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Abstract.    This work deals with a damage model formulation taking into account the unilateral effect of the 
mechanical behaviour of brittle materials such as concrete. The material is assumed as an initial elastic 
isotropic medium presenting anisotropy, permanent strains and bimodularity induced by damage evolution. 
Two damage tensors governing the stiffness in tension or compression regimes are introduced. A new 
damage tensor in tension regimes is proposed in order to model the diffuse damage originated in prevails 
compression regimes. Accordingly with micromechanical theory, the constitutive model is validate when 
dealing with unilateral effect of brittle materials, Finally, the proposed model is applied in the analyses of 
reinforced concrete framed structures submitted to reversal loading. The numerical results have shown the 
good performance of the modelling and its potentialities to simulate practical problems in structural 
engineering. 
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1. Introduction 
 

The Continuum Damage Mechanics (CDM) has already proved to be a suitable tool for 
simulating the material deterioration in equivalent continuous media due exclusively to 
microcracking process. Many constitutive models for brittle and ductile media taking into account 
anisotropic characteristics of those media have been proposed. It can be mentioned: Cauvin and 
Testa (1999) have suggested a damage model applied to the transverse isotropy case; Lemaitre et 
al. (2000) and Brünig (2004) have developed constitutive models to study the damage processes in 
ductile media; Ibrahimbegovic et al. (2008) have proposed a coupled damage-plasticity model 
analyzing materials that present irreversible plastic deformation, change of elastic response and the 
localized failure; On the other hand, the localized failure process has been frequently studied by 
researchers (Brancherie and Ibrahimbegovic 2009, Kucerova et al. 2009, Hervé et al. 2005) in 
order to ensure finite element mesh objectivity. Also, some simplified damage models have been 
proposed in order to evaluate the mechanical properties of the brittle materials in practical 
situations of the Structural Engineering (Mohammed and Parvin 2013, Cao and Ronagh 2013, 
Esposito and Hendriks 2014). 
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On the other hand, for modeling the unilateral effect present in brittle media subject to reversal 
loading, many possible strategies have been proposed in the literature to model the stiffness 
recovery as described in Comi (2001), Carol and Willam (1996), Welemane and Comery (2002), 
Bielski et al. (2006), Liu et al. (2008) and Araújo and Proença (2008). For more details, in Bielski 
et al. (2006) is presented a summary of some constitutive model formulations which take into 
account the unilateral effect of the damage process, such as: the use of fourth-rank projection 
operators for the decomposition of the stress and strain tensors into the positive and negative 
projections, besides the use of the generalized projection operators. 

Despite the progress in the macroscopic modelling of the unilateral effect (in particular, the 
continuity problems that arise when the induced anisotropy is simultaneously described), this 
subject still remains as an open research field when it deals with induced anisotropy damage 
models, even when the micromechanical theory has been used to justify the proposal of 
constitutive models dealing with damaged media, Welemane and Comery (2002), Zhu et al. (2008), 
Zhu et al. (2009), Deudé et al. (2002), Pensée et al. (2002) and Pichler and Dormieux (2009). 
Pensée et al. (2002) have developed an Eshelby-type approach for open and closed mesocracks 
leading to a more realistic description of the macromechanical behavior in brittle materials in 
three-dimensional continuum damage mechanics. The development has led to a general expression 
of the free energy of the microcracked material that includes unilateral effects. The authors have 
proposed a formulation considering closed penny-shaped cracks using the Eshelby 
homogenization techniques. The modelling proposed satisfies the requirements at the 
micromechanical theory: convexity and continuity of the potential, continuity of the mechanical 
response and symmetry of the damage elastic stiffness tensor, Pensée et al. (2002). This 
requirements is also investigated when dealing with the damage model proposed here (please, see 
section 3). On the other hand, Deudé et al. (2002) has developed a micromechanical approach to 
deal with the macroscopic modelling of the nonlinear poroelastic behaviour present in cracked 
rocks. 

The unilateral effect is a research field still opened even nowadays when dealing with more 
actual approaches based on multiscale analysis procedures, Skarzynski and Tejchman (2012), 
Pituba and Souza Neto (2012) and Fernandes et al. (2015). 

In this work, a damage model taking into account the unilateral effect of the mechanical 
behaviour of brittle materials such as concrete is proposed. An induced anisotropy, permanent 
strains and bimodularity are considered. The author intends to contribute to discussion about the 
unilateral effect in brittle materials considering the assessment of some requirements of the 
micromechanical theory. Besides, the work intends to present a simplified version of the proposed 
damage model in order to apply to practical situations of Structural Engineering. Indeed, this work 
intends to contribute to the modelling of damage unilateral effect applied to concrete structures. 
However, it must be noted that the proposed model is not capable to take into account the friction 
effects, namely blocking and dissipative sliding of closed microcrack lips. This feature can be 
discussed in future works. 

