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Abstract.  This paper presents a theoretical and computational approach to solve inelastic structures 
subjected to overloads. Current practice in structural design is based on elastic analysis followed by limit 
strength design. Whereas this approach typically results in safe strength design, it does not always guarantee 
satisfactory performance at the service level because the internal stiffness distribution of the structure 
changes from the service to the ultimate strength state. A significant variation of relative stiffnesses between 
the two states may result in unwanted cracking at the service level with expensive repairs, while, under 
certain circumstances, early failure may occur due to unexpected internal moment reversals.  To address 
these concerns, a new inelastic model is presented here that is based on the nonlinear material response and 
the interaction relation between axial forces and bending moments of a beam-column element. The model is 
simple, reasonably accurate, and computationally efficient. It is easy to implement in standard structural 
analysis codes, and avoids the complexities of expensive alternative analyses based on 2D and 3D finite-
element computations using solid elements. 
 

Keywords:  reinforced concrete; elastoplastic; softening; nonlinear analysis; finite element method; 

interaction diagrams 

 
 
1. Introduction 
 

Accurate analysis and design of nonlinear structures subjected to overloads is an important 

issue in structural engineering. Common practice is based on elastic evaluation of the internal 

forces followed by limit design which is based on inelastic material behavior. This is implicitly 

equivalent to placing a sufficient number of plastic hinges at critical points, which are defined by 

elastic analysis, to produce structural collapse. Thus, an analysis that distributes internal forces 

based on the elastic relative stiffness of the structural members of the structure is followed by a 

design which is based on relative element strengths. Such an approach has served the structural 
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designers reasonably well through the years. The main advantages come from the simplicity of the 

method, which satisfies equilibrium. A ductile structure redistributes its internal forces, and tends 

to fail in the way that it has been designed. The main disadvantages of this approach include 

suboptimal performance, potential unwanted inelastic behavior under service loads, and early 

cracking, especially in structures that are dominated by dead loads. The difficulty arises due to the 

fact that relative element stiffnesses within a structure change continuously under inelastic loading. 

This may lead to internal force tendencies that are different from the ultimate state that is enforced 

by the ultimate strength design and the associated plastic hinges. A potential and undesirable result 

of this approach is premature inelastic response, and cracking. Furthermore, under certain 

circumstances, the outcome may be unrealized strength under overloads due to unexpected internal 

force developments and moment reversals. It is thus suggested that inelastic analysis of structures 

is desirable. This need has been recognized in the past, and has been studied on the basis of 

advances approaches. Nonlinear structural analysis based on solid block finite elements has been 

presented in various studies (e.g. Stevens et al. (1991), Song et al. (2002), Hu et al. (2004), 

Gregori et al. (2007)). This approach can be computationally expensive, it requires a high level of 

modeling expertise, and may be hindered by computational instabilities when simulating softening 

element response. A second approach uses nonlinear springs at strategic locations within elastic 

elements (e.g. Powell and Chen (1986), Liew (1992), White (1993), Nanakorn (2004)). Such 

approaches enjoy significant computational advantages over the solid-blocks finite element 

method.  However they do not associate the bending behavior (strength and ductility) with the 

axial loading of the element, thus limiting their accuracy. Distributed plasticity models, although 

less common, have also been presented in the past (e.g. Yüksel and Karadoğan (2009)). However, 

they also fail to associate the bending behavior with that of the axial loading of the element. 

Additional approaches have been presented where the classical elastoplastic constitutive equations 

are extended from the infinitesimal level to the structural element level for steel structures (e.g. 

King et al. (1992)) as well as for concrete structures (e.g. El-Metwally et al. (1990), Spacone et al. 

(1996), Karabinis and Kiousis (2001), Bouchaboub and Samai (2013)). These approaches 

introduce significant computational expediency compared to solid-blocks finite element 

approaches, and have improved accuracy compared to the nonlinear springs methods. However, 

they are all based on tangential (incremental) approaches, and as a result, they are not free of 

computational difficulties under softening load-deformation behavior, and may be difficult for 

practical use.  

