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Abstract.  This paper presents the improvement of the EC-2 and EHE-08 shear strength formulations for 
concrete beams with shear reinforcement. The employed method is based on the genetic programming (GP) 
technique, which is configured to generate symbolic regression from a set of experimental data by 
considering the interactions among precision, accuracy, safety and simplicity. The size effect and the 
influence of the amount of shear reinforcement are examined. To develop and verify the models, 257 
experimental tests on concrete beams from the literature are used. Three expressions of considerable 
simplicity, which significantly improve the shear strength prediction with respect to the formulations of the 
different studied codes, are proposed. 
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1. Introduction 

 

Since the beginning of the 20th century when Mörsh and Ritter postulated the earliest truss 

models, substantial progress in the analytical solution of shear problems in reinforced concrete 

beams has been achieved. Numerous highly sophisticated tools (Bairán and Marí 2007; Navarro 

Gregori et al. 2007; Vecchio and Collins 1986) consider 3D effects and the interactions among 

torsion, bending and shear but may not be used as direct designing methods. The majority of 

rational methods for shear require considerable simplification to make them suitable for 

implementation in codes of practice. As Regan indicated, the problem for simpler models is the 

need to neglect secondary factors. Secondary issues in one case may constitute primary issues in 

another case; thus, careful confirmation is always required (Regan 1993). 

In 1960, Siess suggested that reinforced concrete design and all aspects of our building codes, 

including aspects that involve theories, are empirical in nature; that is, they are based on 
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experiments, experience and the knowledge gained from research and practice (Siess 1960). He 

emphasized that this finding is also valid for “certain assumed theories”. All theories are based on 

certain assumptions; their use is only justified to the extent that these assumptions are correct. The 

theories that are employed in connection with reinforced concrete are nearly always based on 

assumptions about the properties of the materials or the properties of the structure, which are not 

even approximately correct for reinforced concrete. This would certainly be valid for the “accepted 

straight line theory” and the “theory of elastic frames”, as applied to reinforced concrete members. 

The use of these theories in connection with the design of reinforced concrete members or 

structures has been justified over a period of years by experience and experiments (Siess 1960).  

More than fifty years after Siess’ paper and after many more years of improvements in the 

understanding of shear behavior, the most “rational” shear design provisions in building codes 

regarding shear strength include assumptions that simplify and neglect specific factors. Although 

all theories can and should be improved over time, the cost-benefit ratios of any improvement 

should be carefully assessed (Collins 1998). 

Some shear provisions in current codes of practices are purely empirical; for example, ACI 

equations or the shear strengths of members without stirrups in Eurocode 2 (EC-2). Other methods 

are rationally based, i.e., the shear strength of members with stirrups in EC-2, which are based on a 

truss model, and numerous other methods can be referred to as “semi-rational methods” with 

different degrees of rational and empirical derivate parameters. In some shear provisions, the 

fitting of the equations to empirical data has been directly conducted when designing equations. 

However, in more rationally based shear provisions, the fitting was conducted using the basic 

behavior at the material level; for example, for aggregate interlock or the residual tensile strength 

of concrete. 

When these empirical parameters are obtained, the dilemma between precision, accuracy, safety 

and simplicity is introduced. Fig. 1 shows the graphical meaning of accuracy and precision. 

Accuracy is the similarity between a real value and a measurement, whereas precision is the 

degree to which repeated measurements yield the same results. 

Although a code provision may be more or less accurate and precise, it must be safe. Safety is 

probably the most important condition, and all design procedures contain a certain number of 

conservative simplifying assumptions. For various combinations of parameters, these simplifying 

assumptions may produce conservative predictions. A well-formulated procedure will rarely result 

in a non-conservative prediction (Collins 2001). In a semi-probabilistic method, safety is generally 

considered as a minimum value for a given percentile; this notion is well known to engineers. 

Generally, the 5th percentile of the data of the predicted shear strength ratio must be greater than 

1.00 for a given database. However, other reasonable values may be considered, as subsequently 

discussed. 