This work is divided into five sections. In section 2, the damage model formulation is briefly 
described. Then, some aspects regarding to unilateral effect as well as the validation of the 
proposed model is presented in section 3. After that, some numerical analyses of RC framed 
structures are shown in section 4. Finally, in section 5 some concluding remarks, limitations and 
possible extensions are discussed. 
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2. Damage model for brittle materials 
 
In this work, for modelling the concrete behaviour, it can be assumed that the concrete belongs 

to the category of materials which can be considered initially isotropic and unimodular presenting 
different behaviours in tension and compression regimes when the media presents damage process. 
A formulation of constitutive laws for isotropic and anisotropic elastic materials presenting 
different behaviours in tension and compression predominant regimes under small deformations 
has been proposed by Curnier et al. (1995) for two and three-dimensional cases. The authors have 
considered a bimodular hyperelastic material defining an elastic potential energy density W which 
must be once continuously differentiable (whole wise), but only piecewise twice continuously 
differentiable. In this way, the model is able to produce different response in tension and 
compression predominant regimes. Pituba (2006) has extended that formulation in order to take 
into account the damage effects. Accordingly with, the bulk (ab) and shear (a) module are 
considered such as functions of the damage state, so that the stress-strain relationship would be 
influenced by damage variables. Moreover, the hypersurface g(, Di) adopted as the criterion for 
identification of the constitutive responses in compression or tension predominant regimes would 
be also influenced by the damage variables. Then, a damage constitutive model accounting for 
induced anisotropy and bimodular elastic response for the concrete has been derived from Pituba 
(2006) and its potentialities for 1D and 2D analyses have been discussed in Pituba (2010), Pituba 
and Fernandes (2011), Pituba and Lacerda (2012) and Pituba et al. (2012). Also, the numerical 
simulations of uniaxial, biaxial and triaxial stress experimental tests are reported in Pituba and 
Fernandes (2011). The original version of the damage model is bimodular in the sense that 
presents different elasticity tensors in tension and compression predominant regimes. Thus, the 
model is potentially capable to simulate the stiffness recovery when the medium is submitted to a 
reversal loading that evidences the transition from of tension to compression predominant regimes, 
i.e., the so-called unilateral behaviour of the damaged concrete. However, the model is not capable 
to simulate the influence of the previous damage processes in compression predominant regimes 
(diffuse damage) when a transition from compression to tension predominant regimes takes place, 
Comi (2001). From a micromechanics point of view, this feature is due to the partial closure 
process of microcracks subject to compression loading which affects less the elasticity module in 
compression predominant regimes than in tension ones, Desmorat (2000). Therefore, to avoid this 
problem a new elasticity tensor is proposed in this work and some numerical analyses are 
performed to simulate practical problems in structural engineering. 

The original damage model formulation has been developed in Pituba and Fernandes (2011) 
considering the formalism presented in Pituba (2006). To obtain the class of anisotropy induced 
and considered in the model one has assumed that locally the loaded concrete presents damage 
distribution oriented diffusely as appointed by experimental observations (Willam et al. 1988, 
Kupfer et al. 1969, Van Mier 1997). One has also considered that the oriented damage is 
responsible for the changes on the material characteristics leading to a transverse isotropic medium. 
Note that a constitutive model with orthotropy induced by damage could be proposed. However, 
the parametric identification could become infeasible at the practical point of view. Moreover, the 
model respects the principle of energy equivalence between damaged real medium and equivalent 
continuum medium established in the CDM leading to the guarantee of the major symmetry of the 
constitutive tensor even if non-symmetric damage tensors are used throughout the formulation, 
Lemaitre (1996). More details can be found in Pituba and Fernandes (2011). 

Initially, for dominant tension states, a damage tensor is proposed 
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DT=f1(D1,D4,D5) )( AA +2f2(D4,D5) )]()[( AAAIIA 







            (1) 

where f1(D1, D4, D5) = D1 – 2 f2(D4, D5) and f2(D4, D5) = 1 – (1-D4) (1-D5). The variable D1 
represents the damage in the direction orthogonal to the transverse isotropy local plane of the 
material, while D4 is representative of the damage due to the sliding movement between the crack 
faces. The third damage variable, D5, is only activated if a previous compression state 
accompanied by damage has occurred. In Curnier et al. (1995), the tensor I is the second-order 
identity tensor and the tensor A, is formed by dyadic product of the unit vector perpendicular to 
the transverse isotropy plane for himself. Those products are given in Pituba (2006). For dominant 
compression states, it is proposed another damage tensor 

DC= *
1f (D2,D4,D5) )( AA +f2(D3) )]()[( AAII 



+2f3(D4,D5)            ) 

)]()[( AAAIIA 







                        (2) 

where *
1f (D2, D4, D5) = D2 – 2f3(D4, D5) ,f2(D3) = D3 and f3(D4,D5)=1–(1-D4)(1-D5). Note that the 

compression damage tensor introduces two additional scalar variables in its composition: D2 and 
D3. The variable D2 (damage perpendicular to the transverse isotropy local plane) reduces the 
Young's modulus in that direction and in conjunction to D3 (that represents the damage in the 
transverse isotropy plane) degrades the Poisson's ratio throughout the perpendicular planes to the 
one of transverse isotropy. 

