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Abstract.  The paper presents results of FE simulations of the strain-rate sensitive concrete behaviour under 
dynamic loading at the macroscopic level. To take the loading velocity effect into account, viscosity, stress 
modifications and inertial effects were included into a rate-independent elasto-plastic formulation. In 
addition, a decrease of the material stiffness was considered for a very high loading velocity to simulate 
fragmentation. In order to ensure the mesh-independence and to properly reproduce strain localization in the 
entire range of loading velocities, a constitutive formulation was enhanced by a characteristic length of 
micro-structure using a non-local theory. Numerical results were compared with corresponding laboratory 
tests and available analytical formulae. 
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1. Introduction 

 

A fracture process is a fundamental phenomenon in quasi-brittle materials like concrete (Bažant 

and Planas 1998). It is subdivided in general into two main stages: appearance of narrow regions 

of intense strain localization with a certain width (including micro-cracks) and occurrence of 

macro-cracks (Bobiński and Tejchman 2013). Within continuum mechanics, strain localization can 

be numerically captured by a continuous approach and discrete macro-cracks by a discontinuous 

one. Usually, to describe the fracture behaviour of concrete, one approach is used. However, in 

order to describe the entire fracture process, a continuous approach should be connected with a 

discontinuous one (Simone 2003, Moonen et al. 2008, Bobiński and Tejchman 2013). Its 

description is crucial to evaluate the material strength at peak and in the post-peak regime. 

Fracture and strength strongly depend among others on the loading velocity since concrete is a  
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a) b) 

Fig. 1 Increase of concrete strength with increasing strain rate during: a) uniaxial compression and b) 

uniaxial tension from different laboratory tests (CDIF – compressive dynamic increase factor, TDIF - 

tensile dynamic increase factor (Malvar and Ross 1998, Jankowiak 2007) 

 

 

highly rate-dependent material (e.g. Winnicki et al. 2001, Winnicki 2007, Pedersen et al. 2008, 

Pedersen 2009, Jankowiak 2009, Jankowiak et al. 2011, Häußler-Combe and Kühn 2012). The 

structural concrete resistance increases when the strain rate increases (Bischoff and Perry 1991, 

1995, Häußler-Combe and Kühn 2012) (Fig. 1) due to 3 main phenomena: 1) viscosity of moving 

free water in a capillary mortar system (at low strain rates), 2) inertia forces influencing the growth 

of micro-cracks (rate dependence of cracking) and 3) structural inertia forces (for high strain rates) 

(Gary 1990, Bischoff and Perry 1995, Rossi 1991, Malvar and Ross 1998, Zheng and Li 2004, 

Brara and Klepaczko 2006, Zhang et al. 2009, Ožbolt et al. 2011). The first two phenomena are 

important for low and medium strain rates, and the third one is dominant for high strain rates. The 

second phenomenon is strongly influenced by concrete fragmentation for high loading velocities 

that contributes to a significant kinetic energy dissipation (Grady 2008, Werner and Thienel 2011, 

Pająk 2011). The material ductility usually increases with increasing strain rate. For very high 

strain rates, the material behaviour after the peak can be very different (Bischoff and Perry 1995). 

The strength of concrete after drying is less sensitive to a loading rate. Two different phases in the 

strength increase with the strain rate can be distinguished in compression and tension (Fig.1). In 

compression, the first phase corresponds to the strain rate  <1-10 1/s (it leads to the maximum 

1.5 - time increase of the compressive strength) and the second one  ≥1-10 1/s (it leads to the 

maximum 3-times increase of the compressive strength). In tension two distinct phases also occur 

in the tensile strength growth versus the strain rate. At  =1 1/s the tensile strength is 2-times 

higher and at  =100 1/s is even 9-times greater. The majority of the authors concluded that the 

strength increase in the first phase under both compression and tension was due to the presence of 

water in the material (in concrete pores). In turn the rate effect in compression for the second 

phase was considered to be of a structural origin since inertia effects in specimens under 

compression generated constrains similar to confining pressure which lead to the pronounced 

strength increase. However, the structural effect does not occur during tension.  

Several theoretical papers have been published in order to describe the concrete behaviour at 
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global level under different prescribed strain rates by modifications of damage, plastic and elastic 

parts of the constitutive model (Suaris and Shah 1984, Sluys and de Borst 1992, Cervera et al. 

1996, Nemes and Speciel 1996, Wang et al. 1997, Eibl and Schmidt-Hurtienne 1999, Sercombe et 

al. 2000, Denoual and Hild 2000, Gatuingt and Pijaudier-Cabot 2002, Winnicki 2007). Visco-

plastic terms were usually added to model the rate effects in concrete (de Borst and Sluys 1991, 

Sluys and de Borst 1992, Winnicki 2007). To take into account the concrete moisture, visco-

elasticity was introduced (Ragueneau and Gatuingt 2003, Pedersen et al. 2008). Retarded damage 

approaches were proposed to decrease the inertial effect in simulations since micro cracking and 

damage could not propagate arbitrarily fast (Häußler-Combe and Kühn 2012). In order to describe 

rate effects, Ožbolt and Reinhardt (2005) and Ožbolt et al. (2011) used a formula proposed by 

Bazant et al. (2000) within a micro-plane theory. Recently, a gradient visco-elastic retarded 

damage model was presented by Häußler-Combe and Kühn (2012a, 2012b) that included concrete 

moisture and reduced inertial effects. Bazant and Caner (2013) took into account concrete 

comminution into very fine particles for very high strain rates. The dynamic behaviour of concrete 

was also simulated at meso-level using the spherical discrete element method (DEM) (Hentz et al. 

2004, Azevedo et al. 2008, Rousseau et al. 2009) and a continuum model enhanced by a 

characteristic length (Pedersen et al. 2008, Pedersen 2009). 

The aim of our research works is to develop a reliable phenomenological constitutive model for 

concrete under dynamic loading for practical engineering applications. The objective of this paper 

was to determine the application range of an enhanced elasto-plastic continuum model with non-

local softening to the concrete behaviour under dynamic conditions at macro-level (concrete 

composition and micro-structural phenomena at aggregate level during fracture were not taken into 

account). The constitutive model was enhanced either by viscosity in the plastic range or by stress 

modifications to capture the effect of the strain rate on the concrete behaviour. In the first case, a 

double length scale was present due to both non-locality and viscosity. The modelling capability of 

two different approaches was checked with dynamic numerical FE calculations. The dynamic 

calculations were carried for concrete specimens under uniaxial compression, uniaxial tension and 

three-point bending under the different strain rate or loading velocity. The computation results 

were compared with the corresponding experiments from the literature. Attention was paid to the 

evolution of the dynamic increase factor against the strain rate or loading velocity. In addition, a 

decrease of the material stiffness was considered for very high loading velocities during bending 

(being equivalent with material fragmentation). 