This paper presents a secant elastoplastic approach to simulate the response of concrete 

structural elements. This method is based on column-beam elements with stiffness matrix relations, 

which are based on nonlinear moment-curvature and axial force-deformation relations. These 

relations are combined with axial force – bending moment interaction diagrams, to properly 

evaluate the capacity of an element when subjected to combined loads. The goal of this approach 

is to develop a nonlinear mathematical formulation based on secant stiffness matrices, which are 

positive definite, even when softening behavior is encountered. The resulting equations can be 

incorporated to existing structural analysis software to produce an interactive analysis-design 

approach to structural design. It will be demonstrated that the present model can capture efficiently 

and quite accurately the inelastic response of structures subjected to overloads. 
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2. Method basics 
 

2.1 The constitutive model principles 

 

The constitutive equations of this model are based on the following principles: 

a. The bending moment capacity Mn and axial force capacity Nn are based on a Mn – Nn 

interaction diagram. 

b. The axial force-axial deformation relation is based on the instantaneous axial force 

capacity Nn. 

c. The bending moment – curvature relation is based on the instantaneous bending moment 

capacity Mn. 

 

 

2.2 Axial force response 
 
Following Fig. 1, the uniaxial stress-strain diagram of concrete is modeled by the modified 

Hognestad (1955) pre-peak expression (Kent and Park (1971)): 

     
2

• 0 02    
 c cc cc ccf f sign                        (1) 

 
 

 

Fig. 1 Uniaxial stress-strain relation of confined concrete 

 

 

Fig. 2 Moment-curvature relation of a concrete element 
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where ε is the concrete strain (positive in tension), εcc0 is the strain at the peak stress, fc is the 

concrete stress (positive in tension), and ccf   is compressive strength of concrete, based on its 

confinement.  

The post-peak response of concrete up to the confined crushing strain εccu is modeled as: 

 01      c cc mc ccf f Z                            (2) 

where Zmc is a softening coefficient, which is a function of the amount of confinement. In the case 

of zero confinement, Zmc and εccu acquire their unconfined values Zm, and εcu respectively, which 

are typically obtained from a compression cylinder test. It is noted that Zmc is positive when 

expressing softening. 

 
The post peak behavior of concrete in compression has been modeled in the past (Sharma 

(1990), Fantilli et al. (2007), Koshikawa (2013)). Sharma’s approach (Sharma (1990)) is 

compatible to Eq. (2), and evaluates Zmc, when stresses are expressed in MPa, as follows: 

0.0034

0.021 0.002 3
0.002

6.895 4
 



 



mc

c c
s

c

Z
f b

f s


                  (3) 

 

where ρs is the volumetric content of transverse reinforcement based on the confined core volume, 

bc is the core width, and s is the transverse reinforcement spacing. 

 
2.3 The moment curvature response 
 

The moment-curvature relation of a concrete element is modeled in this study as described in 

Fig. 2. This relation is defined by three limit states in moment (Mcr, My and Mn) and three limit 

states in curvature (κcr, κy and κn) representing the first tensile rupture or crack, the yield state, and 

the ultimate fracture or failure. For the purposes of this analysis, the yield and failure moments are 

assumed to be equal (My=Mn). This results in the tri-linear relation presented in Fig. 2. Such 

behavior is a reasonable approximation for concrete elements with tensile reinforcement in one 

layer (CEB (1993)). The use of the tri-linear moment curvature relation of Fig. 2 is not necessary 

for the development of this model. However, it is adapted here for its simplicity. Thus, for a 

bending moment less than Mcr, the flexural rigidity is equal to EcIg where Ec=modulus of elasticity 

of concrete, and Ig= gross (or uncracked) moment of inertia. For moments M such that Mcr<M<My, 

the incremental flexural rigidity is equal to EcIcr, where Icr=cracked moment of inertia. 

The crack moment Mcr, as well as the yield moment My and failure moment Mn, are functions of 

the cross-sectional properties and are evaluated based on three distinct bending moment – axial 

force interaction diagrams which are described in the following sections. 