On the other hand, the constitutive tensor is written as 

E () := 







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The remaining parameters will only exist for no-null damage evidencing the anisotropy and 
bimodularity induced by damage process. Those parameters are given by 
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)]D1)(D1()D1[()D,D( 32
2

303212  ; )DD2()D( 2
330311          (6) 

Therefore, the constitutive model includes two damage tensors in order to take into account the 
bimodularity induced by damage in the concrete behaviour. Therefore, it is necessary a criterion to 
define the tension and compression dominant states to indicate what damage tensor should be 
used. 

The criterion has been extended in Pituba (2006) to deal with damaged media. This extension 
influences the hyperplane definition. Therefore, the following relationship has been proposed 

g(,DT,DC) = N(DT,DC) . e                              (7) 

In Pituba and Fernandes (2011), a particular form is adopted for the hypersurface in the strain 
space: a hyperplane g() defined by the unit normal N (||N|| = 1) and characterized by its 
dependence of the strain and damage states. Accordingly with Eq. (7) and referring to general 
cases of loading, the following relationship has been proposed for the hyperplane 

g(,DT,DC) = N(DT,DC) . e = 1(D1,D2) 
e
V  + 2(D1,D2) 

e
11             (8) 

where 1(D1,D2) = {1+H(D2)[H(D1)-1]}(D1)+{1+H(D1)[H(D2)-1]}(D2) and 2(D1,D2) = D1+D2. 
The Heaveside functions employed above are given by 

H(Di) = 1 for Di > 0;H(Di) = 0 for Di = 0    (i = 1, 2)              (9) 

The (D1) and (D2) functions are defined, respectively, for the tension and compression cases, 
assuming for the first one that there was no previous damage in compression affecting the present 
tension damage variable D1 and analogously, for the second one that has not had previous tension 
damage affecting variable D2. The proposed functions are 

 (D1) = 
3

D23D 2
11 

                          (10) 

 (D2) = 
3

D23D 2
22 

                          (11) 

Note that if the damage process in the material is not activated (D1 = D2 = 0), the Eq. (8) 
recovers the equation proposed by Comi (2001), thus the formulation satisfies the proposed 
condition of initially isotropic material. On the other hand, if the material is totally damaged, D1 = 
D2 = 1 ( (D1) =  (D2) = 0) and 2 = 2, the hyperplane g() is coincident to the transverse isotropy 
local plane of the material and, therefore, the normal vector to the hyperplane is given by the 
transverse isotropy tensor A. 

Regarding to anisotropy induced by damage, it is convenient to separate the damage criterion 
into two: the first one is only used to indicate damage beginning what means that the material is no 
longer isotropic; the second one is used for loading and unloading, when the material is already 
considered as transverse isotropic. This second criterion identifies if there is or not evolution of the 
damage variables. That division is justified by the difference between the complementary elastic 
strain energies of isotropic and transverse isotropic material. 
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If there is damage evolution, i.e., when 0DT   or 0DC  , the evolution laws of the damage 
variables are written as associated variables functions. Considering only the case of monotonic 
loading, the evolution laws proposed for the scalar damage variables are resulting of fittings on 
experimental results. The general form proposed is 

 )(exp

1
1

0iiii

i
i YYBA

A
D




   i = 1, 5                  (12) 

where Ai, Bi and Y0i are parameters of the model that must be identified through the uniaxial 
tension and compression tests and biaxial compression tests. 

When the damage process is activated, the formulation starts to involve the tensor A that 
depends on the normal to the transverse isotropy plane. Therefore, it is necessary to establish some 
rules to identify its location for an actual strain state. Initially, it is established a general criterion 
for the existence of the transverse isotropy plane. In Pituba and Fernandes (2011) is proposed that 
the transverse isotropy due to damage only arises if positive strain rates exist at least in one of the 
principal directions. After assuming such proposition as valid, some rules to identify its location 
are defined. 