Although a universal measure for simplicity does not exist, a formulation may be considered 

simple or user-friendly. It is internationally accepted that the preparation of user-friendly and 

practical codes requires uniformly structured contents, the consistent use of technical terms and the 

systematic and uniform implementation of key principles (Sigrist 2012). A given formulation may 

be highly complex but part of a user-friendly code. In this paper, complexity or simplicity will be 

related to the need for iterations to obtain the code prediction and to the length of the required 

calculations. Some methods enable direct calculations for designing and verifying a RC member. 

Other methods only enable direct calculations for designing a RC structure and iterative 

calculations for verifying a RC structure, as subsequently discussed. 

In this paper, a genetic programming algorithm is employed as a tool to facilitate the  
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Fig. 1 Accuracy vs. precision 

 

 

optimization and calibration of a previous equation by considering the relationship between 

accuracy, precision, safety and simplicity. Although the given methodology has been applied to the 

optimization of the shear procedure given in the EC-2 (European Committee for Standardization 

(CEN) 2002) or EHE-08 (Comisión Permanente del Hormigón 2008), it can be applied to any 

shear provision or any structural problem, such as Young’s modulus determination, the tensile 

concrete strength, and creep or shrinkage. Note that a number of studies have investigated the 

shear behavior of reinforced concrete beams using other artificial intelligence techniques (Cladera 

and Marí 2004a; Cladera and Marí 2004b; Gandomi et al. 2013; Gandomi et al. 2014; Jung and 

Kim 2008; Keskin and Arslan 2013). However, they have generally focused on optimal precision 

and accuracy without a special methodology that considers safety or simplicity. Other researchers 

have recently employed a different genetic programming approach to solve a number of 

construction engineering problems (Da Silva and Štemberk 2013; Park et al. 2013; Tsai 2013; Tsai 

and Pan 2013; Tsai 2011). 

The methodology that will be employed in this paper was initially employed for the shear 

strength of members without shear reinforcement (Pérez et al. 2010; Pérez et al. 2012). The 

innovation of the developed algorithm resided in its capacity to achieve simple and safe 

expressions from the original EC-2 equations for elements without stirrups, which improved the 

adjustment prior to a series of detected faults: the size effect, the low amount of longitudinal 

reinforcement and the bending moment-shear force interaction. The developed equation GP-4 (Eq. 

(1)) (Pérez et al. 2010) will be employed as a basis for the concrete contribution of the shear 

strength of RC members with stirrups: 
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The expression that will be developed for the shear strength of the elements with stirrups will 

be based on a variable angle truss model with a concrete contribution. Note that the objective of 

this study is to develop a methodology that enables the modification of previous equations based 

on knowledge extracted from an experimental database and to identify the aspects of current 

procedures that can be improved from the obtained equations. To doubt the advantages of shear 

design provisions, which are based on a sound mechanical model and enable not only direct design 

but also more refined analyses, is not an objective of this study (Collins et al. 2008; Marí et al. 

2014). 

Three expressions with different complexities, from a fixed angle tress model with a concrete 

contribution to a variable angle truss model with concrete contribution, have been obtained. The 

angle of the compression struts will depend on the amount of shear reinforcement, the shear force, 

the bending moment and the amount of longitudinal reinforcement. The three proposed equations 

offer better predictions of the shear strength of reinforced concrete beams compared with current 

international codes of practice, even for a set of beams that had not been previously employed by 

the GP algorithm. 

 

1.1 Shear design procedures for RC members with shear reinforcement 
 

In this paper, six shear design procedures will be employed to compare their predictions with 

the experimental results of reinforced concrete beams with stirrups. These procedures consist of 

the formulations given in EC-2 (European Committee for Standardization (CEN) 2002), equation 

11-5 of ACI318-08 (ACI Committee 318 2008), the general method given in the Spanish Code 

EHE-08 (Comisión Permanente del Hormigón 2008), and three levels of approximations (LoA) 

given in Model Code 2010 (Féderation International du Beton 2012) for elements with stirrups. 