 
2.4 Determining the rupture or crack state 

 
Whereas tensile cracking occurs under elastic conditions in pure bending, this is not necessarily 

the case under combined compression and bending. The state of imminent tensile rupture is the 

locus of N and M combinations that are associated with the strain and stress state described  
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Fig. 3 Definition of states of (a) Tensile crack, (b) Yield and (c) Failure 

 

 

Fig. 4 Interaction Diagrams for the crack, yield, and failure states 

 

 

in Fig. 3a. This is a state where the most tensile concrete strain corresponds to the rupture strain of 

concrete εr. Variations of the most compressive strain εc result in different combinations of N and 

M that produce the rupture or crack interaction diagram demonstrated in Fig. 4. For each point the 

curvature at the tensile crack state is defined as:  

  cr r crh c                              (4) 

Thus, for any axial load N, the tensile crack moment Mcr and the corresponding curvature κcr 

are defined. 

It is interesting to note that for axial compression that is larger than a specific magnitude 

(which depends on the column geometry and material properties), the tensile crack interaction 

diagram coincides with the failure interaction diagram indicating that above a specific axial 

compression, a cross-section fails before it ruptures in tension (Fig. 4). 

 

2.4.1 Determining the yield state 

The yield state is defined as the state where the tensile steel yields 

(εs=εsy=fy/Es=500MPa/200GPa=0.0025). This state is defined in Fig. 3b as the state where the 

tensile steel attains the yield strain εy. Variations of the most compressive strain εc result in 

different combinations of N and M that produce the yield interaction diagram demonstrated in Fig. 

4. This state is meaningful only for M, N combinations that are below the balanced point. Load 

combinations above the balanced point result in brittle failures, where the tensile steel is, and 
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yielding is not distinguished from failure. The curvature at yield is defined based on Fig. 3b as: 

  yy y
d c                               (5) 

Thus, for any axial load N, the bending moment at yield My and the corresponding curvature κy 

can be calculated. Based on the interactive relations at initial rupture, yield, and failure, the 

parameters of the moment curvature relation (Fig. 2) can be developed. 

 

2.4.2 Determining the ultimate strength state 
The ultimate strength state is defined as the state where concrete crushes in compression (Fig. 

3c), where εc=εcu=0.0035. The process of developing the interaction diagram for failure is similar 

to the processes to develop the tensile crack and yield interaction diagrams. In this case, the most-

compressive strain of concrete is set to εcu, and the tensile steel strain varies. Interactive relations of 

the axial force Nn, the bending moment Mn (Fig. 4) and the curvature κn at failure, are produced 

based on Fig. 3c and Eqs. (6), (7) and (8): 

       
0

2 2 2                
uc

n c u s s s sM f b h c x dx A f h d A f d hx           (6) 

  
0

     
uc

n c s s s sN f b dx A f A fx                          (7) 

n cu uc                                    (8) 

where b is the width of cross-section, h is the depth of the cross-section, d is the effective depth 

of the cross-section, As is cross-sectional area of the tensile reinforcement,   
  is the cross-

sectional area of the compression reinforcement, x is the distance of any point from the cross-

sectional centroid, and cu is the location of the neutral axis with respect to the most compressive 

fiber. Note that Mn, Nn and κn at failure are functions of the position of the neutral axis cu. 

 

2.4.3 Secant Load-deformation and Moment-curvature relations 
 

The load-deformation relation (Eq. 2) describes the softening behavior that is typically 

observed in concrete under compression without sufficient confinement. The moment-curvature  

 

 

  
Fig. 5 Secant Load-Deformation Approach 
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Fig. 6 Flowchart of the method 

 

 

model (Fig. 2) does not exhibit softening under constant axial load. However, indirect bending 

softening can be developed under variable axial compression when this leads to a lower moment 

capacity (i.e. increasing N above balance, or decreasing N below balance). 

Finite Elements modeling of softening material behavior using incremental load-deformation 

relations can result in computational difficulties due to the associated negative stiffness.  

Elastoplastic constitutive models are typically incremental in formulation and, when implemented 

in finite elements analysis, they must address the computational difficulties associated with 

negative stiffness. 

In this analysis, a secant approach is implemented where the force-deformation and moment-

curvature relations are expressed in terms of total quantities. The response of beam and column 
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elements is modeled by defining instantaneous secant values of EA and EI as demonstrated in Fig. 