However it is necessary to take into account the diffuse damage generated in previous 
compression dominant regimes. This problem can be solved by introduction of a new elasticity 
tensor in tension dominant regimes. Taking as example, an uniaxial modelling and respecting the 
principle of energy equivalence, the constitutive tensor is written as 

2
2

2
10 )1()1( DDEET                              (13) 

The relationship above shows that in a situation where a tension dominant state is prevailing 
with occurrence of previous compression damage process, it is possible to solve the problem 
discussed here. By analogy, under multiaxial stress states it can be concluded that the damage 
tensor in compression DC should composes the expression of the constitutive tensor in tension 
dominant states. Therefore, respecting the principle of energy equivalence, the constitutive tensor 
is now written as 

))(())(( 0 CTTCT DIDIEDIDIE                    (14) 

Considering a matrix representation and assuming, for instance, that the transversal isotropy 
local plane is coincident to the 2–3 plane, the constitutive tensor ET may be described as follows 
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It can be noted that the Eqs. (5) and (15) present different values for the shear components in 
compression and tension dominant states, respectively. Therefore, this alternative formulation does 
not respect the Curnier´s condition about the tangential continuity (Curnier et al. 1995) when 
diffuse damage takes place. To avoid this problem, another expression for the damage tensor in 
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compression dominant states *
CD  is proposed. This tensor is given by 

*
CD =f1(D2,) )( AA +f2(D3) )]()[( AAII 



                   (16) 

where f1(D2) = D2 and f2(D3) = D3. It is important to observe that the damage tensor *
CD  provides 

the diffuse damage in previous compression states by means the changing of the volumetric 
modulus, as proposed in Comi (2001). For simplicity, considering a matrix representation and 
assuming, for visualization proposals, that the transversal isotropy local plane is coincident to the 
2–3 plane, Eq. (16) is written as 
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Finally, take into account the principle of energy equivalence, the constitutive tensor for tension 
dominant states is given by 
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Then, following the formalism presented in Pituba (2006), the bi-dissipative anisotropy damage 
model taking into account the unilateral effect in brittle materials is written as 

W()=()









W

W
:

)(

)(




if

if

g

g

,0),,(

,0),,(




CT

CT

DD

DD




                     (20) 

W+=+()= 211tr
2


() (tr1 2)‐

2

)D,D,D,D,D( 5432122


tr2(A)‐ 

12 (D1,D2,D3)tr()tr(A)
2

)D( 311





tr2() [(tr)D(
2

)21(
311

0

0 
 




I I)]2 )D,D( 542 tr(A2) 

(21) 

W‐=‐()= 211 tr
2


() (tr1 2)‐

2

)D,D,D,D( 543222


tr2(A)‐ 
12 (D2,D3)tr()tr(A)

2

)D( 311





715



 
 
 
 
 
 

José J.C. Pituba 

tr2() [(tr)D(
2

)21(
311

0

0 
 




I I)]2 )D,D( 542 tr(A2)                    (22) 

Now, the parameters ij and i are given by 
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The stress tensor is obtained from the gradient of the elastic potential, as follows 
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The constitutive tensor is also obtained from the elastic potential, i.e. 
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Taking into account the unilateral effects and focussing in the case that the direction 1 is 
perpendicular to the transverse isotropy local plane, the complementary elastic energy of the 
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damaged medium in tension dominant states is now expressed by 
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The variables associated to damage variables in tension with damage activated in previous 
compression will also be modified, because they are obtained from the elastic potential (Eq. (20)). 
Therefore, the following relationships are valid 
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Note that only Y1 must to take into account the diffuse damage represented by D2 and D3. In 
this case, those damage variables are constants because there is no energy release rates during the 
damage evolution in tension dominant states related to D2 and D3. 

In the case of tension dominant states without activation of damage processes in previous 
compression the original version of the damage model is recovered. 

It can be verified that the unilateral damage model satisfies two basic requirements of this 
modelling kind: 

The model does not produce spurious energy dissipation upon closed load paths which do not 
activate damage, Matallah and La Borderie (2009). 

The continuity of the stress-strain law across the tension-compression interface is assured 
(hiperplano g(,DT,DC)), because the damage model is derived from the formulation proposed in 
Pituba (2006), following the requirements of Curnier et al. (1995) and Welemane and Comery 
(2002). The continuity of the stress-strain law between two damage states imposes that the elastic 
potential must be once continuously differentiable (whole wise), but only piecewise twice 
continuously differentiable. 

Accordingly with Curnier et al. (1995), other problem related to this kind of modelling is 
concerned to the loss of isotropy of the elasticity tensor in the transition through the 
tension-compression interface. The isotropy is preserved only if the interface is defined in the 
same group of symmetry of the elasticity tensor. In the proposed model discussed here, the 
hyperplane and elasticity tensor belong to the group of isotropic material if there is not damage 
process. On the other hand, if there is activation of damage processes, the hyperplane starts to 
present the symmetry of the transverse isotropic material as well as the elasticity tensor. Anyway, 
the model always preserves the isotropy of the elasticity tensor. 