Table 1 summarizes the different shear provisions with all explicit safety factors removed. For the 

complete definitions of all involved symbols and parameters, refer to the corresponding code of 

practice. 

 

 
Table 1 Summary of the shear design formulations in this paper 
 

Shear procedure Equation/Variables 

EC-2 

      
   

 
                                             

             

 1 
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Table 1 Continued 

Shear procedure Equation/Variables 

EHE-08 
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The method proposed for the Level III approximation of the MC2010 (MC2010-LoA III) is 

directly based on the modified compression field theory (Vecchio and Collins 1986). Within the 

MCFT, the concrete contribution is predicted to be carried by aggregate interlock (Walraven 

1981). Members with a minimum quantity of stirrups are predicted to fail in shear by yielding of 

the stirrups and/or eventual crushing of the concrete in the web. The limits for the allowable angle 

of principal compression  are also based on the MCFT.  

The general shear procedure in EHE-08 for elements with stirrups is based on a truss model 

with a variable angle of inclination of the struts and a concrete contribution (Marí and Cladera 

2006). The angle is obtained by compatibility, which is based on the MCFT, but is associated with 

an empirical equation for the concrete contribution. This empirical term is almost identical to the 

strength given in EC-2 for a similar member without shear reinforcement. Equation 11-5 of ACI 

318-08 is a fixed 45° truss model with a concrete contribution; this method can be considered 

completely empirical. 

The EC-2 formulation for the elements with shear reinforcement, MC2010-LoA I and 

MC2010-LoA II are based on a truss model with a variable angle of inclination of the struts and 

without any concrete contribution. For the EC-2, the inclination of the compression struts is a 

design parameter that must be compressed between           . For MC2010-LoA I, the 

minimum angle of  for reinforced beams is 30°. This LoA is a simplified form of the Level III.  

The second LoA is also based on the principles of plasticity but is modified with a strain term 

to better model the behaviors of heavily reinforced members (Bentz 2010). 

MC2010 presents a fourth level of approximation, which enables the use of tools such as 

nonlinear finite element analysis or generalized stress-field approaches (Bentz 2010). This LoA 

will not be considered in this paper because it is not a direct designing method. Note that the 

MC2010 shear provision is a structured approach that includes the design, detailed analysis and 

elaborate structural assessment of beams in shear. 

 
1.2 Database 
 

Two previously published databases (Cladera and Marí 2007; Yu and Bažant 2011) have been 

merged to develop a new database with 272 experimental tests of slender beams with stirrups; all 

beams were reported as shear failures. The database by Yu and Bažant (2011) contains 234 test 

results. The database by Cladera and Marí (2007) contains 122 test results (38 of which are not 

included in the first database). After merging these two original databases, 15 tests were removed 

because they did not represent tests with conventional conditions. Thus, the final database used in 

this report contains 257 experimental results: 223 test results from the reference (Yu and Bažant 

2011) and 34 test results from the reference (Cladera and Marí 2007). The main objective of this 

study was to qualitatively compare specific shear procedures with different tested beams rather 

than the development of an accurate database to justify a model. Substantial efforts have been 

achieved to prevent inaccuracies in the database. 

The 257 tests have been published in 32 papers (Adebar and Collins 1996; Anderson and 

Ramirez 1989; Angelakos et al. 2001; Bhal 1968; Bresler and Scordelis 1963; Bresler and 

Scordelis 1966; Cladera and Marí 2005; Collins and Kuchma 1999; Elzanaty  et al. 1986; 

Etxeberria et al. 2007; Frosch 2000; González-Fonteboa and Martínez-Abella 2007; Johnson and 

Ramirez 1989; Karayiannis and Chalioris 1999; Kong and Rangan 1998; Krefeld and Thurston 

1966; Leonhardt and Walther 1962; Lubell et al. 2004; Mattock and Wang 1984; McGormley et al.  
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Table 2 Range of variables in the databases 