The innovative points are: a) introduction of viscosity into an elasto-plastic model with non-

local softening for concrete, b) a stress modification proposal for a continuum constitutive 

concrete model for engineering applications and c) simulations of material fragmentation for the 

very high loading velocity by removing finite elements. The calculations with a double length 

scale have not been performed yet. 
 

 
2. Constitutive models for concrete under dynamic conditions 

 

First, an elastic-visco-plastic continuum concrete model was developed based on the rate-

independent elasto-plastic formulation enhanced by viscosity incorporated via the so-called 

overstress approach by Duvaut-Lions (1972) where the stress state was allowed to remain outside 

the yield surface. To describe the inviscid behaviour, the Drucker-Prager criterion (1952) in 

compression and the Rankine criterion (1858) in tension were assumed. In a compression regime, 
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a shear yield surface based on the linear Drucker-Prager criterion with isotropic 

hardening/softening was used (Marzec et al. 2007, Majewski et al. 2008, Tejchman and Bobiński 

2013, Syroka et al. 2013) 

 11 tan
3

1
1tan  cpqf 








 ,                     (1) 

 

where q – the Mises equivalent stress, p – the mean stress,   – the friction angle, c  – the 

current uniaxial compression yield stress and 1  – the hardening (softening) parameter (equal to 

plastic strain in uniaxial compression 
p

11 ). The internal friction angle   was assumed as 

 





bc

bc

r

r

21

13
tan




 ,                              (2) 

where 
bcr  is the ratio between the biaxial compressive strength and uniaxial compressive strength 

( 
bcr =1.2). The invariants q and p are 

jiijssq
2

3
    and     kkp 

3

1
 ,                    (3) 

where ij  is the stress tensor and sij denotes the deviatoric stress tensor. The flow potential was 

defined as 

tan1 pqg  ,                            (4) 

where   is the dilatancy angle (   ). For the sake of simplicity, the constant values of   

and   were assumed. In turn, in a tensile regime, the maximum tensile stress criterion by 

Rankine (1858) was used with a yield function f2 and isotropic softening defined as (Marzec et al. 

2007, Majewski et al. 2008, Tejchman and Bobiński 2013, Syroka et al. 2013) 

   23212 ,,max  tf  ,                        (5) 

where i  – the principal stress,  2 t  – the tensile yield stress and 2  – the softening 

parameter equal to the maximum principal plastic strain 
p

1 . The associated flow rule was 

assumed. The edges and vertex in Rankine yield function were taken into account by applying a 

standard multi-surface plasticity model with the Koiter’s rule in order to calculate plastic strain 

increments. The same procedure was adopted in the case of combined tension (Rankine criterion) 

and compression (Drucker-Prager criterion) (there are sharp edges along the lines where the 

surface in Eq. (1) intersects the Rankine planes). This inviscid isotropic elasto-plastic model for 

concrete (Eqs. (1)-(5)) requires two elastic parameters: modulus of elasticity E and Poisson’s ratio 

 , one compression stress function  1 fc   (based on a uniaxial compression test), one 

tensile stress function  2 ft   (based on a uniaxial tension test), internal friction angle   

and dilatancy angle   (based on a triaxial compression test). The model has some shortcomings. 

The shape of the failure surface in the p-q plane is linear (not parabolic as in the reality). The 
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tensile and compression meridians are straight and the shape of the yield curve in a deviatoric 

plane is circular for compression and triangular for tension. Thus it does not gradually change 

from a curvilinear triangle with smoothly rounded corners to nearly circular with increasing 

pressure (as in the reality). The strength is the same for a triaxial compression and extension test (it 

does not depend on the Lode angle) and the stiffness degradation due to strain localization and 

non-linear volume changes during loading are not taken into account. These disadvantages may be 

overcome by adopting more advanced constitutive laws (e.g. by Menetrey and Willam (1995) and 

by Lee and Fenves (1998)). 

The viscosity was incorporated based on the approach by Duvaut-Lions (1972), wherein a 

viscoplastic solution was simply constructed based on a relevant plastic solution. The advantage of 

this approach is the easy numerical implementation since an additional simple stress update loop is 

needed in existing elasto-plastic algorithms only. The visco-plastic strain rate and hardening 

parameter were respectively defined as 

   klkl
e
ijkl

vp
ij C 


 

11
                          (6) 

and 

 


 
1vp ,                             (7) 

where   is the material parameter usually called the relaxation time, ij  and   are the stress 

and hardening/softening parameter of the inviscid material and e
ijklC  is the linear elastic stiffness 

tensor with the Young modulus E and Poisson ratio  . The visco-plastic strain rate Eq. (6) was 

defined by the difference between the true stresses and stresses obtained in an inviscid material. 

The total strain rate partition into an elastic strain rate and a visco-plastic strain rate was assumed 

vp

ij

e

ijij    .                             (8) 

Such a formulation allows for a smooth transition from an inviscid to a viscous case (in contrast 

to the visco-plastic model by Perzyna (1966)). The Duvaut-Lions model can be combined with a 

yield surface which has an apex or a non-smooth surface which is not possible with the model by 

Perzyna requiring a smooth surface with continuous derivatives with respect to the stress in order 

to determine the unique direction of a visco-plastic strain rate. The material is initially considered 

to be as a rate-independent, so the plastic stress tensor ij  and the hardening variable   are 

obtained. Later, the rate-dependency is incorporated by means of Eqs. (6) and (7). Finally, one 

obtains the updated visco-plastic stress and updated visco-plastic hardening parameter integrated 

over the time step t  (from ‘t’ up to ‘t+ t ’) 
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1

1

1

n n
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t

t

 
















.                           (10) 

A Duvaut-Lions visco-plastic model is quite convenient to be implemented, since a visco-

plastic solution is the update of an inviscid one (Winnicki 2007). It introduces a characteristic 

length into the field equations as a multiplication product of the elastic wave speed times the 

relaxation time (de Borst and Sluys 1991). 

In addition, as a separate model, the effect of the strain rate was included into our elasto-plastic 

constitutive model with non-local softening by means of the so-called activation energy theory 

(called also the dynamic plasticity) proposed by Bažant et al. (2000) 


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
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






1

2
0 2

ln1
C

Cij
d
ij





 with ijij  5.0 ,               (11) 

where d
ij  is the dynamic stress tensor, 0

ij  denotes the static stress tensor, ij  is the strain rate 

tensor,   - the second strain rate invariant and C1 and C2 - the empirical material constants. 