 
 

3. Some remarks about the micromechanical theory 
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Although the damage model has been based on the macromechanical behaviour of the concrete, 

this item intends to show the strong connection between the model and the micromechanical 
theory. The description of the damage activation-deactivation process as part of macroscopic 
modelling requires knowing when the transition between these two states of damage occurs and 
how damage deactivation affects the elastic properties of the material, Welemane and Comery 
(2002), Pensée et al. (2002). Moreover, there is a difficulty in recognizing tension and 
compression states in 3D microscale analysis in order to adopt a differentiable Gibbs potential. It 
is noted that the formulation for bimodular anisotropic damaged media proposed in Pituba (2006) 
replies the first question (see Eq. (7)). Besides, the continuity of the stress-strain law has been 
assured. In this context, this section aims to point out the influence of the opening-closure of 
microdefects on the elastic properties of the microcracked concrete. 

Following Welemane and Comery (2002), consider a RVE (representative volume element) of 
an homogeneous isotropic elastic linear matrix (Young modulus E0 and Poisson rate ν0) weakened 
by an array of N randomly distributed flat penny-shaped microcracks (unit normal nk, radius ak), 
whose radii are very small in comparison with the size of the RVE. Assuming non-interaction 
among microcracks and sliding without friction of their lips, the free enthalpy of the microcracked 
medium is given by 

u=
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The Heaviside function H depending on the normal stress to each microcrack is open ( 0k
n  ) or 

closed ( 0k
n  ). 

Consider the simple case of a material weakened by a single array of parallel microcracks with 
unit normal n as described in Fig. 1 and parameter    0

2
0 36/116A  . This case is interesting 

for the damage model proposed in this work because the effective medium exhibits the symmetry 
associated with the geometric shape of the microcracks with the privileged direction n (transverse 
isotropic material). 
 

 
 

Fig. 1 Parallel microcracks on concrete submitted to uniaxial tension stress 

1

2

3




(n)

(t)

(k)
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Then, the elastic modules are fully determined by five independent coefficients E(n), E(t), 
ν(n,t), ν(t,k) and μ(n,t), for any vectors t and k forming with n an orthonormal basis of R3. Using 
Eq. (34), it can be obtained the elastic modules mentioned above. 
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E(t) = E0                                (37) 

ν(t,k) = ν0                               (38) 
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

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
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 

                        (39) 

In Welemane and Comery (2002) are described some conclusions about Eqs. (35)-(39) that are 
useful for a discussion about the proposed model. In general way, a macroscopic approach of the 
unilateral effect in brittle materials should no longer be considered only by the single restoration of 
the Young modulus in the direction normal to closed microcracks. Therefore, based on 
micromechanical observations, some important aspects related to unilateral effect of damage 
processes can be pointed out: 

- The elastic modules E(n) and Poisson ratio ν(n,t), related to normal direction to parallel 
microcracks, are affected by the evolution of the microdefects. In particular, those modules recover 
their initial values (E0 and ν0) when the microcracks are closed. 

- In the other hand, the shear modulus μ(n,t) remains the same when the microcracks are closed 
(partial deactivation of damage). This behaviour is consistent with the hypothesis about tangential 
jump null of the constitutive tensor. However, the elastic modules E(m), ν(m,p) and μ(m,p) related 
to directions with different orientations at principal axes (n,t and k) are partially recovered when 
the microcracks close. 

The particular nature of the microdefects contribution allows extending these considerations for 
any of N microcracks with different normal vectors. In this context, let us compare the damaged 
elastic modules given by the proposed model to those ones given by the micromechanical 
equations. Then, considering Fig. 1 and assuming, for instance, that the transversal isotropy local 
plane is coincident with the 2-3 plane, the elastic modules given by the proposed model in 
dominant compression (subscript C) and in tension (subscript T) regimes are written as 

2
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 2303T2T D1EEE  ; 2
303C2C )D1(EEE                   (42) 

023C23T                                        (43) 
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   25
2

4013C12C13T12T D1D1                      (44) 

The longitudinal elastic modules in tension and in compression in the direction 1 depend on the 
dominant state, i.e., of the opening-closure criterion. This is also valid for the Poisson ratio in the 
1-2 and 1-3 planes. On the other hand, the Poisson ratio in the 2-3 plane (transversal isotropy local 
plane) is not affected by the damage process. The shear modules are not changed in the transition 
from the tension to compression regimes and vice-versa. Observe Eq. (42) and consider the 
transition from dominant tension regime (damage process in tension activated or not) to the 
compression regime without previous compression. In this case, 03C2C3T2T EEEEE  . This 

result is in correspondence with the form described by Eq. (37). Indeed, the coefficient  23D1  
is necessary to take into account the diffuse damage in previous compression when the current 
dominant state is tension. 

