
 
 
 
 
 
 
 

Computers and Concrete, Vol. 15, No. 6 (2015) 865-878 
DOI: http://dx.doi.org/10.12989/cac.2015.15.6.865                                           865 

Copyright © 2015 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=cac&subpage=8         ISSN: 1598-8198 (Print), 1598-818X (Online) 
 
 

 

	
 
 
 

Multiscale modeling for compressive strength of concrete 
columns with circular cross-section 

 
Han-liang Wu1,2 and Yuan-feng Wang*1 

 
1School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China 

2 Bridge Technology Research Center, Research Institute of Highway,  
Ministry of Transportation, Beijing, 100088, P R China 

 
(Received January 29, 2013, Revised January 1, 2015, Accepted January 15, 2015) 

 
Abstract.  In order to construct a multiscale model for the compressive strength of plain concrete columns with 
circular cross section subjected to central longitudinal compressive load, a column failure mechanism is proposed 
based on the theory of internal instability. Based on an energy analysis, the multiscale model is developed to describe 
the failure process and predict the column’s compressive strength. Comparisons of the predicted results with 
experimental data show that the proposed multiscale model can accurately represent both the compressive strength of 
the concrete columns with circular cross section, and the effect of column size on its strength. 
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1. Introduction 
 

The main aim of multiscale material science is to reveal the coupling relations between 
different spatial or temporal scales and the measured properties of the materials. It is recognized 
that multiscale science is rapidly becoming an essential part of computational science and 
engineering (Engquist et al. 2005). In material studies, one application of multiscale science is to 
predict the strength of heterogeneous materials (Cazacu 2008). In fact, the failure of most 
heterogeneous materials (like ceramic, rock and concrete) generally results from the internal 
microscopic damage, which means that the strength of heterogenous materials greatly depends on 
their micro-structure (Shackelford 2004). Therefore, understanding and modeling how the 
materials fail are of fundamental importance.  

Concrete is a mixed material composed mainly of coarse aggregate, fine aggregate and cement 
mortar. It is a typical heterogeneous material which contains many initial microcracks after casting. 
These microcracks continue to grow and develop with the increase of external load, and then 
gradually form macrocracks which will lead to global failure of the concrete structures or members. 
Thus, the failure process of concrete exhibits micro-macro behavior on a spatial scale. Actually,  
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this micro-macro failure process is basically the same for any type of loading as long as the global 
failure is not caused by ductility (Bazǎnt and Planas 1998). During the micro-macro failure 
process, the micro-structure undergoes significant changes in which complex interactions play an 
important role. Therefore, an ideal failure model should include such interactions with multiscale 
modeling.  

For concrete columns under axial compression, most researches in recent years have focused on 
numerical modeling, including some multiscale finite element modelings using new elements (e.g., 
lattice element (Grassl and Jirásek 2010, Grassl et al. 2012) and particle element (Qin and Zhang 
2011, Lian et al. 2011)) or new constitutive models (e.g., microplane model (Bazǎnt and Caner 
2005)). Howerver, analytical modeling for the columns is paid few attention, except the study of 
Bazǎnt and Xiang (1997). In their work, the compressive failure of concrete columns with 
rectangular cross section was modeled as damage propagation from a band of axial splitting 
microcracks inclined with the column axis. Based on the theory of internal instability (Bazǎnt and 
Cedolin 1991), the failure process was formulated as energy exchanges, and a simplified 
multiscale model for the compression failure of centrically or eccentrically loaded concrete 
columns was developed. Using their model, not only an analytical solution for the compression 
strength of columns was obtained, but also the size effect on the strength (i.e., the compressive 
strength decreases as the columns’ size increases) was predicted. Although Bazǎnt and Xiang 
carried out a leading exploration in analytical multiscale modeling for concrete failure, their work 
had a main limitation: only columns with rectangular cross section were studied. However, 
columns with circular cross-section present a significantly different failure mode from rectangular 
cross-section columns (McCormac and Browm 2009). Thus, it will be hard for the model proposed 
by Bazǎnt and Xiang to be used in the analysis of the columns with circular cross-section, which 
are one of the most common practical applications of concrete columns, for example, bridge piers.  

Based on the theory of internal instability, a failure mechanism is established for the centrally 
compressed plain concrete columns with circular cross section in the paper. A three-dimensional 
multiscale model, according this mechanism, is developed by the analysis of energy exchanges 
during the failure process under increasing axial loading. An analytical solution for the 
compressive strength of columns is deduced in term of an energy balance criterion of fracture 
mechanics. In addition, comparisons of experimental data with the results of the analytical model, 
together with an essential discussion of the results are presented. 
 
 
2. Theory of internal instability 
 

There are generally two kinds of failures that occur in concrete structures: strength failure and 
stability failure. Traditional strength failure studies generally do not account for geometrical 
characteristics such as shape, size, and slenderness. Stability failure, including overall and local 
instabilities, can be modeled according to a stability theory based only on the geometric 
characteristics of concrete structure. Thus, neither of the two theories alone can provide a complete 
solution for the common failure of concrete structures, since the strength failure and the stability 
failure modes exist simultaneously. Thus, Bazǎnt and Cedolin (1991) formulated a theory of 
internal instability that combined the strength and stability modes. Their formulation has been 
applied to a variety of heterogenous materials such as concrete (Bazǎnt and Xiang 1998), 
composites (Bazǎnt 1967), and rock (Bazǎnt et al. 1993). 