Analogously, we proposed a more complex non-linear formulation, composed of 3 functions 

versus   
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where s  - the reference strain rate equal to 5101  , C1-C4 – the empirical material constants 

and    - the stress weight function which is determined with aid of principal stresses (Lee and 

Fenves 1998) 

 















otherwise   

0   if             0

i

i







 ,                          (13) 

where the Macauley bracket is defined by the formula  xxx 
2
1 . The stress weight function 

can be treated as a positive-negative stress projection operator which allows for a simple 

differentiation between tension and compression (e.g. under pure tension the stress weight function 

is 1w  and under pure compression 0w ). 

As compared to Eq. (11), the rate effect in concrete in Eq. (12) was divided into 3 ranges of   
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with 2 different phases of the strength growth (first phase with a moderate growth and second 

phase with a rapid one) in order to obtain a better agreement with the experimental results (Fig. 1). 

In addition, the strength growth rate was assumed to be stronger under tension than under compression 

(as in experiments). The inviscid elasto-plastic stress tensor ( ij ) obtained with Eqs. (1)-(5) was 

updated according to Eqs. (11) and (12) by assuming that ijij  0 . 

 
 
3. Modelling of strain localization 

 

An integral-type non-local theory was used as a regularization technique to describe strain 

localization in the entire strain rate range (Pijaudier-Cabot and Bažant 1987, Brinkgreve 1994, 

Vermeer and Brinkgreve 1994, Ferrara and di Prisco 2001, Bažant and Jirásek 2002, Pijaudier-

Cabot et al. 2004). It takes advantage of a weighted spatial averaging of a suitable state variable 

over a neighbourhood of each material point. Thus, a state variable at a certain material point 

depends not only on the state variable at the point but on the distribution of the state variable in a 

finite neighbourhood of the point considered (the principle of a local action does not hold – a non-

local interaction takes place between any two points). It has a physical motivation in the fact that 

the distribution of stresses in the interior of concrete at meso-scale is strongly non-uniform due to 

the presence of different phases (aggregate, cement matrix, transitional interfacial zones). 

Polizzotto et al. (1998) laid down a thermodynamically consistent formulation of non-local 

plasticity. Usually, in elasto-plastic formulations, it is sufficient for achieving mesh-independent 

FE results to treat non-locally one state variable controlling material softening (e.g. non-local 

softening parameter), whereas stresses, strains and other variables remain local (Brinkgreve 1994, 

Vermeer and Brinkgreve 1994, Jirásek and Rolshoven 2006, Bobiński and Tejchman 2004). 

In the case of dynamic problems, the viscosity provides an appropriate solution for 

regularization of initial value problems (de Borst and Sluys 1991). However, in order to properly 

regularize quasi-static FE analysis results, the viscous parameter has to be unrealistically high. 

Therefore, the non-locality was introduced into the constitutive formulation in an inviscid phase of 

the model for the entire loading range (although its presence for very high strain rates is 

questionable due to the material fragmentation). The rates of the inviscid softening parameter Eq. (7) 

were averaged according to Brinkgreve (1994) and Vermeer and Brinkgreve (1994) 

          xxxx ii
V

ii m  ddd,d~d   ,               (14) 

where i
~d  detones the non-local softening parameter and and V is the material volume. Since the 

rate of the softening parameter is not known at the iteration beginning, some extra sub-iterations 

are required to solve Eq. (14) (Strömberg and Ristinmaa 1996). To simplify the calculations, the 

non-local rates were replaced by their approximations 
est
id  calculated based on the known total 

strain rate (Brinkgreve 1994, Vermeer and Brinkgreve 1994) 

          xxxx
est

i

est

i
V

ii m  ddd,d~d   ,               (15) 

where in   is the weighting function (called also the attenuation function or non-local averaging 

function). The FE results have shown an insignificant influence of the calculation method of the 
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rates of the non-local softening parameter (Bobiński and Tejchman 2004). In addition, an 

approximate method proposed by Brinkgreve (1994) and Vermeer and Brinkgreve (1994) in Eq. (15) is 

less time consuming (by ca.30%). 

As the weighting function  , the Gauss distribution was assumed (Bažant and Jirásek 2002) 

independently of strain rates 

 

2

1 











 cl

r

g

e
c

r ,                                (16) 

where the parameter lc is the characteristic length of micro-structure related to a micro-structural 

dimension as e.g. the maximum aggregate size in concrete (Bažant and Planas (1998), r is the 

distance between two material points and cg denotes the normalizing factor equal to cl  (1D 

case), 
2
cl  (2D case) and 

3
cl  (3D case). The averaging in Eq. (15) is restricted to a small 

representative area around each material point (the influence of points at the distance of clr  3  

is only of 0.01%). The weighting function satisfies the normalizing condition (Pijaudier-Cabot and 

Bažant 1987) 

 
 
  




V
x

x
r






d
,

0

0
.                              (17) 

The characteristic length lc is about 5 mm in usual concretes based both on our numerical 

simulation results of both concrete and reinforced concrete beams under bending when using the 

Gauss distribution function and experiments using a digital image correlation DIC technique for 

measuring the width of a localized zone on the concrete surface (Skarżyński and Tejchman 2010, 

Skarżyński et al. 2011, Syroka-Korol and Tejchman 2013). A proper non-local transformation 

requires that a non-local field corresponding to a constant local field remains constant in the 

vicinity of a boundary. 

The models where implemented into the ABAQUS STANDARD program (2004) with the aid 

of the subroutine UMAT (user constitutive law definition) and UEL (user element definition). For 

the solution of a non-linear equation of motion governing the dynamic response of a system of 

finite elements, the Newmark algorithm was used. The calculations were performed with a 

symmetric elastic global stiffness matrix instead of applying a tangent stiffness matrix (the choice 

was governed by access limitations to the commercial software ABAQUS (2004)). The procedure 

yielded sufficiently accurate and fast convergence. The following convergence criteria were 

assumed 

qr ~01.0max   and maxmax 01.0 uc  ,                      (18) 

where maxr  - the largest residual out-of-balance force, q~  - the average value of all elements and 

externally applied forces in the model (so-called the spatial average force), maxc  – the largest 

correction of the displacement and maxu  – the largest change of the displacements in the 

increment. The time increment was t = t/600 - t/6000 with t = 10
-5

-10
3
 s - the total calculation 

time. To satisfy the consistency condition df=0 in elasto-plasticity, a linearized expansion of the 

522



 

 

 

 

 

 

Computational simulations of concrete behaviour under dynamic conditions 

yield condition about the trial stress point using an elastic predictor and a plastic corrector with the 

return mapping algorithm (Ortiz and Simo 1986) was applied. The calculations were always 

carried out using a large-displacement analysis although the effect of large displacements turned 

out to be negligible. In this case, the current configuration of the body was considered. The 

Cauchy stress was taken as the stress measure. The conjugate strain rate was the rate of 

deformation. The rotation of the stress and strain tensor was calculated with the Hughes-Winget 

method (1980) 

ij
t
kljlik

tt
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
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,                             (19) 

where ij


  is the stress increment caused by the straining of the material during this time 

increment. The increment in rotation ijR  is define as 
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where ijW  is the central difference integration of the spin rate. As a consequence of the 

assumption of the geometrical nonlinearity, a non-local averaging was performed in the current 

configuration. This choice was also governed by the fact that element areas in this configuration 

were automatically calculated by ABAQUS. 

