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Abstract. This work deals with a damage model formulation taking into account the unilateral effect of the
mechanical behaviour of brittle materials such as concrete. The material is assumed as an initial elastic
isotropic medium presenting anisotropy, permanent strains and bimodularity induced by damage evolution.
Two damage tensors governing the stiffness in tension or compression regimes are introduced. A new
damage tensor in tension regimes is proposed in order to model the diffuse damage originated in prevails
compression regimes. Accordingly with micromechanical theory, the constitutive model is validate when
dealing with unilateral effect of brittle materials, Finally, the proposed model is applied in the analyses of
reinforced concrete framed structures submitted to reversal loading. The numerical results have shown the
good performance of the modelling and its potentialities to simulate practical problems in structural
engineering.
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1. Introduction

The Continuum Damage Mechanics (CDM) has already proved to be a suitable tool for
simulating the material deterioration in equivalent continuous media due exclusively to
microcracking process. Many constitutive models for brittle and ductile media taking into account
anisotropic characteristics of those media have been proposed. It can be mentioned: Cauvin and
Testa (1999) have suggested a damage model applied to the transverse isotropy case; Lemaitre et
al. (2000) and Briinig (2004) have developed constitutive models to study the damage processes in
ductile media; Ibrahimbegovic et al. (2008) have proposed a coupled damage-plasticity model
analyzing materials that present irreversible plastic deformation, change of elastic response and the
localized failure; On the other hand, the localized failure process has been frequently studied by
researchers (Brancherie and Ibrahimbegovic 2009, Kucerova et al. 2009, Hervé et al. 2005) in
order to ensure finite element mesh objectivity. Also, some simplified damage models have been
proposed in order to evaluate the mechanical properties of the brittle materials in practical
situations of the Structural Engineering (Mohammed and Parvin 2013, Cao and Ronagh 2013,
Esposito and Hendriks 2014).
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On the other hand, for modeling the unilateral effect present in brittle media subject to reversal
loading, many possible strategies have been proposed in the literature to model the stiffness
recovery as described in Comi (2001), Carol and Willam (1996), Welemane and Comery (2002),
Bielski et al. (2006), Liu et al. (2008) and Aratjo and Proenca (2008). For more details, in Bielski
et al. (2006) is presented a summary of some constitutive model formulations which take into
account the unilateral effect of the damage process, such as: the use of fourth-rank projection
operators for the decomposition of the stress and strain tensors into the positive and negative
projections, besides the use of the generalized projection operators.

Despite the progress in the macroscopic modelling of the unilateral effect (in particular, the
continuity problems that arise when the induced anisotropy is simultaneously described), this
subject still remains as an open research field when it deals with induced anisotropy damage
models, even when the micromechanical theory has been used to justify the proposal of
constitutive models dealing with damaged media, Welemane and Comery (2002), Zhu et al. (2008),
Zhu et al. (2009), Deudé et al. (2002), Pensée et al. (2002) and Pichler and Dormieux (2009).
Pensée et al. (2002) have developed an Eshelby-type approach for open and closed mesocracks
leading to a more realistic description of the macromechanical behavior in brittle materials in
three-dimensional continuum damage mechanics. The development has led to a general expression
of the free energy of the microcracked material that includes unilateral effects. The authors have
proposed a formulation considering closed penny-shaped cracks using the Eshelby
homogenization techniques. The modelling proposed satisfies the requirements at the
micromechanical theory: convexity and continuity of the potential, continuity of the mechanical
response and symmetry of the damage elastic stiffness tensor, Pensée et al. (2002). This
requirements is also investigated when dealing with the damage model proposed here (please, see
section 3). On the other hand, Deudé et al. (2002) has developed a micromechanical approach to
deal with the macroscopic modelling of the nonlinear poroelastic behaviour present in cracked
rocks.

The unilateral effect is a research field still opened even nowadays when dealing with more
actual approaches based on multiscale analysis procedures, Skarzynski and Tejchman (2012),
Pituba and Souza Neto (2012) and Fernandes et al. (2015).

In this work, a damage model taking into account the unilateral effect of the mechanical
behaviour of brittle materials such as concrete is proposed. An induced anisotropy, permanent
strains and bimodularity are considered. The author intends to contribute to discussion about the
unilateral effect in brittle materials considering the assessment of some requirements of the
micromechanical theory. Besides, the work intends to present a simplified version of the proposed
damage model in order to apply to practical situations of Structural Engineering. Indeed, this work
intends to contribute to the modelling of damage unilateral effect applied to concrete structures.
However, it must be noted that the proposed model is not capable to take into account the friction
effects, namely blocking and dissipative sliding of closed microcrack lips. This feature can be
discussed in future works.

This work is divided into five sections. In section 2, the damage model formulation is briefly
described. Then, some aspects regarding to unilateral effect as well as the validation of the
proposed model is presented in section 3. After that, some numerical analyses of RC framed
structures are shown in section 4. Finally, in section 5 some concluding remarks, limitations and
possible extensions are discussed.
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2. Damage model for brittle materials