5. These values are then applied into the standard stiffness matrix: 

3 2 3 2

2 2

3 2 3 2

2 2

0 0 0 0

0 12 6 0 12 6

0 6 4 0 6 2

0 0 0 0

0 12 6 0 12 6

0 6 2 0 6 4

 
 
 

 
  
 

   
  

EA L EA L

EI L EI L EI L EI L

EI L EI L EI L EI L
K

EA L EA L

EI L EI L EI L EI L

EI L EI L EI L EI L

           (9) 

The process is summarized as follows: 

1. A structure is defined by its elements. For example, a structure may consist of six 

columns and 4 girders. 

2. Additional discretization is applied based on anticipated inelastic response. For example, 

each girder may be divided in 20 elements, and each column may be divided in 10 elements. 

3. For each element three interaction diagrams for tensile crack, yield and ultimate strength 

are defined (e.g. Fig. 4). 

4. For each element, the relations of axial force vs displacement (Fig. 1), and bending 

moment vs curvature (Fig. 2) are defined. 

5. It is noted that the moment-curvature relation continuously changes based on the 

instantaneous magnitude of axial force of the element based on the interaction diagrams of Fig. 4. 

6. A load combination (N, V, M) is applied for every element. 

7. The element matrices are formed using the current magnitudes of EA1 and EI1 (Fig. 5). 

The global stiffness matrix is formed and the problem is solved. New deformations and 

magnitudes of internal forces are calculated. 

8. New secant values of EA2 and EI2 are calculated based on the new deformations. Note 

that the change in axial compression N (Fig. 5a) results in a change in the moment capacity of the 

cross-section (Fig. 5b). It is also noted that the axial force capacity also changes based on the 

developed moment as this is imposed by the axial force-bending moment interaction diagram (Fig. 

4). 

9. The element matrices are formed using EA2 and EI2. The global stiffness matrix is formed 

and the problem is solved again. New deformations and magnitudes of internal forces are 

calculated. 

10. Steps 8 and 9 are repeated until convergence of the secant values of EA and EI is 

achieved. 

11. The load combination (N, V, M) is increased to higher values (based on desired resolution 

of load deformation relations), and the process is repeated until the final load is applied. 

The flowchart of this process is presented in Figure 6. It is noted that by following the above 

approach, the strength and stiffness of each element is automatically adjusted resulting in 

continuous internal force redistributions, up to the point that additional external forces cannot be 

satisfied internally, a) because they demand element strengths that cannot be provided, or b) 

because a sufficient number of plastic hinges is developed that result in static instability. At that 

point equilibrium cannot be satisfied and the global solution convergence is not possible. 
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3. Demonstration 
 

The algorithm described above was implemented in a FORTRAN 2000 code to solve any two-

dimensional frame structure with nonlinear behavior. The code was used to solve multiple 

examples, aiming to validate and calibrate the model. The examples that are presented here aim to: 

1) demonstrate the basic concepts; 2) validate the results of the nonlinear analysis; and 3) 

demonstrate potential implications of nonlinear element response. 

 
3.1 Example 1: Model validation - Comparison to tested frame 
 

Cranston (1965) tested the frame presented in Fig. 7. This frame is used to validate the 

predictive capacity of the method. All elements of the frame have the same cross-section with 

reinforcement that includes 4#10 (metric) bars in tension and 2#10 bars in compression. The 

effective depth is d=138mm, while the compressive reinforcement depth is d’=14mm.  

The nominal compression strength of concrete is cf =36.5MPa and the yield strength of the 

reinforcing steel is 293MPa. The experimental and predicted responses of the frame (load vs.  

 

 

 

Fig. 7 Portal frame tested by Cranston (1965), Geometry and material data 

 

 
Fig. 8 Portal frame tested by Cranston (1965): Load vs mid-point deflection curves 
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Fig. 9 Portal frame tested by Cranston (1965): Critical bending moment development 

 
 

deformation) are presented in Fig. 8. Further analysis of Cranston’s experiment is presented in Fig. 

9, where the development of the bending moments at points B and C are presented as a function of 

the applied load. Note that a plastic hinge develops first at point B at load P=16.7kN and mid-point 

deflection 9.0mm followed by a second plastic hinge at point C, at load P=20.3kN and mid-point 

deflection 15.9mm. The formation of the first plastic hinge at B changes the structural system.   

Added loads past the formation of plastic hinge at B are carried by section BC in a cantilever 

mode, which results in a super-linear increase of the moment at C. The formation of the second 

plastic hinge at point C results in structural instability (displacement controlled flow under 

constant load P). 