The local elasto-visco-plastic model requires four material constants to capture the elastic and 

plastic behaviour: E, ν,   and   and two hardening/softening yield stress functions (one in 

tension and one in compression) which have a major impact on the results. The constants and yield 

stress functions can be determined for concrete with the aid of two independent simple monotonic 

tests: uniaxial compression test and uniaxial tension (or three-point bending) test. In addition, one 

material constant  is required to describe the viscous behaviour that requires several tests during 

uniaxial compression and uniaxial tension to capture the strength increase factor for various strain 

rates. 

 

4. Dynamic FE results 

 

4.1 Uniaxial compression 
 

The standard concrete cube (150150150 mm
3
) was numerically modelled either in a plane 

strain or 3D state. It was completely fixed at the lower edge and fixed in a horizontal direction 

along the upper edge. The uniform vertical displacement was imposed in the range of ∆=0-1.0 mm at 

the upper boundary to induce deformation (Fig. 2). The material parameters were: E=35.0 GPa, 

=0.15,  =14º,  =8º and the compressive ultimate stress c =30 MPa with linear softening 

(H = 1.55 GPa). The imposed vertical strain rate at the top edge was varied from  =10
-5

 1/s up to 

 =10
2
 1/s. The different meshes were assumed: 101010 and 151515 with eight-node brick 

elements and full integration (3D analyses) and 100, 2020 and 4040 consisting of plane strain 

triangular elements in the so-called "union jack pattern" and plane strain four-node square 

elements with full integration (2D analyses) (Fig. 2). In order to prevent the element locking in the  
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a) b) 

Fig. 2 Uniaxial compression test in FE calculations: a) specimen geometry with boundary 

conditions and b) mesh discretization (2D analyses - plane strain triangular elements, 3D analyses 

- eight-node brick elements) 

 

 
a) 

 
b) 

Fig. 3 The calculated force-displacement curves using elasto-visco-plastic model (τ=2×10
-6

 s) with 

local softening for different 2D mesh densities: a) during slow loading process (  =10
-4

 1/s) and b) 

during fast loading process (  =1 1/s) 
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a) 

 
b) 

Fig. 4 The calculated contours of softening parameter using elasto-visco-plastic model (τ=2×10
-6

 s) 

with local softening for different 2D mesh densities: a) during slow loading process (  =10
-4

 1/s) 

and b) during fast loading process (  =1 1/s) 

 

 
Fig. 5 The geometry and boundary conditions for 2D specimens with different height under 

uniaxial compression in FE calculations of size effect (width b =150 mm) 

 

 

case of the full integration, the actual volume changes at the Gauss points were replaced by the 

average volume change of the element (it is so-called a selectively reduced-integration technique, 

Nagtegaal et al. 1977). The element size changed between 3.75 mm (fine mesh) and 15 mm 

(coarse mesh). The relaxation time  was equal to 1×10
-6

 s, 2×10
-6
 s, 1×10

-5
 s, 2×10

-5
 s and 2×10

-4
 s. 

The characteristic length, lc=2ce (de Borst and Sluys 1991), where ce=3800 m/s denotes the 

longitudinal wave velocity for the assumed density of 2400 kg/m
3
, could theoretically vary in the 

range of 7.6-1520 mm. In the computations, the characteristic length had the value of 5-15 mm. 

Initially, plane strain quasi-static calculations within the elastic-visco-plastic model with local 

softening (softening modulus H=0.3 GPa) were carried out. The calculations were performed 

without inertial forces during the so-called slow process (the prescribed vertical normal strain rate  
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                   a)            b)          c)           d) 

Fig. 6 The calculated contours of softening parameter with elasto-visco-plastic model and local 

softening during fast loading without inertial forces (  =1 1/s, τ=2×10
-5

 s) for different 2D 

specimen heights: a) h=150 mm, b) h=300 mm, c) h=450 mm and d) h=600 mm for top vertical 

normal strain of  =0.01 (specimen width b=150 mm) 

 

 
a) 

 

b) 

Fig. 7 The calculated force-displacement P-u (a) and stress-strain - (b) curves with elasto-visco-

plastic model and local softening during fast loading for different 2D specimen heights from quasi-

static calculations (  =1 1/s, τ=2×10
-5

, b =150 mm) 
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A) 

 
  

B) 

  

 a) b) 

Fig. 8 Uniaxial compression with elasto-visco-plastic model with local softening (fast loading 

process (  =1 1/s, τ=2×10
-6

 s) under 2D plane strain (a) and 3D deformation (b): A) force-

displacement curves and B) contours of softening parameter 

 

A) 

 
 a)               b)              c) 

B) 

 
 a)               b)               c) 

Fig. 9 The contours of softening parameter for slow (A) and fast (B) loading in 2D simulations: a) 

elasto-visco-plastic model with local softening (lc=0 mm), b) elasto-visco-plastic model with non-local 

softening (lc=5 mm), c) elasto-visco-plastic model with non-local softening (lc=15 mm) 
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A) 

 

B) 

Fig. 10 Calculated force-displacement curves with elasto-visco-plastic model with local and non-

local softening (at τ=2×10
-6

 s) for different characteristic lengths of microstructure lc in 2D 

simulations: A) slow loading (  =10
-4

 1/s), B) fast loading (  =1 1/s) 

 

 
Fig. 11 Dynamic FE simulations showing effect of formulation and viscosity based on evolution of 

dynamic compressive increase factor CDIF by CEB and fib Model Code: #1 - elasto-visco-plastic 

model with non-local softening (lc=5 mm) and =2×10
-5

 s, #2 - elasto-plastic model with non-local 

softening (lc=5 mm) 
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a)                b)                c)                d) 

       

             e)                 f)                 g)               h) 

Fig. 12 The contours of non-local softening parameter from 3D FE dynamic simulations for 

different prescribed strain rates: a) 10
-5

 1/s, b) 10
-4

 1/s, c) 10
-3

 1/s, d) 10
-2

 1/s, e) 10
-1

 1/s, f) 

10
0
 1/s, g) 10

1
 1/s, h) 10

2
 1/s using elasto-visco-plastic model with non-local softening 

(=1×10
-6

 s, lc=5 mm) 

 

 
Fig. 13 The load-displacement curves from FE analyses for different vertical strain rate using 

elasto-visco-plastic model with non-local softening in 3D simulations (=1×10
-6

 s, lc=5 mm) 

 

 
Fig. 14 Dynamic 3D FE results of CDIF using elasto-visco-plastic model with non-local softening 

(lc = 5 mm) with different relaxation times  as compared to CEB curve 
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along the top edge was  =10
-4

 1/s) and the fast process ( =1 1/s) (Figs. 3 and 4). The viscosity 

parameter was τ = 2×10
-6

 s. The third dimension was taken as 0.15 m. 