In this work, for modelling the concrete behaviour, it can be assumed that the concrete belongs
to the category of materials which can be considered initially isotropic and unimodular presenting
different behaviours in tension and compression regimes when the media presents damage process.
A formulation of constitutive laws for isotropic and anisotropic elastic materials presenting
different behaviours in tension and compression predominant regimes under small deformations
has been proposed by Curnier et al. (1995) for two and three-dimensional cases. The authors have
considered a bimodular hyperelastic material defining an elastic potential energy density W which
must be once continuously differentiable (whole wise), but only piecewise twice continuously
differentiable. In this way, the model is able to produce different response in tension and
compression predominant regimes. Pituba (2006) has extended that formulation in order to take
into account the damage effects. Accordingly with, the bulk (i,) and shear (p,) module are
considered such as functions of the damage state, so that the stress-strain relationship would be
influenced by damage variables. Moreover, the hypersurface g(e, D;) adopted as the criterion for
identification of the constitutive responses in compression or tension predominant regimes would
be also influenced by the damage variables. Then, a damage constitutive model accounting for
induced anisotropy and bimodular elastic response for the concrete has been derived from Pituba
(2006) and its potentialities for 1D and 2D analyses have been discussed in Pituba (2010), Pituba
and Fernandes (2011), Pituba and Lacerda (2012) and Pituba et al. (2012). Also, the numerical
simulations of uniaxial, biaxial and triaxial stress experimental tests are reported in Pituba and
Fernandes (2011). The original version of the damage model is bimodular in the sense that
presents different elasticity tensors in tension and compression predominant regimes. Thus, the
model is potentially capable to simulate the stiffness recovery when the medium is submitted to a
reversal loading that evidences the transition from of tension to compression predominant regimes,
i.e., the so-called unilateral behaviour of the damaged concrete. However, the model is not capable
to simulate the influence of the previous damage processes in compression predominant regimes
(diffuse damage) when a transition from compression to tension predominant regimes takes place,
Comi (2001). From a micromechanics point of view, this feature is due to the partial closure
process of microcracks subject to compression loading which affects less the elasticity module in
compression predominant regimes than in tension ones, Desmorat (2000). Therefore, to avoid this
problem a new elasticity tensor is proposed in this work and some numerical analyses are
performed to simulate practical problems in structural engineering.

The original damage model formulation has been developed in Pituba and Fernandes (2011)
considering the formalism presented in Pituba (2006). To obtain the class of anisotropy induced
and considered in the model one has assumed that locally the loaded concrete presents damage
distribution oriented diffusely as appointed by experimental observations (Willam et al. 1988,
Kupfer et al. 1969, Van Mier 1997). One has also considered that the oriented damage is
responsible for the changes on the material characteristics leading to a transverse isotropic medium.
Note that a constitutive model with orthotropy induced by damage could be proposed. However,
the parametric identification could become infeasible at the practical point of view. Moreover, the
model respects the principle of energy equivalence between damaged real medium and equivalent
continuum medium established in the CDM leading to the guarantee of the major symmetry of the
constitutive tensor even if non-symmetric damage tensors are used throughout the formulation,
Lemaitre (1996). More details can be found in Pituba and Fernandes (2011).

Initially, for dominant tension states, a damage tensor is proposed
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D1=/i(D1,D4Ds) (A® A) +2/:(Dy,D5) [(ABT + I® A)—(A® A)] ()

where fi(D,, D4, Ds) = D; — 2 £5(D4, Ds) and (D4, Ds) = 1 — (1-Dy4) (1-Ds). The variable D,
represents the damage in the direction orthogonal to the transverse isotropy local plane of the
material, while Dy is representative of the damage due to the sliding movement between the crack
faces. The third damage variable, Ds, is only activated if a previous compression state
accompanied by damage has occurred. In Curnier ef al. (1995), the tensor | is the second-order
identity tensor and the tensor A, is formed by dyadic product of the unit vector perpendicular to
the transverse isotropy plane for himself. Those products are given in Pituba (2006). For dominant
compression states, it is proposed another damage tensor

D=7 (D3,D,Ds) (A® A) +5(Dy)[(I® ) — (A ® A)] +23(Dy,Ds)
(AT +I® A)—~(A® A)] @)

where fj* (Dg, D4, Dj) = Dz — 2ﬁ(D4, D5) ,ﬁ(D_g) = D3 andfg(D4,D5)=I—(I—D4)(I-D5). Note that the
compression damage tensor introduces two additional scalar variables in its composition: D, and
D;. The variable D, (damage perpendicular to the transverse isotropy local plane) reduces the
Young's modulus in that direction and in conjunction to Dj; (that represents the damage in the
transverse isotropy plane) degrades the Poisson's ratio throughout the perpendicular planes to the
one of transverse isotropy.

On the other hand, the constitutive tensor is written as

E(g) = E_(¢)if g(&Dr,Dc)<0, 3
" \E.(e)if g(eDy.Dc)>0,

E (¢)= &1[I®I]+2ﬂ1[1®1] —25,(D,, D, Dy) [A® A] = 25 (D,) [ASIFI®A]
~ 1,(D,, D5) [A®T + I ® A] ()

E (&)= 2, ® 1)+ 241 ®I] - 15,(D,. Dy, D,. D5) [A® A] - 7,(D,.Dy) [AGI+1€4]
1-2v,y)

0

- A4 (Ds) [1€1]- A (Dy) [I® 1] — 1, (D,, D) [AQ:@I'FIQ})A] (5)

The remaining parameters will only exist for no-null damage evidencing the anisotropy and
bimodularity induced by damage process. Those parameters are given by

X5 (D,,D,,Dy) = (&, +21,)(2D, = D) - 21}, (D,) ~ 2u,(D,, D)
AL(D) =4Dy; p, (D, Dy) = 2p,[1-(1-D,)*(1-Dy)*]
(Vo _1)

25,(D,,D;,D,,D,)= (A, +2u,) (2D, — D?)=24,,(D,,D,) + A,(Dy) —21,(D,, Dy)
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}‘_12(D2’D3) = Ko[(l_D3)2 _(I_Dz)(l_D3)]5>"_11(D3) = 9"0(2D3 _Di) (6)

Therefore, the constitutive model includes two damage tensors in order to take into account the
bimodularity induced by damage in the concrete behaviour. Therefore, it is necessary a criterion to
define the tension and compression dominant states to indicate what damage tensor should be
used.