 
 
3.2 Example 2: Extensive redistribution – Moment reversal 
 

The second example presented here is a two-bay, one-story frame, demonstrated in Fig. 10. The 

frame is designed based on Eurocode 2 (2004) and Eurocode 8 (2004), such that the girders are 

reinforced with the maximum allowed steel content, while the columns are reinforced using the 

minimum allowed reinforcement. As will be demonstrated, this frame experiences extensive 

redistribution of internal forces that eventually lead to a reversal of the bending moment sign. The 

solutions presented here also examine the influence of axial compression softening (Zmc), a 

behavior that is influenced by the column shape and amount of transverse reinforcement. The 

interaction diagrams for the elements of this structure are presented in Fig. 11. 

The frame is loaded by a uniformly distributed load qu to failure. The load-deformation of the 

central column, which is loaded by purely axial load, is presented in Fig. 12a. As expected, the 

column exhibits perfect plasticity when Zmc=0, and it softens when Zmc>0. 

The inelastic axial compression of the mid-column results in moment reduction of the girder at 

point E (Fig. 12b). This reduction becomes more intense as Zmc increases. It is seen that the frame 

is subjected to extensive redistribution of the internal moments (Fig. 12c) including sign reversal 

of the moment MED, which is accompanied by super-linear increase of all other support and corner 

bending moments. It is noted that the structural system changes once the middle column yields in 

axial compression. Any added load past this point is carried without the contribution of column BE 

and thus results in positive moment development at point E.  This development is at accelerated 

rate (proportional to L
2
, where L=10 m), and it results in an eventual complete reversal of the 
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bending moment of the girder at point E. This example demonstrates that there exist circumstances 

that result in moment reversals that cannot be captured by the typical practice approach of elastic 

analysis followed by ultimate strength design. 

 

 

Fig. 10 Example of Two-bay, One-Story Frame 

 

 

Fig. 11 Axial Force-Bending Moment Interaction Diagrams of the Elements of Example 2 

 

 

Fig. 12 Response and internal force redistribution in frame of Example 2 
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3.3 Example 3: Examination structural ductility to transverse loading 
 

The frame of Fig. 13 was designed based on Eurocodes 2 and 8 to resist both static and seismic 

loads. The frame is subjected to a gravity dead load G, and a gravity live load Q followed by a 

transverse pseudo-static seismic force E. When subjected to gravity alone the frame fails for a total 

load qcollapse=85kN/m. Figure 14 presents the relation of gravity load q with the mid-span deflection 

uz. The levels of service load (G+Q), failure load (1.35G+1.5Q), and collapse load qcollapse are also 

presented. It is noted that the failure load corresponds to the formation of the first plastic hinge at 

the girder mid-span, while the collapse load corresponds to the formation of three plastic hinges on 

the girder. It becomes clear in this example that there exists a significant reserve load in excess of 

the code-defined failure. The extent of this reserve depends on the level of redundancy of the 

structure. 

This example also demonstrates the influence of the intensity of the gravity load q, as a fraction 

of qcollapse, on the transverse strength and ductility of this frame. 

 

 

 

Fig. 13 Frame subjected to axial compression followed by transverse displacement 

 

 

Fig. 14 Deflection of the girder mid-point as a function of the frame gravity load q 
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Fig. 15 Influence of gravity load on transverse strength and ductility 

 

 

The frame is loaded at different fractions of the failure gravity load qcollapse, followed by a 

transverse load to the point where the first failure occurs. The outcome of this analysis is presented 

in Fig. 15. The transverse resistance of the frame depends on the stiffness of the columns and the 

level of fixity of the girder to the top of the columns. As the gravity load increases, the axial load 

and the negative end moment of each column increase in magnitude. Based on the interaction 

diagrams, small applications of gravity forces, load the columns below the balance point, and have 

beneficial effects on the capacity of the frame to carry transverse loads. When gravity forces 

increase sufficiently, the columns are loaded above the balance point, and gradually lose their 

capacity to carry transverse loading. In all cases, however, the effects of gravity loading result in 

reduced transverse ductility (smaller deformations to failure). 
 