The FE results of Figs. 3(a) and 4(a) are evidently mesh-dependent during the slow process 

since the crossing shear zones are confined to one or two rows of finite elements only. For each 

mesh, a mesh-dependent post-peak response was obtained. Thus, the viscous terms are not 

sufficient to properly regularize the boundary value problem. In turn, for the fast process, the 

mesh-dependence does not occur (Figs. 3(b) and 4(b)) and shear zones have larger widths than one 

element row.  

For all meshes the width of the localization zone is very similar and approximately equal to 22 mm 

(Fig. 4(b)). The calculated both geometry of localized zones and load-displacement curves are 

similar as in FE calculations by Winnicki (2007). 

In order to determine the effect of the specimen height during the fast compressive 

loading (  =1 1/s), the 2D plane strain FE quasi-static calculations using four-node square 

elements with full integration were performed with the constant specimen width of b=150 mm and 

varying specimen height between 150 mm and 600 mm (with τ =2×10
-5

 s and b=150 mm) (Fig. 5). 

For lower specimens (h=150-300 mm), two intersecting shear zones are obtained (Fig. 6). In 

turn, for h=450-600 mm four shear zones occur. At  = 1%, the width of the calculated shear 

zones is 29 mm (h=150 mm), 36 mm (h=300 mm) and 35 mm (h=450-600 mm). The material 

brittleness increases with increasing height (Fig. 7). The highest maximum vertical normal stress is 

for h=150 mm. For the heights in the range of h=300-600 mm, the maximum stress is almost the 

same that indicates a weak size effect during compression. 

Fig. 8 shows the effect of the assumed modelling (plane strain or 3D state) for fast loading 

during compression. The computations were performed with the parameters: H=1.0 GPa and 

=2×10
-6

 s. In the case of 3D the same boundary condition as in 2D were assumed. The calculated 

strength under plane strain conditions was higher as compared with the 3D strength by 25% due to 

the large compressive stress in the lateral direction. The shape of localized zones was similar. In 

the narrowest place, the width of the shear zone was approximately 26 mm for 2D and 24 mm for 

3D. In the central specimen part, the shape of a 3D localized zone was more diffuse and had a 

significantly larger width. The 3D calculations are certainly more realistic due to the ability to 

properly simulate inertia effects which generate strong constraints. 

The non-locality effect on 2D FE quasi-static results using the elasto-visco-plastic model is 

demonstrated in Figs. 9 and 10 (for τ=2×10
-6

 s, H=1.55 GPa). Due to presence of a characteristic 

length of micro-structure (lc =5-15 mm) in an inviscid phase (the phase in which the viscous terms 

are not active), shear zones are also mesh-independent for a slow loading process (Fig. 9A). The 

width of a localized zone increases obviously with increasing lc (Fig. 9A): 6.7 mm (lc=0 mm), 

13.5 mm (lc =5 mm), 24 mm (lc =15 mm). The width of the shear zones for the high strain rate is: 

22 mm (lc =0 mm), 25 mm (lc=5 mm) and 31 mm (lc =15 mm) and the edges of shear zones 

become smoother (Fig. 9B). The width of the shear zones increases also with increasing strain rate 

(Figs. 9Ab and 9Bb) for the same value of lc. For fast loading, the overlapping effect of both the 

non-locality and viscosity occurs – the shear zone width increases by 10-45% (from 22 mm up to 

31 mm, Figs. 9Ba-9Bc). With increasing lc, the material ductility increases in particular during 

slow loading (Fig. 10). 

Next, the effect of several different prescribed strain rates ranging from 10
-5

 1/s up to 100 1/s 

on the concrete dynamic behaviour was investigated (including inertia effects into FE 

computations). The numerical strength was compared with the compressive dynamic increase 

factor (CDIF) according to the CEB-FIP Model Code 1990 (1993). It should be mentioned that in 
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Computational simulations of concrete behaviour under dynamic conditions 

the newest version of fib Model Code 2010 (2012) (fib being a successor of CEB), some smaller 

values of CDIF and TDIF were introduced (Fig. 11). 

In the first step, the dynamic FE results using the elasto-visco-plastic model (simulation #1, = 2×10
-5

 s) 

and the elasto-plastic model (simulation #2) with non-local softening (lc = 5 mm) were compared 

during 2D and 3D calculations (Fig. 11). The calculated dynamic increase factor is underestimated 

as compared to CEB or fib Model Code 2010 for the strain rates  ≤1 1/s. In turn, for the high 

strain rates ( >10 1/s), the calculated dynamic increase factor is always overestimated since 

fragmentation is not taken into account. The increase of CDIF is more pronounced in 3D 

simulations than in simplified 2D analyses. In the case of viscous simulations, CDIF obviously 

increases faster than in non-viscous studies for  1 1/s (Fig. 11). The calculation differences are 

lager when comparing our FE results to CEB than to fib Model Code 2010. 

The shape and width (about 30 mm) of shear zones and load-displacement curves are 

practically the same for strain rates  1 1/s (Figs. 12 and 13). For  =100 1/s (when using 

elasto-visco-plastic model with non-local softening), instead of intersecting shear zones, a 

localized region occurs at the top edge and the material indicates a stiffer response in an elastic 

domain and more brittle one in a softening regime (Fig. 12(h)). Fig. 13 shows a significant 

influence of inertia effects on the shape of the load-displacement curve for the high strain rates 

 10
1
 1/s in the elasto-visco-plastic simulation). 

The influence of the relaxation time  in the range =1×10
-6

–2×10
-4

 s is shown in Fig. 14 using 

the 3D elasto-visco-plastic model with non-local softening. An increase of the viscosity parameter 

leads to a faster strength growth, however for the high strain rates ( 10
1
 1/s) only. For the 

highest strain rates, CDIF is significantly overestimated. Thus, concerning concrete elements 

loaded in compression, viscosity in a plastic domain has some effect only for high strain rates 

( 10
1
 1/s). 