The core ideas of the theory of internal instability are: 1) a macrocrack of concrete consists of a 
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3. Compressive failure mechanism of a circular concrete column 
 

Based on the theory of internal instability, a failure mechanism of concrete columns with 
circular cross-section subjected to central compressive load is established herein. The mechanism, 
illustrated in Fig. 2, is based on the following four hypotheses. 

Hypothesis I: At the moment of failure, the compressive load on the column as well as the 
axial deformation and the axial deformation remains unchanged. Concrete usually presents sudden 
and brittle failure, even explosive failure like that of high-strength concrete columns (ACI 1996) 
and fiber-reinforced concrete columns (Adepegba and Regan 1981). At the moment of failure, the 
extension of macrocracks is too fast to affect immediately the load and deformation of the columns. 
Therefore, the load (stress) and deformation (strain) are assumed to remain unchanged during the 
failure, except in the local regions close to the macrocracks.  

Hypothesis II: The concrete column presents conical failure surfaces, which are determined by 
only one couple of penetrating cross macrocracks. As the compressive load increases, the 
microcracks increase in number and develop to macrocracks. All of the macrocracks will influence 
the final global failure of the column. However, there is only one couple of penetrating cross 
macrocracks that dominates the global failure, as shown in Figs. 2(b)-2(d). 

Hypothesis III: The micro-structure is composed of microscopic thin-shelled cylinders 
subjected to compression, as shown in Fig. 2(a). 

Hypothesis IV: The theory only applies to short, brittle failure concrete columns, while overall 
instability and ductility failure are not considered. 
 
 
4. Energy analysis of compression failure of a concrete column with circular 

cross-section 
 

4.1 Energy partition of a concrete column 
 

Based on the theory of internal instability, a macrocrack is made of a group of en-echelon 
cracks. These groups are defined as crack band zones (CBZ, Bazǎnt and Oh 1983). After the 
macrocracks are formed, the stress in these zones close to the macrocracks decreases and there is a 
corresponding release of strain energy. These zones are defined as stress release zones (SRZ), 
depicted by the shaded regions in Fig. 3. Following the hypothesis I, there are no changes of the 
stress, strain and energy in the zones outside of the CRZ and SRZ. Those outside zones are defined 
as rigid body zones (RBZ). Therefore, the concrete column with circular cross-section is divided 
into three parts, each with different changes in energy, as shown in Fig. 3. Here m is the width of 
CBZ, which is also the height of microscopic thin-shelled cylinders; d is the diameter of the 
column; h is the height of the column; θ is the inclined angle of macrocracks; s is the distance 
between adjacent en-echelon cracks, which is the thickness of microscopic thin-shelled cylinders; 
a is the critical length of macrocrack; k is the slope of boundary lines of the SRZ; and r is the 
radial coordinate. 

At the moment of the global failure is reached, the strain in a concrete column is εf, and the 
stress is σf, which is equal to the column’s compressive strength. During the failure process, the 
stresses and strains in the CRZ and SRZ change, as do their energies. 
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where VCBZ is the volume of the CBZ. The total release of strain energy during the failure process 
( ) is the sum of the energy releases in the SRZ and the CBZ. That is 
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4.4 Analytical solution for compressive strength of a column 

 
Based on the energy balance criterion of fracture mechanics (Anderson 2005), when the length 

of macrocrack reaches its critical value, which is also named as the critical crack length, the 
energy release rate must be equal to the rate at which the energy is consumed by formation of 
macrocrack. That is 
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where Gf is the energy release rate of concrete, Gf=(0.005~0.01)·ft, here ft is the tensile strength of 
concrete (Hillerborg et al. 1983); and Af is the fracture area of macrocrack, which is equal to the 
total area of en-echelon cracks. From Fig. 3, that area is  
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The distance between adjacent en-echelon microcracks is so small that the value of a/s is much 
greater than one. Thus, Eq. (10) can be simplified to give 
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results of FEA. It is observed that the boundary edges of the SRZ are significantly influenced by 
the value θ but not by a/d. Based on the results, a regression formula of k is proposed to keep same 
size SRZ. That is, the area surrounded by the boundary edges from FEA and the macrocrack is 
numerically equal to that surrounded by the straight-line with slope of k and the macrocrack, as 
shown in Fig. (6). The result is 

1 0.52 tank                                                        (15) 

Similar to the solution of other heterogenous materials (Bazǎnt et al. 1993), based on the 
second law of thermodynamics, the value of s can be determined so that σf is minimized. The 
necessary condition of minimum is  

f 0
s





                                                          (16) 

Substituting Eqs. (13) and (14) into Eq. (16), this minimum is obtained 

 
   

1

2
32

f c0c0 2
2 2 2 2

8 2π 2 1

12(1 ) 2 (3 tan ) 2 ( tan ) 2 2

EE G m d as
s

m k d a k d m d a  


                     