The criterion has been extended in Pituba (2006) to deal with damaged media. This extension
influences the hyperplane definition. Therefore, the following relationship has been proposed

g(&‘,DT,DC) = N(DT,Dc) . Ee (7)

In Pituba and Fernandes (2011), a particular form is adopted for the hypersurface in the strain
space: a hyperplane g(e) defined by the unit normal N (]|N|| = 1) and characterized by its
dependence of the strain and damage states. Accordingly with Eq. (7) and referring to general
cases of loading, the following relationship has been proposed for the hyperplane

g(&Dr,Dc) = N(Dp.D¢) . & = yi(D1,D3) &, + pp(D1,D3) &, (8)

where 71(D1,D2) = {]+H(D2)[H(D1)-I]} 77(D1)+{I +H(D1)[H(D2)—]]} U(Dg) and }/Z(D],Dz) = D1+D2.
The Heaveside functions employed above are given by

H(Di) =1 for Di > 0;HDi) =0forDi=0 (i=1,2) 9

The n(D,) and n(D,) functions are defined, respectively, for the tension and compression cases,
assuming for the first one that there was no previous damage in compression affecting the present
tension damage variable D, and analogously, for the second one that has not had previous tension
damage affecting variable D,. The proposed functions are

—D, ++/3-2D]

n(Dy) = 3 (10)
—D,++/3-2D?
nDy= 22" P (11)

Note that if the damage process in the material is not activated (D; = D, = 0), the Eq. (8)
recovers the equation proposed by Comi (2001), thus the formulation satisfies the proposed
condition of initially isotropic material. On the other hand, if the material is totally damaged, D, =
D, =1(n (D)) =n (D) =0) and vy, = 2, the hyperplane g(g) is coincident to the transverse isotropy
local plane of the material and, therefore, the normal vector to the hyperplane is given by the
transverse isotropy tensor A.

Regarding to anisotropy induced by damage, it is convenient to separate the damage criterion
into two: the first one is only used to indicate damage beginning what means that the material is no
longer isotropic; the second one is used for loading and unloading, when the material is already
considered as transverse isotropic. This second criterion identifies if there is or not evolution of the
damage variables. That division is justified by the difference between the complementary elastic
strain energies of isotropic and transverse isotropic material.
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If there is damage evolution, i.e., when DT #0 or DC # 0, the evolution laws of the damage
variables are written as associated variables functions. Considering only the case of monotonic
loading, the evolution laws proposed for the scalar damage variables are resulting of fittings on
experimental results. The general form proposed is

1+ 4,
D =1- -
4, +exp[B,(Y, - ;)]

i=175 (12)

where A;, B; and Y are parameters of the model that must be identified through the uniaxial
tension and compression tests and biaxial compression tests.

When the damage process is activated, the formulation starts to involve the tensor A that
depends on the normal to the transverse isotropy plane. Therefore, it is necessary to establish some
rules to identify its location for an actual strain state. Initially, it is established a general criterion
for the existence of the transverse isotropy plane. In Pituba and Fernandes (2011) is proposed that
the transverse isotropy due to damage only arises if positive strain rates exist at least in one of the
principal directions. After assuming such proposition as valid, some rules to identify its location
are defined.

However it is necessary to take into account the diffuse damage generated in previous
compression dominant regimes. This problem can be solved by introduction of a new elasticity
tensor in tension dominant regimes. Taking as example, an uniaxial modelling and respecting the
principle of energy equivalence, the constitutive tensor is written as

E,=E,(1-D)*(1-D,)’ (13)

The relationship above shows that in a situation where a tension dominant state is prevailing
with occurrence of previous compression damage process, it is possible to solve the problem
discussed here. By analogy, under multiaxial stress states it can be concluded that the damage
tensor in compression D¢ should composes the expression of the constitutive tensor in tension
dominant states. Therefore, respecting the principle of energy equivalence, the constitutive tensor
is now written as

E; =(I-Dc)(I = Dp)E (I-Dr)(I-Dc) (14)

Considering a matrix representation and assuming, for instance, that the transversal isotropy
local plane is coincident to the 2-3 plane, the constitutive tensor E+ may be described as follows

(4 +2u)I =Dy (U-D,Y A(I-D)I-D)I-D)) AU-D)I-D)I-D) 0 0 0
AU-DYI-DYI-D;) (A +2u)I-D) AU-Dyy 0 0 0
- A -D)I-D,)I-D;) A(-Dyy (G +21)I - D)’ 0 0 0
r 0 0 0 24, 0 0
0 0 0 0 2u(-D)'(I-Dy) 0

0 0 0 0 0 2u(1-D,)' (I1-Dyy’ (16)

It can be noted that the Egs. (5) and (15) present different values for the shear components in
compression and tension dominant states, respectively. Therefore, this alternative formulation does
not respect the Curnier’s condition about the tangential continuity (Curnier et al. 1995) when
diffuse damage takes place. To avoid this problem, another expression for the damage tensor in
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compression dominant states D is proposed. This tensor is given by

D, =fi(D2,) (A® A) +15(Dy) [I®T) — (A® A)] (16)

where f;(D,) = D, and f5(D3) = D;. It is important to observe that the damage tensor D¢ provides

the diffuse damage in previous compression states by means the changing of the volumetric
modulus, as proposed in Comi (2001). For simplicity, considering a matrix representation and
assuming, for visualization proposals, that the transversal isotropy local plane is coincident to the
2-3 plane, Eq. (16) is written as

D, 0 0 00 0
0 D, 0 000
. |0 0 D, 000
D, = (17)
0 0 0 000
0 0 0 000
0 0 0 0 0 0

Finally, take into account the principle of energy equivalence, the constitutive tensor for tension
dominant states is given by