Finally, the 3D results of numerical simulations with the elasto-plastic model with non-local 

softening and the stress modification by Eqs. (11) and (12) are shown in Figs. 15 and 16. One 

simulation was carried out with the elasto-plastic model (simulation #1), one with the elasto-visco-

plastic model with =1×10
-6

 s (simulation #2) and two simulations with the elasto-plastic model 

with the stress modifications: the simulation #3a with the parameters C1=1×10
-6

 and C2=80×10
-4

 

using Eq. (11) and the simulation #3b with the parameters s =1×10
-5

, C1=0.05, C2=0.02, C3=0.07 

and C4=-0.002 using Eq. (12). A clear improvement of the calculated curve CDIF as compared to 

the previous results was obtained in the simulation #3b when using the elasto-plastic model with 

our stress modification given by Eq. (12).  

The calculated curve shape is similar to the experimental one. For the high strain rates, the 

calculated CDIF was again overestimated but to a smaller grade. Similarly as before the shape and 

width (about 24 mm) of the shear zones are practically the same for the strain rates  1 1/s 

(Fig. 16). For the strain rate  =10
1
 1/s, the shape of shear localization starts to change and its 

width increases (up to 34 mm). Finally for  =100 1/s, instead of intersecting shear zones, 

a localized region occurs at the top edge. 

 

4.2 Uniaxial tension test 
 
A dumbbell-shaped specimen subjected to uniaxial tension was modelled as in the experiments 

by Yan and Lin (2006) (Fig. 17). The following material parameters were assumed in FE 
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calculations: E=29.0 GPa, =0.20, the initial tensile yield stress t =2 MPa with linear softening 

(H=0.65 GPa) The numerical dynamic simulations were performed with the strain rate varying 

between 10
-5

 1/s and 10
1
 1/s. The numerical results with the elasto-visco-plastic model with non-local 

softening (lc=5 mm) and different viscosity parameters: =1×10
-6

 s, 1×10
-5

 s, 2×10
-5

 s, 1×10
-4

 s 

and 2×10
-4

 s (simulation #1) were compared with those with the elasto-plastic model with non-

local softening (lc=5 mm) (simulation #2). The number of four-node tetrahedrons was 8007, their 

size was 5-10 mm [(1-2)lc]. 

Similarly as in compression, the calculated dynamic increase factor is underestimated as 

compared to both the experiments (Yan and Lin (2006)) and the CEB-FIP Model Code 1990 

(1993) with modifications made by Malvar and Ross (1998) for the small strain rates  <1 1/s) 

and overestimated for large strain rates ( 1 1/s) as compared to the CEB-FIP Model Code (Fig. 18). 

An increase of a viscosity parameter leads to a better accordance with the comparative data for the 

strain rate  <1 1/s. In turn, for the higher strain rate (  1 1/s), the calculated dynamic effect is 

quite close to the CEB-FIP Model Code when using a very small viscosity parameter τ (τ =1×10
-6

 s). 

In analyses without viscosity (simulation #2), the strength does not increase with growing strain 

rate. 

For the small strain rates ( <10
-1

 1/s), a localized zone is obtained in the specimen mid-region 

close to its widening and its width is about 23 mm (Fig. 19). For  =1 1/s two localized zone are 

obtained in the specimen mid-region with the similar width of about 21 mm. In turn, for  =10
1
 1/s, 

a localized region occurs close to the specimen top. The experimental results (Fig. 19B) show that 

for small loading rates, the fracture zone mainly passes through the mortar and aggregate-mortar 

interfaces which leads to a rough surface (Fig. 19Ba). In turn, for more rapid loading, the fractured 

surfaces become more flat (cracks also propagate through aggregate) (Figs. 19Bb and 19Bc). The 

calculated load-displacement curve for  >1 1/s exhibits a stiffer response in the elastic domain 

due to inertia effects (Fig. 20). For the small strain rates  <10
0
 1/s, the width of localized zones is 

constant irrespectively of the strain rate and the load-displacement curves are almost identical 

(similarly as in uniaxial compression). The strain rate effect does not occur for the small strain 

rates  <1 1/s using our formulation since elastic viscosity is not taken into account. The strain 

development is strongly affected by the very high strain rate 10
1
 1/s only. A diffused localized zone 

occurs close to the specimen top where the vertical normal strain is prescribed - caused by a stress 

wave reflection. A similar result was obtained for ceramic materials (Denoual 1998, Ragueneau 

and Gatuingt 2003), i.e. for the high strain rate, a cracking process was diffuse (without 

localization) that lead to an strength increase. 

The influence of the mesh density on FE results using our elasto-visco-plastic model is 

demonstrated in Fig. 21. The calculation with = 2×10
-5

 s and lc =10 mm were performed with the 

different meshes including 482-30469 four-node tetrahedron elements assuming 2 different strain 

rates:  =10
-2

 1/s (Fig. 21(a)) and  =10
1
 1/s (Figs. 21(b) and 21(c)). For the smaller strain rate of 

 =10
-2

 1/s, the calculated load-displacement curves are almost the same for all meshes (Fig. 

21(a)). However, for the large strain rate,  =10
1
 1/s, applied instantaneously at the start of each 

time step and being constant throughout the time step, the results are solely mesh-independent with the 

very fine FE meshes including more than 8'000 elements, 5-10 mm large [(0.5-1)lc] (Fig. 21(b)). It is 

due to the difference between a theoretical and numerical wave velocity during impact loads 

(Bažant 1978, Roth et al. 2009). According to Roth et al. (2009), 15/16 elements per wavelength 

are required for accurate FE results during impact loads. The large strain rate ( =10 1/s) was also 

applied assuming a smooth polynomial time variation of the displacement during the  
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Fig. 15 Calculated CDIF in dynamic 3D FE simulations as compared with CEB curve: elasto-

plastic model with non-local softening (simulation #1), elasto-visco-plastic model with non-local 

softening and relaxation time τ=1×10
-6

 s (simulation #2), elasto-plastic model with non-local 

softening and stress modifications by Eq. (11) with C1=1×10
-6

 and C2=80×10
-4

 (simulation #3a) 

and stress modifications by Eq. (12) s =10
-5

, C1=0.05, C2=0.02, C3=0.07 and C4=-0.002 

(simulation #3b) 

 

       

a)                  b)                    c) 

Fig. 16 The contours of non-local softening parameter from 3D FE dynamic simulations for 

different prescribed strain rates: a) from 10
-5

 1/s up to 10
0
 1/s, b) 10

1
 1/s and c) 10

2
 1/s using 

elasto-plastic model with non-local softening (lc=5 mm) and stress modification by Eq. (12) 

 

         

                   a)                         b) 