(17) 

The value of s is calculated from 

 
   

1
1 5

2 2
5

f
4 2 2

0

2 (1 )72

(3 tan ) 2 ( tan ) 2 2c

G d a
s m

E k d a k d m d a


  

                          

      (18) 

From the Eqs. (15) and (18), the analytical solution for compressive strength of circular 
concrete columns is computed as 
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5. Size effect on compressive strength of the columns 
 

This analytical solution can be written simply as 
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Thus, this proposed solution is a function of column size, which means that the solution can 
exhibit the size effect on compressive strength of the concrete columns with circular cross-section 
subjected to a central compressive load. Furthermore, from Eq. (20), one observes that the ratio of 
log(σf)/log(d) is a certain value between -1/2 and -2/5, which is within the accepted range of size 
effect of concrete (-1/2 to 0, Bazǎnt and Planas 1998). 
 
 
6. Comparisons with experimental data 
 

We tested 18 reduced-scale concrete columns at Beijing Jiaotong University. All of these 
columns were of circular cross section, and they were divided into two groups based on different 
concrete strength (fc0). Three different sizes for each group were used, where d×h=70×210, 
105×315, and 194×582 mm for the small, medium, and large columns, respectively. The grade of 
concrete strength herein was 28.79 and 50.64 MPa, and the maximum aggregate size was 20 mm. 
In addition, 60 sets of experimental data reported by other researchers (Samuelson and Eggwertz 
1992, Şener 1997) were also used herein. Shown in Table 1 are the details of all of these 
experimental data. 

Comparisons of the experimental data with the predictions from our multiscale model are 
shown in Fig. 7. Here, the points show the experimental data and the solid lines show the 
analytical solutions. The value of θ is fixed as 45o and the parameters λ and m are identified by the 
regression of experimental data. It is observed that our model represents the experimental data 
quite well, especially for the reduced-scale concrete columns with circular cross-section. However, 
the deviations of the model from the experimental data of small specimens are relatively large. A 
reason for this is that the concrete columns of diminished size exhibit plastic and ductile 
compressive failure modes (Bazǎnt and Planas 1998), which are conditions beyond the range of 
 
Table 1 Details of experimental data 

Group No. Researchers fc0 (MPa) Size  (d×h, mm) Measured strength (MPa) 

A the authors 50.64 
70×210 52.0, 41.1, 40.9 
105×315 39.2, 34.4, 32.3 
194×582 34.3, 41.0, 36.6 

B the authors 28.79 
70×210 24.0, 23.5, 23.0 
105×315 22.8, 22.7, 23.2 
194×582 19.8, 19.4, 18.6 

C 
Yi. et al.  
(2006) 

45.68 

50×100 50.4, 52.5, 44.2, 45.8, 43.1, 47.2 
100×200 48.1, 45.5, 43.9, 45.2 
150×300 44.2, 40.4, 44.2 
200×400 43.7, 46.5 

D 
Yi. et al. 
(2006) 

66.00 

50×100 69.4, 71.1, 74.0, 74.8, 72.9, 74.9 
100×200 67.5, 66.6, 65.5, 64.4 
150×300 62.7, 66.3, 68.8 
200×400 64.4, 66.5 

E 
Yi. et al.  
(2006) 

80.10 

50×100 97.8, 91.5, 92.5, 92.4, 83.4 
100×200 75.9, 79.9, 80.6, 64 
150×300 80.1, 76.1 
200×400 71.3 

F 
Şener.  
(1997) 

37.74 
37.5×70 48.0, 47.1, 44.4, 39.8, 45.3 
75×150 31.5, 35.3, 38.0, 41.6, 42.3 
150×300 34.0, 34.0, 37.3, 35.7, 40.9 
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columns decreases as the size increases. 
 

 
7. Conclusions 
 

A multiscale model for predicting the compressive strength of concrete columns with circular 
cross-section under central compressive load was successfully developed herein. Comparison of 
the predicted results with experimental data and some discussions are included. The following 
conclusions are drawn from the study. 

• Based on the theory of internal instability, a rational brittle failure mechanism is established. 
The mechanism represents a micro-macro failure process, a damage propagation of compressive 
failure. In this mechanism, the compressive failure process of the concrete columns with circular 
cross-section is divided into three steps, i.e., the formation of en-echelon cracks, the instability of 
microscopic thin-shelled cylinders, and the global failure of columns. 

• An energy analysis is used to describe the failure process. An analytical solution for the 
compressive strength of the columns is deduced using an energy balance criterion of fracture 
mechanics. In the solution, three free parameters are identified by experiment and the size of 
columns is also included, which means that the solution can exhibit the size effect on the 
compressive strength of circular concrete columns. The logarithmic ratio of the compressive 
strength to size is a certain value between -1/2 and -2/5, which is within the accepted range of size 
effect of concrete. 

• Comparisons with the experimental data demonstrate that the proposed multiscale model 
results agree well with the experimental data and predicts successfully the size effect on the 
compressive strength of the concrete columns with circular cross-section. 
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