3.4 Example 4: Softening response to gravity loading 
 
The frame of Fig. 16 represents the bottom story of a multi-story structure. The transfered loads 

from the upper stories to nodes C and D are Pz=802kN and Px=400kN as shown in Fig. 16. It is 

noted that the loads Pz at nodes C and D correspond to approximately 80% of the balanced failure 

axial compression of the column cross-sections. 

The girder is then loaded by a distributed load qu to failure. The response of the frame to the 

distributed load qu is presented in Fig. 17. It is noted that the load path of the columns, as 

presented in Fig. 17b, is caused by the application of qu, while the more trivial axial compression 

path caused by loads Pz and leading to an initial axial compression of the columns is not 

emphasized. 

The frame fails at a load qu=650kN/m. At that point, the girder develops plastic hinges at its ends 

and midpoint, and cannot carry additional load. The end plastic hinges develop first at the load 

qu=503kN/m. Additional loading results in softening of these plastic hinges, as indicated in Fig. 

17a. The softening occurs due to the loading path of the column, which intersects the M-N 

interaction diagram above the balance point (Fig. 17b). Thus, increase of axial compression results 

in loss of bending strength of the column, and leads to plastic hinge softening. Nevertheless, the 

frame load carrying capacity increases passed the plastic hinge load due to redistribution. This 

example demonstrates the ability of the algorithm presented in this study to handle softening 

without encountering computational instabilities. 
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Fig. 16 Frame with significant softening behavior 

 

 
Fig. 17 Influence of the M-P interaction diagram in the development of forces of a concrete frame: 

(a) Development of bending moment at the column-beam joint, (b) Load path progression of 

bending moment at girder end, limited by the M-P interaction diagram and (c) Load path 

progression of bending moment at girder middle 

 

 

4. Conclusions 
 

A new approach is presented in this paper to model the nonlinear behavior of structures that are 

subjected to overloads. The nonlinear behavior is achieved using nonlinear stiffness matrices with 

degrading axial rigidity EA and bending stiffness EI, based on the instantaneous element strength 

as decided by the N-M interaction diagrams. As opposed to the elastic approach, element 

subdivision of a physical structural element is required to capture the variable levels of non-

linearity along the length of a member based on the local stress intensity. Simple examples are 

used to a) validate the accuracy of the method; b) demonstrate the importance of using nonlinear 

analysis, where significant deviations from the elastic solutions, including moment reversals may 

occur; c) demonstrate factors that influence transverse load capacity and ductility of frames; and d) 
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demonstrate the ability of this algorithm to address problems with softening without problems of 

numerical instabilities. Through these examples, it is demonstrated that a nonlinear analysis can 

capture structural response that cannot be predicted by the common elastic analysis – ultimate 

strength design approach, which is typically followed by practicing structural engineers.  

Noteworthy conclusions drawn from the examples presented here include:  

1. Strength reserve may exist beyond that predicted by the code.  The level of this reserve 

depends on the level of redundancy of the structure. 

2. Depending on the selected strength and stiffness of individual members, the internal force 

redistribution may become extensive enough to cause bending moment reversals.  Such 

redistribution, if not properly addressed may have detrimental effects on the structure. 

3. Load paths with increasing axial compression above the balance point of the interaction 

diagram, or decreasing axial compression below the balance point result in reduction of the 

bending moment capacity and eventual softening behavior, which must be addressed in the design. 

4. The capacity and ductility of frames when subjected to transverse loads, depends 

significantly on their gravity loads.  Whereas the transverse load capacity initially increases with 

gravity loads before it eventually decreases, the ductility of the structure continuously decreases 

with increased gravity loads. 

It is noted that the significant strength reserves that redundant structures have, is typically 

sufficient to account for potential softening and loss of ductility.  However, statically determinate 

structures, or structures of low redundancy may be vulnerable to unpredicted local or global 

failures due to unaccounted nonlinear behavior. 

 

 

References 
 

Bouchaboub, M., Samai M.L. (2013), “Nonlinear analysis of slender high-strength R/C columns under 

combined biaxial bending and axial compression”, Eng. Struct., 48, 37-42. 

Comite Euro-International du Beton (CEB) (1993), “CEB-FIP model code 1990”, CEB Bulletin d’ 

Information 213-214, Thomas Telford Service Ltd., London, England. 