Obviously, in general cases, when the damage process is activated, the formulation starts to 
involve the tensor A, which depends on the knowledge of the normal to the transverse isotropy 
plane, Pituba and Fernandes (2011). Therefore, the discussion about elastic modules presented 
above is valid but those moduli are dependents of the tensor A, as described in section 2. 

Finally, it is observed that despite the proposed model have macromechanical motivations in 
the macroscopic behaviour of the concrete, the model assists to the requirements suggested by 
Welemane and Comery (2002) for the micromechanical analysis of the unilateral effect in 
materials. 

 
 

4. Numerical analyses of framed RC structures 
 
This work intends to show the capabilities of the modified damage model to simulate the 

mechanical behaviour of reinforced concrete structures submitted to reversal loading in possible 
practical situations of structural engineering. So, it is necessary that the model presents efficient 
numerical responses, i.e., numerical analyses with low computational cost and a few parameters of 
the model to be identified. In this context, the one-dimensional version of the damage model has 
been implemented in a finite element code for bar structures analysis with finite layered elements 
in order to model the reinforced concrete framed structures. For the longitudinal reinforcement 
bars, standard elasto-plastic behaviour is admitted. In the transversal section, a certain layer can 
contain steel and concrete, see Fig. 2. A perfect adherence between materials is adopted and an 
equivalent elasticity modulus and inelastic strain are defined for each layer by using 
homogenization rule 

  skskckskk ECECE  1                           (45) 

  pskskcinkskink CC   1                         (46) 

where, 
- Csk is the volumetric rate of steel in the layer N k 
- Esk is the elasticity modulus of steel in the layer N k 
- Eck is the elasticity modulus of concrete in the layer N k 
- psk is the plastic strain of steel in the layer N k 
- ink is the homogenised inelastic strain in the layer N k 
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- cink is the inelastic strain of concrete in the layer N k 
- Ek is the homogenised elasticity modulus in the layer N k 
Considering the direction 1 as the longitudinal direction of the finite element, the formulation 

presented in the previous item is simplified and presented as follows 
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The one-dimensional version of the model takes into account permanent strains induced by 
damage evolution. Assuming, for simplicity, that the permanent strains are composed exclusively 
by volumetric strains, as it has already been considered in Comi (2001), and taking into account 
the unilateral effect, the evolution law results 
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1 D
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I                      (56) 

Observe that 1 and 2 are parameters directly related to the evolutions of permanent strains 
induced by damage in tension and in compression, respectively. The consideration of the 
permanent strains improves the capture of the transverse strains by the model, as it can see in 
Pituba and Fernandes (2011). Besides, the model predicts the change in sign of the volumetric 
strain. 
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Fig. 2 Finite layered element 
 

Here and after, some numerical applications are performed in order to show the potentialities of 
the proposed model when dealing with RC structures analysis. Initially, the constitutive model is 
used in the simulation of an uniaxial test in concrete specimens upon reversal load in order to 
show the qualitative numerical response. Observe that the permanent strains are important in the 
definition of the hyperplane, in the sense that the total strains start to compose the criterion, Eq. (8). 
The initial stiffness recovery can be clearly observed taking into account permanent strain in the 
dominant tension regime. It is noted the contribution of the diffuse damage generated in previous 
compression regimes when dealing to tension regimes. 

Now, a reinforced concrete beam with symmetric reinforcement is analysed. This test 
corresponds to a reinforced concrete beam in a configuration of three points cyclic flexion. For 
more details, see La Borderie (1991) and Matallah and La Borderie (2009). The beam is subject to 
cyclic loading at the mid span. The concrete used in the beam has elasticity modulus Ec = 31,800 
MPa; the steel has Es = 210,000 MPa, yielding stress of 445 MPa and ultimate stress of 540 MPa. 
In the experimental test, the beam is subjected to two loading cycles of amplitude, the first one is 
1mm and 2 mm the second one (see Fig. 4). The beam geometry and its reinforcement distribution 
are illustrated in Fig. 4. 
 

Fig. 3 Concrete specimens submitted to reversal loading 
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Fig. 4 Geometry, reinforcement details and loading history 
 
 

 

Fig. 5 Parametric identification in uniaxial compression test – La Borderie’s RC Beam 

 

Fig. 6 Parametric identification in uniaxial tension test – La Borderie’s RC Beam 
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The parametric identification of the proposed damage model is presented in the Figs. 5 and 6. 
The parameters used by La Borderie (1991) were taken as reference in the simulation of uniaxial 
tension and compression tests. Table 1 presents the parameter values. It is important to note that 
the experimental tests do not present loading/unloading paths. Therefore, the parameters 1 and 2 
have been adopted without interference in the maximum stress of the concrete. 

