evaluation of 
the moment redistribution factor provides reliable results. In addition to being quick, this method 
provides a deeper understanding of the important random variables in the probability models of 
curvature ductility and moment redistribution factor. 
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6. Conclusions 
 
The curvature ductility and permissible moment redistribution, like other design parameters in 

reinforced concrete mechanics, should be calculated using a probabilistic approach. In a 
reliability-based analysis, the characteristic values (with their specific chance of being exceeded) 
of permissible moment redistribution factors would be evaluated (instead of the lower bound 
values) and this improves reliability.  

In this study, a simple expression was found for the evaluation of curvature ductility in RC 
beams of singly-reinforced rectangular section. The concept of equating demand and capacity 
rotations was then used in the evaluation of the allowable moment redistribution in continuous RC 
beams. For simplicity, a beam fixed at both ends was considered. It was assumed that this beam 
could represent the interior span of a continuous beam. A probabilistic approach was then used to 
find the mean, variance and probability model for both curvature ductility and moment 
redistribution factor. 

The probabilistic approach led to a simple closed-form solution for curvature ductility and 
moment redistribution factor. This simple derivation of the probabilistic model for curvature 
ductility and moment redistribution factors arises from central limit theorem and from the 
monotonic behaviour of moment redistribution function with respect to curvature ductility and 
plastic hinge length. The output of the proposed method was checked against the MCS method. 
Although some minor simplifications were used in the direct probabilistic method, there was very 
good agreement between the MCS and proposed method. The proposed method can be used in any 
future probabilistic evaluation of curvature ductility and moment redistribution factors. 
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