Fig. 17 Uniaxial tension with of dumbbell-shaped concrete specimen (Yan and Lin (2006)): 

geometry (a) and FE mesh (b) 
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Fig. 18 Dynamic 3D FE results of uniaxial tension as compared to TDIF by CEB for different 

prescribed strain rates at different relaxation times  (#1 - elasto-visco-plastic model with non-

local softening and #2 - elasto-plastic model with non-local softening) 

 

A) 
 

    a)            b)          c)           d) 

 
        e)            f)           g) 
  

B) 

 
    a)           b)          c) 

Fig. 19 The contours of non-local softening parameter from 3D FE dynamic simulations (A) at 

different prescribed strain rates  : a) 10
-5
 1/s, b) 10

-4
 1/s, c) 10

-3
 1/s, d) 10

-2
 1/s, e) 10

-1
 1/s, f) 10

0
 1/s, g) 

10
1
 1/s using elasto-visco-plastic model with non-local softening (lc=5 mm,=1×10

-6
 s) and 

experimental failure mode Yan and Lin (2006) (B) at  : a) 10
-5

 1/s, b) 10
-3

 1/s and c) 10
-0.3

 1/s 
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Fig. 20 The load-displacement curves from 3D FE dynamic simulations for different prescribed 

strain rate   using elasto-visco-plastic model with non-local softening (lc=5 mm, =1×10
-6

 s) 

 

 
a) 

 

b) 

 
c) 

Fig. 21 Influence of 3D mesh density on calculated 3D load-displacement curves at different strain 

rates: a)  =10
-2

 1/s, b)  =10
1
 1/s (applied instantaneously) and c)  =10

1
 1/s (prescribed 

smoothly during time t in form of polynomial displacement increment factor a) 
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Fig. 22 Dynamic 3D FE simulations of TDIF as compared with CEB curve by considering stress 

modifications by Eqs.11-12: #1 - elasto-plastic model with non-local softening, #2 - elasto-visco-

plastic model with non-local softening (τ=1×10
-6

 s), #3a - elasto-plastic model with non-local 

softening and stress modifications by Eq. (11) with C1=1×10
-6

 and C2=80×10
-4

, #3b - elasto-plastic 

model with non-local softening and stress modifications by Eq. (12) with s =10
-5

, C1=0.05, 

C2=0.02, C3=0.07 and C4=-0.002 

 

           

a)                    b)                   c) 

Fig. 23 The contours of non-local softening parameter from 3D FE dynamic simulations for 

different prescribed strain rates  : a) from 10
-5

 1/s to 10
-1

 1/s, b) 10
0
 1/s and c) 10

1
 1/s using 

elasto-plastic model with non-local softening and stress modification by Eq. (12) (lc=5 mm) 

 

 

time of 0.0000125 s (Fig. 21(c)). The results were mesh-independent for the relatively coarse 

meshes (including less than 8'000 elements), Fig. 21(c). 

The use of the elasto-plastic model with the stress modification by Eqs. (11) or (12) leads to the 

results similar to those of compression (Figs. 22 and 23). The shape of the curves is in agreement 

with the experimental data and CEB-FIP Model Code in particular for the simulation #3b. For this 

simulation, the calculated increase factor shows good accordance with the experimental data and 

CEB-FIP Model Code for  10
-1

 1/s and is overestimated for  >10
-1

 1/s. In the case of the 

elasto-plastic model with non-local softening and the stress modification by Eq. (12) for the small 

strain rates ( 10
-1

 1/s), similarly as in previous calculation, a localized zone is obtained in the 

specimen mid-region close to its widening and its width is about 21 mm (Fig. 23). For  1 1/s, 

the shape of strain localization changes – a wide region appears at the specimen upper part. 

The results for both uniaxial tension and compression show that the material viscosity (due to 

free water in a capillary mortar system) was not reflected using our elasto-visco-plastic 
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formulation. The elasto-plastic model with stress modifications Eq. (12) provided clearly better 

results for low strain rates but still overestimated results for highest strain rates During 

compression, the strengthening effect with increasing strain rate was mainly due to inertial forces. 

The effect of inertial forces during tension was negligible. 

 

4.3 Three-point bending 
 

The numerical results with notched concrete beams 400 mm long under three-point bending were 

directly compared with the experimental data from Zhang et al. (2009). In laboratory tests, two 

experimental set-ups were used: a hydraulic servo-controlled machine (for low loading velocities 

10
-4
-10

1
 mm/s) and drop-weight impact instrument (for high loading velocities 10

2
-10

3
 mm/s). The beam 

cross-section was 100×100 mm
2
 (B×D) (Fig. 24). The deformation was induced in FE analyses by 

imposing always a constant velocity v on one mid-node at the top edge. The plane stress 

calculations were carried out with the mesh consisting of 3758 triangular elements with the size of 

3-5 mm (0.6-1lc). When using the Rankine criterion, the FE results are similar for plane stress 

and strain conditions (Tejchman and Bobiński 2013). 

The numerical calculations were carried out using the elasto-visco-plastic model with viscosity 

(= 1×10
-6

 s) and the elasto-plastic model with the stress modification given either by Eq. (11) or 

Eq. (12) (Figs. 25 and 26, respectively). Both models were used in their non-local versions with lc = 5 mm. 

The calculated strength increases with increasing loading velocity. For low loading rates, a 

satisfactory agreement with respect to the beam strength is achieved between experiments and 

calculations for the elasto-plastic model with the stress modification given by Eq. (12) (Figs. 25(b) 

and 26). The calculated softening rate is independent of the loading velocity (for both models) in 

contrast to experiments where it decreases with increasing loading velocity. The calculated initial 

stiffness is higher than in experiments for the elasto-visco-plastic model. For high loading 

velocities, the calculated maximum vertical force is overestimated for both models (Figs. 25(a), 

25(b) and 26). No strength increase is obtained for very small loading velocities in elasto-visco-

plastic analyses (Fig. 25(a)). 