E,=(I-D./)I-D;)E,(I-D;)I-D,) (18)
(4 +2u)I-D)Y(I-D,)" A(I-D)I-D)I-D)) A(I-D)I-D)I-D) 0 0 0
A= D)1 -D,)I-Dy) (A +2m)I =Dy’ A-Dyy’ 0 0 0
g | AU=D)I-D)I-Dy) AU-Dyy (G +2m)I - D)’ 0 0 0
! 0 0 0 2u, 0 0
0 0 0 0 2u4(-D)(I-D,y 0

0 0 0 0 0 2u,(1-D,y(I- D,y (19)

Then, following the formalism presented in Pituba (2006), the bi-dissipative anisotropy damage
model taking into account the unilateral effect in brittle materials is written as

W_(¢)if g (& Dy, Dc)<0,
W, (¢)if g(&Dr,Dc)>0,

W.=py.(g)= %tﬁ (€) + p,tr( e?)- @/Q’Dz’f*D‘”Dﬂ tr’(Ag)-

W(e)=py(©) { 20)

iz (D1 Do, Ditr(eltr(Ae) - 122 t7() - L2200 1 D, (1 ) o (D,.Ds ) tr{AF)
0

@2y

WFPW—(S):%WZ (&) +,tr( €%)- /Izz(DzyD;,Dét,Dj)

trZ(AS)' A1,(D2,D3)tr(e)tr(Ag) - %Di’)
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1-2 —
tr° (&)~ 41, (D, (1S )& s (D, D3 ) tr(AF) (22)

0
Now, the parameters A;; and ; are given by

lzz(DI,Dz,Ds,D4’D5)=(/10 +2u9 )(2D, _D12)
(vo—1)

0

=241,(D;. Dy, D3 )= 2p,(Dy, D5 )+ A11(Ds ) +(Z +2ﬂ0)[(1_D1)2 —(I—Dz)z(f—Dz)z]

A12(D;,D;,D3) = ﬂo[(]_D3)Z _(I_DI)(]_Dz)(]_D3)]
#2(Dy,Ds) = 2py[ 1= (1-Dy)*(1-Ds)’ ]

y
Foa(D2.D5.D,.Ds) = (A + 241y 2D, = D3 )= 225Dy D) + 2= 15, (D, )= 20,(D,. D)
0
712,03 )= 20[(1-Dy ) ~(1=D, )(1-D, )]
A11(Ds) = 29(2D; =D ) (23)

The stress tensor is obtained from the gradient of the elastic potential, as follows

cy(8)2{0(5)= V.py_ (¢) if g(&Dgp,D¢)<0, 24)

o.(e)=V,py, (¢) if g(&Dy,Dc)>0,
o, (e)=A,tr (&)l +2pu, € - 25,(D,,D,,D; D,,Ds ) tr (Ae)A- 4},(D,;,D,,D; ) (tr(e)A + tr(Ag)l)

-2v,)

—2,(D; ) tr (- £ 2,(Ds) I®1Dg-p,(D,,D;) (As+ €A) (25)

0
o_(e)=A,,tr ()l +2u,&- A5,(D,,D;,D,,D;s )tr(A€)A- A;,(D,,D; ) (tr (€)A + tr(Ag)l)
_ 1-2 _ —
—A;(D3)tr (691_%/111(D3) (I®1D)&-u,(D;.D;) (Ae+ €A) (26)
0
The constitutive tensor is also obtained from the elastic potential, i.e.

E(s):z{E‘(‘g): Vipy_(g) if g(&Dyp,D¢)<0,

. . (27)
E (e)=V_,py, (¢) if g(&Dy,Dc)>0,

E (e)=Ep= A, [IQI]+2u,[I®I] —A5,(D,,D,,D;,D,,Ds) [A® A] —},(D,.D,,D;)

[ARIHI®A] - 27,(D;) [101- L2200 o2 D ) 1@V —py(D,. D5 ) [ABT +184]  (28)
vV,

0
E_(£)= Ec =2y [I®1]+2u,[I®1] —45,(D;,D;,D,,D5) [A® A] —2;,(D;,D; ) [ARIHIRA]

1 (1=2v)
Vo

~27,(D;) [1®1 231(D; ) (1@ 1] ~11,(D,. D5 ) [ARI + IRA] (29)

Taking into account the unilateral effects and focussing in the case that the direction 1 is
perpendicular to the transverse isotropy local plane, the complementary elastic energy of the
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damaged medium in tension dominant states is now expressed by

x _ o) + (65, +03;) _ vy(01105+0,,033) V0,033
‘Y 2E,(1-D,)’(1-D,)? 2E,(1-D;)? Ey(1-D;)(1-D,)(1-D;) E,(1-D;)’
(I+v,) (I1+v,)

20 2(0'122+0123)+—0‘7223 (30)
Ey(I-D,)"(1-Ds) E,

The variables associated to damage variables in tension with damage activated in previous
compression will also be modified, because they are obtained from the elastic potential (Eq. (20)).
Therefore, the following relationships are valid

Yr= %+%:Y1+Y4 (31)
oD, = oD,
Y, = ol _ V(011922 +0119533) (32)
Ey(1=D;)’(1=D;)"  Ey(1=D;)"(1=D;)(1-D;)

(1+vy)
Y, = 3
Ey(1-D,)°(1-Ds)

2(20'122 +2075) (33)

Note that only Y; must to take into account the diffuse damage represented by D, and D;. In
this case, those damage variables are constants because there is no energy release rates during the
damage evolution in tension dominant states related to D, and Ds.

In the case of tension dominant states without activation of damage processes in previous
compression the original version of the damage model is recovered.