Cranston, W.B. (1965), Tests on Reinforced Concrete Frames 1: Pinned Portal Frames, Technical Report 

TRA/392, Cement and Concrete Association, London, England. 

El-Metwally, S.E., El-Shahha, A.M., and Chen, W.F. (1990), “3-D nonlinear analysis of r/c slender columns”, 

Comput. Struct., 37(5), 863-872. 

Eurocode 2 (2004), Design of concrete structures - Part 1-1: General rules and rules for buildings, 

European Committee for Standardization, Brussels, Belgium. 

Eurocode 8 (2004), Design of structures for earthquake resistance - Part 1: General rules, seismic actions 

and rules for buildings, European Committee for Standardization, Brussels, Belgium. 

Fantilli, A.P., Mihashi, H. and Vallini, P. (2007), “Crack profile in RC, R/FRCC and R/HPFRCC members in 

tension”, Mater. Struct., 40, 1099–1114. 

Gregori, J.N., Sosa, P.M., Prada, M.A.F. and Filippou, F.C. (2007), “A 3D numerical model for reinforced 

and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading”, Eng. 

Struct., 29(12), 3404-3419. 

Hognestad, E., Hanson, N.W. and McHenry, D. (1955), “Concrete stress distribution in ultimate strength 

design”, J. Ame. Concrete Inst., Part 1, 27(4), 455-479. 

Hu, H.T., Lin, F.M. and Jan, Y.Y. (2004), “Nonlinear finite element analysis of reinforced concrete beams 

strengthened by fiber-reinforced plastics”, Compos. Struct., 63(3-4), 271-281. 

Karabinis, A.I. and Kiousis, P.D. (2001), “Plasticity model for reinforced concrete elements subjected to 

overloads”, ASCE J. Struct. Eng., 27(11), 1251-1256. 

709



 

 

 

 

 

 

Konstantinos Morfidis, Panos D. Kiousis and Hariton Xenidis 

Kent, D.C. and Park, R. (1971), “Flexural members with confined concrete”, J. Struct. Div., Proceeding of 

the American Society of Civil Engineers, 97(ST7), 1969-1990. 

King, W.S., White, D.W. and Chen, W.F. (1992), “Second-order inelastic analysis methods for steel-frame 

design”, ASCE J. Struct. Eng., 18(2), 408-428. 

Koshikawa, T. (2013), “Modelling the postpeak stress-displacement relationship of concrete in uniaxial 

compression”, VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures, 

Van Mier, J.G.M, Ruiz, G. Andrade, C., Yu, R.C., and Zhang, X.X. (Eds), Toledo, Spain. 

Liew, J.Y.R. (1992), “Advanced analysis for frame design”, Ph.D. Dissertation, West Lafayette: Purdue 

University. 

Nanakorn, P. (2004), “A two-dimensional beam-column finite element with embedded rotational 

discontinuities”, Comput. Struct., 82, 753-762. 

Powell, G.H. and Chen, P.F.S. (1986), “3D Beam-Column element with generalized plastic hinges”, J. Eng. 

Mech., 112(7), 627-641. 

Sharma, R.M. (1990), “Ductility analysis of confined colu 

mns”, J. Struct. Eng., 116(11), 3148-3161. 

Song, H.W., You, D.W., Byun, K.J. and Maekawa, K. (2002), “Finite element failure analysis of reinforced 

concrete T-girder bridges”, Eng. Struct., 24(2), 151-162. 

Spacone, E., Ciampi V. and Filippou, F.C. (1996), “Mixed Formulation of Nonlinear Beam Finite Element”, 

Comput. Struct., 58(1), 71-83. 

Stevens, N.J., Uzumeri, S.M., Collins, M.P. and Will, G.T. (1991), “Constitutive model for reinforced 

concrete finite element analysis”, ACI Struct. J., 88(1), 49-59. 

White, D.W. (1993), “Plastic hinge methods for advanced analysis of steel frames”, Journal of Construct. 

Steel Res., 24(2), 121-152. 

Yüksel, E. and Karadoğan, F. (2009), “Simplified calculation approach of load deformation relationships of 

a beam-column element”, G. U. J. Sci., 22(4), 341-350. 

 

 
CC 

 
 

710