 

 
 

 

a) 

 

b) 

Fig. 24 Geometry (a) and mesh discretization (b) for concrete beams under three-point bending 

(Zhang et al. 2009) 
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a) 

 
b) 

Fig. 25 The load-displacement curves from dynamic FE analyses of three-point bending with 

different loading velocities v as compared to experiments (Zhang et al. 2009) (FEM – solid lines 

and experiment – dotted lines): a) elasto-visco-plastic model with non-local softening (lc=5 mm 

and =1×10
-6

 s), b) elasto-plastic model with non-local softening (lc=5 mm) and stress 

modification by Eq.12 ( s =10
-5

, C1=0.05, C2=0.02, C3=0.07 and C4=-0.002) 

 
 

 
Fig. 26 Relationship between maximum vertical force P and loading velocity v in FE calculations 

and experiments (Zhang et al. 2009): #1 - elasto-visco-plastic model with non-local softening (lc=5 mm) 

with viscosity (=1×10
-6

 s), #2a - elasto-plastic model with non-local softening (lc=5 mm) and 

stress modification by Eq. (11) (C1=1×10
-6
 and C2=80×10

-4
), #2b - elasto-plastic model with non-local softening 

(lc =5 mm) and stress modification by Eq. (12) ( s =10
-5

, C1=0.05, C2=0.02, C3=0.07 and C4 = -0.002) 
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A) 
 

    a)            b)            c) 

 
 d)            e)            f) 
  

B) 

 
    a)             b)            c)            d) 

Fig. 27 The contours of non-local softening parameter above the notch from 3D FE dynamic 

simulations (elasto-visco-plastic model with non-local softening and viscosity (lc=5 mm, =1×10
-6

 s) at 

different loading velocities: a) 5.5×10
-4

 mm/s, b) 5.5×10
-1

 mm/s, c) 1.74×10
1
 mm/s, d) 8.81×10

2
 

mm/s, e) 1.76×10
3
 mm/s, f) 2.64×10

3
 mm/s at vertical displacement u=0.5 mm (A) and u=1 mm 

(B) 

 

A) 
 

(a) 

 
 (b) 

Fig. 28 Dynamic 3D FE analyses of three-point bending with loading velocity v=8.81×10
2
 mm/s 

and v=2.64×10
3
 mm/s as compared to experiment (Zhang et al. 2009) using elasto-visco-plastic 

model with non-local softening: A) FE mesh (a) initial and b) deformed (v=2.64×10
3
) and B) load-

displacement diagram (a) without stiffness reduction, b) with stiffness reduction, c) experiment) 
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B) 

 

Fig. 28 Continued 

 

 

For the prescribed loading velocity v from 5.5×10
-4

 mm/s up to 1.74×10
1
 mm/s, a localized 

zone in the form of a candle flame is numerically obtained with the width of about 17 mm (at u=1 mm) 

(Fig. 27). In turn for the higher prescribed velocity, a localized zone becomes wider; for 

v=8.81×10
2
 mm/s two separate zones emerge and for v >1.76×10

3
 mm/s, a localized zone spreads 

between the notch and top edge. 

Finally, to obtain more realistic results for higher loading velocities for concrete, a 

material stiffness reduction in finite elements (equivalent to a removal of finite elements 

(Ožbolt et al. 2011) was additionally assumed in order to simulate approximately progressive 

material fragmentation. Such 3D calculations were carried out with the elasto-visco-plastic 

model (lc =5 mm and =1×10
-6

 s) for the beam of Fig. 24. In each finite element the dissipated 

energy ( ppY  :
2

1 ) was calculated wherein the Macauley bracket (  xxx 
2
1 ) 

ensured the occurrence of tensile stresses/strains only. This energy was then compared with the 

softening magnitude (expressed by the area under the softening function during uniaxial tension 

gf). If the calculated energy exceeded in one integration point of the finite element the assumed 

value of gf (e.g. gf =3150 N/m
2
), both the element stiffness was reduced to a very small value to 

avoid the singularity of the tangent stiffness operator and the finite element was removed (Fig. 28Ab). The 

3D calculations for the intermediate (v = 8.81×10
2
 mm/s) and high loading velocity (v=2.64×10

3
 mm/s) 

(Zhang et al. (2009)) were carried out with the FE mesh consisting of 60486 four-node 

tetrahedrons within the size range of 1-17 mm [(0.2-3.4)lc] (Fig. 28Aa). The smallest elements 

were assumed close to the notch. 

The calculated beam strength with a stiffness reduction (Fig. 28Bb) is obviously significantly  

smaller as the usual one (Fig. 28Ba) and is closer to the experiment (Fig. 28Bc) in the range of 

high loading velocities. Due to a sudden reduction of the beam stiffness, stress-strain curves 

exhibit small oscillations after the peak. In turn for intermediate velocities, the influence of a 

stiffness reduction is significantly less pronounced. A stochastic distribution of material properties 

might further improve the numerical results. 
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5. Conclusions 
 
The FE results for uniaxial compression differed from the CEB recommendations based on the 

experimental outcomes. The calculated dynamic increase factor using an elasto-visco-plastic 
model with non-local softening was too small for small strain rates and was too high for high 
strain rates as compared to CEB and fib Model Code recommendations. Thus, viscosity in a plastic 
domain was not sufficient to accurately capture rate-dependent effects in compression. In 
particular it had only a minor influence for high strain rates. The evident influence of inertia forces 
on the results (strength and shape of localized zones) for high strain rates was observed. In the case 
of an elasto-plastic approach with stress modifications, the improvement in results was observed in 
particular for small strain rates. 

In compression, the overlapping effect of both the non-locality and viscosity occurred but only 
for fast loading. The width of shear zones increased with increasing strain rate and characteristic 
length of micro-structure. However, from physical point of view it remains questionable to use a 
non-local approach for loading rates where failure mechanism is strongly affected by the 
fragmentation phenomena. 

Similarly under tension and bending, the calculated dynamic increase factor using elasto-visco-
plastic model was underestimated as compared to both the experiments and CEB-FIP Model Code 
for the small strain rates and overestimated for large strain rates. Again using elasto-plastic model 
with stress modifications lead to better agreement with experimental outcomes in particular for 
small strain rates. The strain localization was affected by very high strain rates only. The dynamic 
results were mesh-independent for very high strain rates instantaneously prescribed to the 
specimen if the element size was approximately equal to 1lc. 

Summarizing a strengthening effect was obtained in concrete with increasing strain rates under 
compression, tension and bending due to the presence of plastic viscosity and inertial forces. 
Viscosity in a plastic domain might be used to a limited strain rate and loading velocity range for 
the concrete behaviour description under tension and bending (  =10

0
-10

2
 1/s, v=10

1
-10

2
 mm/s). 

In turn under compression, it had a minor influence in contrast to the effect of inertial forces. An 
improved response of an elasto-visco-plastic model (i.e. better rendering of experimental values of 
CDIF and TDIF) could be achieved by making the relaxation time  as a decreasing function of the 
visco-plastic strain rate vp  (i.e. having a large value of the relaxation time for low strain rates 
and a very small one for high strain rates). In order to propose a specific form of such a function, 
further numerical research works are needed. 

The elasto-plastic model with stress modifications provided realistic results for low strain rates 
but again overestimated results for high strain rates (more realistic results might be obtained with 
the more accurate limit values of the second strain rate invariant in Eq. (12)). Considering the 
additional stiffness reduction to simulate fragmentation significantly improved the numerical 
results but not sufficiently. Thus, the further research works are needed by taking also into account 
viscosity in an elastic domain for low strain rates and material fragmentation for high strain rates 
and by taking a stochastic distribution of material properties. 
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