It can be verified that the unilateral damage model satisfies two basic requirements of this
modelling kind:

The model does not produce spurious energy dissipation upon closed load paths which do not
activate damage, Matallah and La Borderie (2009).

The continuity of the stress-strain law across the tension-compression interface is assured
(hiperplano g(g,Dr,Dc)), because the damage model is derived from the formulation proposed in
Pituba (2006), following the requirements of Curnier et al. (1995) and Welemane and Comery
(2002). The continuity of the stress-strain law between two damage states imposes that the elastic
potential must be once continuously differentiable (whole wise), but only piecewise twice
continuously differentiable.

Accordingly with Curnier et al. (1995), other problem related to this kind of modelling is
concerned to the loss of isotropy of the elasticity tensor in the transition through the
tension-compression interface. The isotropy is preserved only if the interface is defined in the
same group of symmetry of the elasticity tensor. In the proposed model discussed here, the
hyperplane and elasticity tensor belong to the group of isotropic material if there is not damage
process. On the other hand, if there is activation of damage processes, the hyperplane starts to
present the symmetry of the transverse isotropic material as well as the elasticity tensor. Anyway,
the model always preserves the isotropy of the elasticity tensor.

3. Some remarks about the micromechanical theory



718 José J.C. Pituba

Although the damage model has been based on the macromechanical behaviour of the concrete,
this item intends to show the strong connection between the model and the micromechanical
theory. The description of the damage activation-deactivation process as part of macroscopic
modelling requires knowing when the transition between these two states of damage occurs and
how damage deactivation affects the elastic properties of the material, Welemane and Comery
(2002), Pensée et al. (2002). Moreover, there is a difficulty in recognizing tension and
compression states in 3D microscale analysis in order to adopt a differentiable Gibbs potential. It
is noted that the formulation for bimodular anisotropic damaged media proposed in Pituba (2006)
replies the first question (see Eq. (7)). Besides, the continuity of the stress-strain law has been
assured. In this context, this section aims to point out the influence of the opening-closure of
microdefects on the elastic properties of the microcracked concrete.

Following Welemane and Comery (2002), consider a RVE (representative volume element) of
an homogeneous isotropic elastic linear matrix (Young modulus E, and Poisson rate vy) weakened
by an array of N randomly distributed flat penny-shaped microcracks (unit normal ny, radius ay),
whose radii are very small in comparison with the size of the RVE. Assuming non-interaction
among microcracks and sliding without friction of their lips, the free enthalpy of the microcracked
medium is given by

2 N
uzwtr(a-a)— ' (ro) +—Ma DY ay
2E, 2E, W (2-v,)E, &
{n?z (>:§I+I(>:§n,?2 —[2—(2—1/0 )H(O',’f )]1’!?4:| o) (34)

The Heaviside function H depending on the normal stress to each microcrack is open (X >0) or

closed (c* <0).

Consider the simple case of a material weakened by a single array of parallel microcracks with
unit normal n as described in Fig. 1 and parameterA:16(1—v§ /(6—3v,). This case is interesting

for the damage model proposed in this work because the effective medium exhibits the symmetry
associated with the geometric shape of the microcracks with the privileged direction n (transverse
isotropic material).

=

2 (t)

(kY °7 ~——=

Fig. 1 Parallel microcracks on concrete submitted to uniaxial tension stress
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Then, the elastic modules are fully determined by five independent coefficients E(n), E(t),
v(n,t), v(t,k) and p(n,t), for any vectors t and k forming with n an orthonormal basis of R®. Using
Eq. (34), it can be obtained the elastic modules mentioned above.

N -1
E(n)= E{]+§Za,§(2—vo)H(aﬁ )} (35)
K=1
N -1
v(nt)= v0{1+§2a2(2—v0 )H(G,’f):l (36)
K=1
Et) =E) (37)
v(tk) = vy (38)
4 XL
#(n;l)zﬂo{ﬁfm;ak} (39)

In Welemane and Comery (2002) are described some conclusions about Egs. (35)-(39) that are
useful for a discussion about the proposed model. In general way, a macroscopic approach of the
unilateral effect in brittle materials should no longer be considered only by the single restoration of
the Young modulus in the direction normal to closed microcracks. Therefore, based on
micromechanical observations, some important aspects related to unilateral effect of damage
processes can be pointed out:

- The elastic modules E(n) and Poisson ratio v(n,t), related to normal direction to parallel
microcracks, are affected by the evolution of the microdefects. In particular, those modules recover
their initial values (E, and vo) when the microcracks are closed.

- In the other hand, the shear modulus p(n,t) remains the same when the microcracks are closed
(partial deactivation of damage). This behaviour is consistent with the hypothesis about tangential
jump null of the constitutive tensor. However, the elastic modules E(m), v(m,p) and w(m,p) related
to directions with different orientations at principal axes (n,t and K) are partially recovered when
the microcracks close.

The particular nature of the microdefects contribution allows extending these considerations for
any of N microcracks with different normal vectors. In this context, let us compare the damaged
elastic modules given by the proposed model to those ones given by the micromechanical
equations. Then, considering Fig. 1 and assuming, for instance, that the transversal isotropy local
plane is coincident with the 2-3 plane, the elastic modules given by the proposed model in
dominant compression (subscript C) and in tension (subscript 7) regimes are written as

Ep=Ey(1-D,)°(1-D,)°; Ec;=Ey(1-D, )’ (40)
I-D,\/{-D 1-D

Vri =Vris :VO%;VC]Z =Vciz =V EI ng 41)
— U3 — s

Ep, =Ep; = EO(I_D3)2; Ec, =E¢; =E0(1—D3)2 (42)

V13 =Veas =V (43)
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Hri2 = Hri3 = Heiz = Heis = Ho (1 -D, )2 (1 - D; )2 (44)

The longitudinal elastic modules in tension and in compression in the direction 1 depend on the
dominant state, i.e., of the opening-closure criterion. This is also valid for the Poisson ratio in the
1-2 and 1-3 planes. On the other hand, the Poisson ratio in the 2-3 plane (transversal isotropy local
plane) is not affected by the damage process. The shear modules are not changed in the transition
from the tension to compression regimes and vice-versa. Observe Eq. (42) and consider the
transition from dominant tension regime (damage process in tension activated or not) to the
compression regime without previous compression. In this case, E;, =E;; =E, =E¢; =E,. This

result is in correspondence with the form described by Eq. (37). Indeed, the coefficient (1-D, )

is necessary to take into account the diffuse damage in previous compression when the current
dominant state is tension.