In the numerical analysis, displacements increments were enforced in the mid span. Using the 
advantage of symmetry, only half of the beam is discretised into 20 finite elements. The transversal 
sections were divided into 16 layers where the reinforcement layers are located in the medium 
planes of the second and fifteenth layers. In Fig. 7 are shown the numerical and experimental 
responses of the vertical force and displacement in the middle of the span related to the first stage 
of the loading. It is noted the good precision of the numerical response. 
 
 
 
Table 1 Parameters for the proposed damage model – La Borderie’s RC Beam 

Tension Compression 

Y01=6.0x10-5MPa Y02=3.0x10-3MPa 

A1=-0.93 A2=1.50 

B1=110 MPa-1 B2=10.01 MPa-1 

1=8x10-5MPa 2=1.0x10-3MPa 

 
 

 
Fig. 7 Experimental and numerical responses – first loading 
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Table 2 Parameters for the proposed damage model – La Borderie’s RC Beam 

Tension Compression 

Y01 = 0,72x10-4MPa Y02 =0,17x10-2MPa 

A1 = 49 A2 = 0,30 

B1 = 6560 MPa-1 B2 = 5,13 MPa-1 

1 = 1x10-6 MPa 2=1x10-3 MPa 

 
 

In the experimental test, it was initially applied an axial load of 700 kN for each column, which 
was maintained constant during all the lateral load application. The lateral force was applied 
increments up to the frame ultimate load. In the numerical analysis originally performed by Pituba 
(2010), displacements increments were enforced in the application point of the horizontal force up 
to the frame ultimate load. In that work, it has been performed loading and unloading trying to 
simulate the experimental behaviour of the frame. The numerical results were very satisfactory 
simulating the ultimate load as well as the residual strains. 

Now, in this work, the frame was discretised into 30 finite elements, 10 of which were used in 
the discretisation of each column and 5 in each beam. The transversal sections were divided into 
10 layers. The numerical and experimental responses are illustrated in Fig. 12, where the graphs 
represent the applied horizontal force versus horizontal displacement computed at the superior 
floor of the frame (see Fig. 10). 

In order to investigate the potentialities of the improvement of the damage model proposed in 
section 2.2, the framed structure has been analyzed attempting to perform an unloading of the 
horizontal force Q, including reversal loading. The goal is to observe the consistency of the 
qualitative response provided by damage model. 

 
 

-400

-300

-200

-100

0

100

200

300

400

-50 -40 -30 -20 -10 0 10 20 30 40 50

Force (kN)

Displacement (mm)

Reinforced Concrete Frame

Proposed Model

Experimental

A
B

C

D

 

Fig. 12 Numerical and experimental results of reinforced concrete frame 
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It can be noted the agreement between numerical and experimental responses during the 
unloading process. This evidences the good performance of the damage model to capture residual 
strains. In this stage, the loading capacity of the frame has been achieved and the damage level is 
high in most zones of the frame, as it can see in Fig. 13. Note that the figure presents the damage 
distribution related to tension regimes (D1) because the analysis has shown the importance of that 
variable. This is related to the concept of the damage model proposed in this work. It is possible to 
observe the evolution of the damage processes within the stages displayed in Fig. 13. 

Besides, in Fig. 12 the symmetric behaviour of the frame related to load capacity when the 
horizontal force Q is applied to right direction and then it has been changed to left direction. In the 
first case, the load level capacity was about 294.3 kN. On the other hand, the load level capacity 
was 286.6 kN for the second case. Note yet, the capability of the model to simulate the recovery of 
the load capacity when the first cycle of loading is complete. 

There are some parts of the frame with high values of damage variable D1 that together with the 
yielding of the reinforcement bars contribute to concentrate damage-plastic zones like plastic 
joints, Araújo and Proença (2008). It can be observed these zones in first and second floor 
beam/column junctions and, mainly, in the supports of the frame. These observations are in 
agreement with described in Vecchio and Emara (1992). 
 
 
 

  
(a) First loading (Q=59.3 kN) (b) First loading (Q=75.6 kN) 

 
(c) First loading (Q=294.3 kN) (d) Reversal loading (Q=-286.6 kN) 

Fig. 13 Damage distribution in tension (D1) 
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Fig. 14 Geometry and reinforcement details 
 
 
Table 3 Parameter values of the proposed damage model – RC Beam 

Tension Compression 

Y01 = 6.0x10-5MPa Y02 =1.0x10-3MPa 

A1 = 0.3 A2 = 1.5 

B1 = 195 MPa-1 B2 = 10.2 MPa-1 

1 = 5x10-5 MPa 2=3x10-4 MPa 

 
 

 

Fig. 15 Numerical and experimental results of the reinforced concrete beam 
 
 

The third numerical application is about a reinforced concrete beam with unsymmetrical 
reinforcement. This numerical application has been originally performed by Pituba and Lacerda 
(2012), but only monotonic loading has been imposed to the beam in that work. The elastic 
parameters of the concrete are fc=25MPa and Ec=32.3MPa. For the reinforcement has been 
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adopted Es= 205 GPa, yielding stress 590 MPa and ultimate stress 750 MPa. The geometric 
characteristics of the beam are given in Figure 14. The loading is composed by two equal forces 
applied on the beam. 