Obviously, in general cases, when the damage process is activated, the formulation starts to
involve the tensor A, which depends on the knowledge of the normal to the transverse isotropy
plane, Pituba and Fernandes (2011). Therefore, the discussion about elastic modules presented
above is valid but those moduli are dependents of the tensor A, as described in section 2.

Finally, it is observed that despite the proposed model have macromechanical motivations in
the macroscopic behaviour of the concrete, the model assists to the requirements suggested by
Welemane and Comery (2002) for the micromechanical analysis of the unilateral effect in
materials.

4. Numerical analyses of framed RC structures

This work intends to show the capabilities of the modified damage model to simulate the
mechanical behaviour of reinforced concrete structures submitted to reversal loading in possible
practical situations of structural engineering. So, it is necessary that the model presents efficient
numerical responses, i.e., numerical analyses with low computational cost and a few parameters of
the model to be identified. In this context, the one-dimensional version of the damage model has
been implemented in a finite element code for bar structures analysis with finite layered elements
in order to model the reinforced concrete framed structures. For the longitudinal reinforcement
bars, standard elasto-plastic behaviour is admitted. In the transversal section, a certain layer can
contain steel and concrete, see Fig. 2. A perfect adherence between materials is adopted and an
equivalent elasticity modulus and inelastic strain are defined for each layer by using
homogenization rule

E =(1-C,)E, +C,E, (45)

ck

gink = (1 - Csk )8 + Cskg (46)

cink psk

where,
- Cy is the volumetric rate of steel in the layer N° k
- Eq is the elasticity modulus of steel in the layer N° k
- E is the elasticity modulus of concrete in the layer N° k
- &psk 18 the plastic strain of steel in the layer N° k
- &k 18 the homogenised inelastic strain in the layer N° k
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- &qnk 18 the inelastic strain of concrete in the layer N° k

- Ey is the homogenised elasticity modulus in the layer N° k

Considering the direction 1 as the longitudinal direction of the finite element, the formulation
presented in the previous item is simplified and presented as follows

E (e)=Vipy_ (¢) if  g(e,Ds,D¢)<0,
E (g .-={ PV , Te @7)
E.(e)=V,py, (¢8) if g(&D;,Dc)>0,
ET = E()(]_D1)2(]_D2)2 (48)
E.=E,(I-D,)’ (49)
2
w,, = 6”2 - (50)
2E,(I-D,)"(I1-D,)
2
W o= 51)
2E,(1-D,)
ow’
= —==Y 52
T oD, 1 (52)
ow”
= - =7 53
c oD, 2 (53)
2
(o2
Y, = B 54
' E,(-D)(1-D,)’ o9
2
o-ll
=—1 55
*TE,(-D,) &)

The one-dimensional version of the model takes into account permanent strains induced by
damage evolution. Assuming, for simplicity, that the permanent strains are composed exclusively
by volumetric strains, as it has already been considered in Comi (2001), and taking into account
the unilateral effect, the evolution law results

v =

B D B D, |1 56
G-y U-py o

Observe that 3; and [, are parameters directly related to the evolutions of permanent strains
induced by damage in tension and in compression, respectively. The consideration of the
permanent strains improves the capture of the transverse strains by the model, as it can see in
Pituba and Fernandes (2011). Besides, the model predicts the change in sign of the volumetric
strain.
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layer K

Fig. 2 Finite layered element

Here and after, some numerical applications are performed in order to show the potentialities of
the proposed model when dealing with RC structures analysis. Initially, the constitutive model is
used in the simulation of an uniaxial test in concrete specimens upon reversal load in order to
show the qualitative numerical response. Observe that the permanent strains are important in the
definition of the hyperplane, in the sense that the total strains start to compose the criterion, Eq. (8).
The initial stiffness recovery can be clearly observed taking into account permanent strain in the
dominant tension regime. It is noted the contribution of the diffuse damage generated in previous
compression regimes when dealing to tension regimes.

Now, a reinforced concrete beam with symmetric reinforcement is analysed. This test
corresponds to a reinforced concrete beam in a configuration of three points cyclic flexion. For
more details, see La Borderie (1991) and Matallah and La Borderie (2009). The beam is subject to
cyclic loading at the mid span. The concrete used in the beam has elasticity modulus E, = 31,800
MPa; the steel has Eg = 210,000 MPa, yielding stress of 445 MPa and ultimate stress of 540 MPa.
In the experimental test, the beam is subjected to two loading cycles of amplitude, the first one is
Imm and 2 mm the second one (see Fig. 4). The beam geometry and its reinforcement distribution
are illustrated in Fig. 4.

c (MPa)
€ (mstrain) ®]
Pt

-2.5 -2.0 -1.5 -1.0 -0.5 0 0.5
s |
—— Model (only damage) 10
— Model (plasticity and 87
damage) 20 |
25
30 4
35

404

Fig. 3 Concrete specimens submitted to reversal loading
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Fig. 4 Geometry, reinforcement details and loading history
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Fig. 5 Parametric identification in uniaxial compression test — La Borderie’s RC Beam
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Fig. 6 Parametric identification in uniaxial tension test — La Borderie’s RC Beam
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The parametric identification of the proposed damage model is presented in the Figs. 5 and 6.
The parameters used by La Borderie (1991) were taken as reference in the simulation of uniaxial
tension and compression tests. Table 1 presents the parameter values. It is important to note that
the experimental tests do not present loading/unloading paths. Therefore, the parameters 3, and 3,
have been adopted without interference in the maximum stress of the concrete.

In the numerical analysis, displacements increments were enforced in the mid span. Using the
advantage of symmetry, only half of the beam is discretised into 20 finite elements. The transversal
sections were divided into 16 layers where the reinforcement layers are located in the medium
planes of the second and fifteenth layers. In Fig. 7 are shown the numerical and experimental
responses of the vertical force and displacement in the middle of the span related to the first stage
of the loading. It is noted the good precision of the numerical response.

Table 1 Parameters for the proposed damage model — La Borderie’s RC Beam

Tension Compression
Y,=6.0x10°MPa Y,=3.0x10°MPa
A,=-0.93 A,=1.50
B,=110 MPa’ B,=10.01 MPa”
Bi=8x10"MPa Bo=1.0x10"MPa

25] Force (kN)

20]

15

’_Experimental La Borderie (1991)

_Proposed Model

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Displacement (mm)

Fig. 7 Experimental and numerical responses — first loading
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Fig. 8 Global response of the reinforced concrete beam
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Fig. 9 Damage distribution in tension (D)

In the other hand, in the Fig. 8 is illustrated the global response of whole test. The results
obtained by the model have shown to be satisfactory despite the limited parametric identification
of the parameters related to permanent strains. Therefore, the ultimate loads are computed more
accurately than the permanent strains in the unloading processes. In general way, the model
reproduces satisfactorily the cyclic behaviour of the beam.

Besides, the damage profile is also close to experimental test observations, see Matallah and La
Borderie (2009). In Fig. 09 is shown the damage distribution in tension regimes at two points of
the curve illustrated in Fig. 08. The first point is located at the end of the first loading and the
second one is located in the end of the second loading (reversal loading). These distributions have
shown the opening/closure cracks process. The first damage in tension zone (D;) occurs in the
bottom of the beam. On the other hand, when the load is inverted, the damage in tension zone (D)
appears in the upper zone of the beam, but the D, distribution in the bottom of the beam remains
the same, although there is no increasing of values. Therefore, the cracks previously open are now
closed. Note that the damage processes in the compression regimes (D,) are not so important in
this numerical application, according to observations in La Borderie (1991). It can be observed
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that the symmetric arrangement of the reinforcement leads to an additional support to compression
stresses in the concrete.

Another numerical application discussed in this work deals with an experimental test originally
performed by Vecchio and Emara (1992) taking into account just proportional loading/unloading,
but without reversal loading. However, in this work, the reinforced concrete frame is submitted to
loading/unloading and then a reversal loading is applied in order to show the potentialities of the
proposed model to simulate the collapse of frames in cyclic loading conditions.

The frame geometry and its reinforcement distribution are illustrated in Fig. 10. The concrete
used has the elasticity modulus E;=30,400 MPa and the steel has E;=192,500 MPa, yielding stress
of 418 MPa and ultimate stress of 596 MPa. A bilinear elasto-plastic model has been adopted with
a reduced elasticity modulus in the second branch (E,=0.009 E;). Also, Table 1 contains the
parameters values for the concrete as well as in the Fig. 11 is illustrated the parametric
identification by fitting experimental curve on compression test given in Vecchio and Emara
(1992). However, the parameters in tension regime have been obtained using the La Borderie’s
model response given by Pituba (2010).
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Fig. 11 Parametric identification
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Table 2 Parameters for the proposed damage model — La Borderie’s RC Beam

Tension Compression
Yy = 0,72x10*MPa Yy, =0,17x10°MPa
A =49 A;=10,30
B, = 6560 MPa” B, = 5,13 MPa”
B = Ix10° MPa So=1x10"° MPa

In the experimental test, it was initially applied an axial load of 700 kN for each column, which
was maintained constant during all the lateral load application. The lateral force was applied
increments up to the frame ultimate load. In the numerical analysis originally performed by Pituba
(2010), displacements increments were enforced in the application point of the horizontal force up
to the frame ultimate load. In that work, it has been performed loading and unloading trying to
simulate the experimental behaviour of the frame. The numerical results were very satisfactory
simulating the ultimate load as well as the residual strains.

Now, in this work, the frame was discretised into 30 finite elements, 10 of which were used in
the discretisation of each column and 5 in each beam. The transversal sections were divided into
10 layers. The numerical and experimental responses are illustrated in Fig. 12, where the graphs
represent the applied horizontal force versus horizontal displacement computed at the superior
floor of the frame (see Fig. 10).

In order to investigate the potentialities of the improvement of the damage model proposed in
section 2.2, the framed structure has been analyzed attempting to perform an unloading of the
horizontal force Q, including reversal loading. The goal is to observe the consistency of the
qualitative response provided by damage model.

400
Reinforced Concrete Frame

Force (kN)

300

200 -

-50 10 20 30 40 50

Displacement (mm) — Proposed Model

-&-Experimental

-400

Fig. 12 Numerical and experimental results of reinforced concrete frame
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It can be noted the agreement between numerical and experimental responses during the
unloading process. This evidences the good performance of the damage model to capture residual
strains. In this stage, the loading capacity of the frame has been achieved and the damage level is
high in most zones of the frame, as it can see in Fig. 13. Note that the figure presents the damage
distribution related to tension regimes (D;) because the analysis has shown the importance of that
variable. This is related to the concept of the damage model proposed in this work. It is possible to
observe the evolution of the damage processes within the stages displayed in Fig. 13.