Table 3 presents the values of the parameters used in the analysis and adopted from Pituba and 
Lacerda (2012), however in this work is considered the plastic strains generated by the damage 
model. 

The structure has been discretised into 16 finite elements and the transversal sections have been 
divided into 15 layers where 3 layers have been used to represent the reinforcement bars according 
with Fig. 14. The numerical and experimental responses are illustrated in Fig. 15. 

In the first loading, it is noted that the numerical results are very close to the experimental ones 
evidencing a good quality response in the sense that captures the history of the mechanical 
behaviour of the structure. In this work, the numerical analysis continues with the unloading 
process about 110 kN, where the beam is quite damaged in tension zone (bottom of the beam) and 
the reinforcement bars present evident yielding in the same zone, Pituba and Lacerda (2012). 

The unloading process modelled by the damage model presents very important qualitative 
results. The damage model can simulate a residual displacement when the reverse loading takes 
place. Furthermore, it is observed that due to the asymmetric arrangement of the reinforcement, i. 
e., there is sufficient reinforcement at the bottom to resist the tension stresses in the first loading 
and insufficient reinforcement (2#6.3mm) on the upper zone to resist the tension stresses in that 
zone when the load is changed. In this situation, the structure experiences a damage process in 
tension very intense in the upper zone of the beam. Therefore, it is natural that the strength of the 
beam be much smaller than in the initial first loading. It can be observed that the concrete does not 
have strength to the applied force and only the reinforcement resists to tension stresses indicating a 
strong plastic strain. 

 
 

5. Conclusions 
 
In this work, a damage constitutive model taking into account the unilateral effect has been 

presented. The constitutive model is able to capture the damage diffuse created when previous 
damage processes have been activated in compression dominant regimes. 

This paper has shown that the proposed damage model assists to the requirements suggested by 
Welemane and Comery (2002) and Pensée et al. (2002) for the micromechanical analysis of the 
unilateral effect in materials. Besides, the continuity of the stress-strain law across the 
tension-compression interface has been assured and the model always preserves the isotropy of the 
elasticity tensor. 

In order to validate the proposed model in practical situations, 1D version of the model has 
been used. The numerical analysis has shown an efficient and practical employment without 
numerical problems and low computational cost. Besides, the parametric identification is 
performed using only uniaxial tests in concrete specimens. Therefore, the damage model could be 
used in estimative analyses of RC structures in practical situations, such as: numerical simulation 
of displacement in cracking concrete beams submitted to service loadings, estimative of ultimate 
load capacity of frames and beams and collapse configuration of reinforced concrete frames. 

The results presented in this work encourage us to proceed in the improvement of the model to 
deal with more complex phenomena in future works, e.g., blocking and dissipative sliding of 
closed microcracks lips, non-local version of the model and a more efficient parametric 

730



 
 
 
 
 
 

A damage model formulation: unilateral effect and RC structures analysis 

identification of 1 and 2. 
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List of Symbols 

 
 

DT Fourth-order damage tensor in tension regimes 

DC Fourth-order damage tensor in compression regimes 

Di Scalar damage variables for 1D constitutive model (i=1 for tension 

regimes; i=2 for compression regimes) 

I Second-order identity tensor 

A Second-order tensor related to transverse isotropy symmetry 

ET Constitutive tensor in tension regimes 

EC Constitutive tensor in compression regimes 

0, 0 Lamè constants 


ij  

Damage functions related to damage tensor in tension regimes 


ij  

Damage functions related to damage tensor in compression regimes 

i Damage functions related to shear behaviour of the concrete 

g(ε) Hyperplane in the strain space 

N Unite vector perpendicular to hyperplane g(ε ) 

i Damage functions related to hyperplane g(ε ) 

YT,C Associated variables in tension or compression regimes 

Ai, Bi, Y0i Parameters of the constitutive model related to damage process for 1D 

constitutive model (i=1 for tension regimes; i=2 for compression regimes) 

βi Parameters of the constitutive model related to plasticity process for 1D 

constitutive model (i=1 for tension regimes; i=2 for compression regimes) 

ft Tension strength of the concrete 

fc Compression strength of the concrete 

ES Elasticity module of reinforcement bar 

AC Cross section area 

AS Reinforcement area in the cross section 
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