Besides, in Fig. 12 the symmetric behaviour of the frame related to load capacity when the
horizontal force Q is applied to right direction and then it has been changed to left direction. In the
first case, the load level capacity was about 294.3 kN. On the other hand, the load level capacity
was 286.6 kN for the second case. Note yet, the capability of the model to simulate the recovery of
the load capacity when the first cycle of loading is complete.

There are some parts of the frame with high values of damage variable D, that together with the
yielding of the reinforcement bars contribute to concentrate damage-plastic zones like plastic
joints, Aratjo and Proenca (2008). It can be observed these zones in first and second floor
beam/column junctions and, mainly, in the supports of the frame. These observations are in
agreement with described in Vecchio and Emara (1992).
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[~ 1~ 1

1 y

0.15 [

w ) 1 1
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Fig. 13 Damage distribution in tension (D)
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Table 3 Parameter values of the proposed damage model — RC Beam

Tension Compression
Yy = 6.0x10°MPa Yy, =1.0x10°MPa
A,=0.3 A, =15
B, =195 MPa’’ B, =10.2 MPa”
B = 5x10° MPa £o=3x10" MPa
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Fig. 15 Numerical and experimental results of the reinforced concrete beam

The third numerical application is about a reinforced concrete beam with unsymmetrical
reinforcement. This numerical application has been originally performed by Pituba and Lacerda
(2012), but only monotonic loading has been imposed to the beam in that work. The elastic
parameters of the concrete are f;=25MPa and E.~=32.3MPa. For the reinforcement has been
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adopted Ei= 205 GPa, yielding stress 590 MPa and ultimate stress 750 MPa. The geometric
characteristics of the beam are given in Figure 14. The loading is composed by two equal forces
applied on the beam.

Table 3 presents the values of the parameters used in the analysis and adopted from Pituba and
Lacerda (2012), however in this work is considered the plastic strains generated by the damage
model.

The structure has been discretised into 16 finite elements and the transversal sections have been
divided into 15 layers where 3 layers have been used to represent the reinforcement bars according
with Fig. 14. The numerical and experimental responses are illustrated in Fig. 15.

In the first loading, it is noted that the numerical results are very close to the experimental ones
evidencing a good quality response in the sense that captures the history of the mechanical
behaviour of the structure. In this work, the numerical analysis continues with the unloading
process about 110 kN, where the beam is quite damaged in tension zone (bottom of the beam) and
the reinforcement bars present evident yielding in the same zone, Pituba and Lacerda (2012).

The unloading process modelled by the damage model presents very important qualitative
results. The damage model can simulate a residual displacement when the reverse loading takes
place. Furthermore, it is observed that due to the asymmetric arrangement of the reinforcement, i.
e., there is sufficient reinforcement at the bottom to resist the tension stresses in the first loading
and insufficient reinforcement (2#6.3mm) on the upper zone to resist the tension stresses in that
zone when the load is changed. In this situation, the structure experiences a damage process in
tension very intense in the upper zone of the beam. Therefore, it is natural that the strength of the
beam be much smaller than in the initial first loading. It can be observed that the concrete does not
have strength to the applied force and only the reinforcement resists to tension stresses indicating a
strong plastic strain.

5. Conclusions

In this work, a damage constitutive model taking into account the unilateral effect has been
presented. The constitutive model is able to capture the damage diffuse created when previous
damage processes have been activated in compression dominant regimes.

This paper has shown that the proposed damage model assists to the requirements suggested by
Welemane and Comery (2002) and Pensée et al. (2002) for the micromechanical analysis of the
unilateral effect in materials. Besides, the continuity of the stress-strain law across the
tension-compression interface has been assured and the model always preserves the isotropy of the
elasticity tensor.

In order to validate the proposed model in practical situations, 1D version of the model has
been used. The numerical analysis has shown an efficient and practical employment without
numerical problems and low computational cost. Besides, the parametric identification is
performed using only uniaxial tests in concrete specimens. Therefore, the damage model could be
used in estimative analyses of RC structures in practical situations, such as: numerical simulation
of displacement in cracking concrete beams submitted to service loadings, estimative of ultimate
load capacity of frames and beams and collapse configuration of reinforced concrete frames.

The results presented in this work encourage us to proceed in the improvement of the model to
deal with more complex phenomena in future works, e.g., blocking and dissipative sliding of
closed microcracks lips, non-local version of the model and a more efficient parametric
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identification of ; and J3,.
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A

)

%
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N
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Yre

Aiy Bi} YOi
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Ji
Je
Es
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Fourth-order damage tensor in tension regimes

Fourth-order damage tensor in compression regimes

Scalar damage variables for 1D constitutive model (i=1 for tension
regimes; i=2 for compression regimes)

Second-order identity tensor

Second-order tensor related to transverse isotropy symmetry
Constitutive tensor in tension regimes

Constitutive tensor in compression regimes

Lame constants

Damage functions related to damage tensor in tension regimes

Damage functions related to damage tensor in compression regimes

Damage functions related to shear behaviour of the concrete
Hyperplane in the strain space

Unite vector perpendicular to hyperplane g(e )

Damage functions related to hyperplane g(e )

Associated variables in tension or compression regimes

Parameters of the constitutive model related to damage process for 1D

constitutive model (i=1 for tension regimes; i=2 for compression regimes)
Parameters of the constitutive model related to plasticity process for 1D

constitutive model (i=1 for tension regimes; i=2 for compression regimes)

Tension strength of the concrete
Compression strength of the concrete
Elasticity module of reinforcement bar
Cross section area

Reinforcement area in the cross section
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