 
General database Training database Evaluation database 

Min Max Min Max Min Max 

bw (mm) 76 457 76 457 76 457 

d (mm) 95 1890 95 1890 95 925 

fc (MPa) 12.8 125.4 12.8 125.4 15.73 120.2 

l (%) 0.5 7.0 0.5 7.0 0.68 5.80 

w·fy(MPa) 0.11 8.11 0.11 8.11 0.16 4.06 

a/d 2.4 6.0 2.4 6.0 2.49 5.50 

Vu (kN) 14 2239 16 2239 14 1658 

 

 

1996; Mphonde and Frantz 1985; Ozcebe et al. 1999; Placas and Regan 1971; Rajagopalan and 

Ferguson 1968; Roller and Russell 1990; Sarsam and Al-Musawi 1992; Shah and Ahmad 2007; 

Swamy and Andriopoulos 1974; Tan, K.-H., Teng, S., Kong, F.-K.,Lu, H.-Y. 1997; Tan et al. 1995; 

Tompos and Frosch 2002; Yoon et al. 1996; Zararis and Papadakis 1999). The range of the 

variables for the different tests is presented in Table 2. 
The database has been divided into two subsets: a database for training the GP algorithm with 

215 test results and a database with 42 test results for evaluating the equation. The final equations 
are evaluated with test results that have not been used in the training process. This database has 
been randomly performed; however, the training database should cover the available range of input 
variables (bw, d, fc, l, w·fy and a/d) (Table 2), where bw is the width of the web of the cross-
section; d is the effective depth; fc is the compressive strength of concrete; l is the amount of 
longitudinal reinforcement (   

  

    
), w·fy is the nominal stirrup strength (     

   

    
   , 

where fy is the stirrups yielding strength, s is the stirrup spacing and Asw is the cross-sectional area 
of shear reinforcement; and a/d is the shear span-to-depth ratio. 
 

1.3 Verification of the shear design procedures with the experimental database 
 
An analysis of the predictions has been performed using the different formulations for the 

entire database. The modus operandi suggested by Collins (Collins 2001), who considers the 

distribution of the values of Vtest/Vpred to be asymmetric with a median value that is generally lower 

than the average, was employed. Table 3 presents the coefficient of variation (COV) for all tests 

and the COV of a dataset formed by the lower 50% of the data and their symmetrical values 

around the median, which results in a symmetrical distribution with an identical number of data 

compared with the original one (COVLow 50%). In the same manner, the (COVHigh 50%) is identically 

calculated compared with the previous value but with the highest 50% values. The distribution 

functions for two of the shear provisions are presented in Fig. 2. The actual values of the Vtest/Vpred 

data have been grouped for 0.05 intervals. For example, approximately 6% of the tested beams 

yield a Vtest/Vpred in the range [1.65, 1.70) for the EC-2 predictions (Fig. 2(a)), whereas 

approximately 12% of the tested beams yield a Vtest/Vpred ratio in the range [1.15, 1.20) for the 

EHE-08 predictions (Fig. 2(b)). The normal distribution, which is given by the average and the 

COV of Vtest/Vpred, is also shown in Fig. 3. For 50% of the tests, in which the value Vtest/Vpred is 

lower than the median, the adjustment given by the normal distribution created considering only 

this 50% of the data and their symmetrical values around the median is significantly better (Fig. 2). 

In Fig. 3, the normal distribution functions formed with all data and for 50% of the test, in which  
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Table 3 Verification of the different shear design procedures 

Vtest/Vpred EC-2 

ACI318-

08 eq. 11-

5 

EHE-08 
MC10 

Eq.(6) Eq.(7) Eq.(8) 
Lev I Lev II Lev III 

Average 1.76 1.23 1.17 2.23 1.62 1.21 1.10 1.13 1.11 

Median 1.66 1.22 1.15 2.18 1.57 1.20 1.09 1.11 1.11 

Standard Deviation 0.672 0.264 0.219 0.629 0.391 0.223 0.178 0.178 0.168 

RMSE 139.3 73.2 56.4 144.9 104.6 51.7 48.4 49.2 51.7 

COV (%) 38.23 21.48 18.74 28.15 24.16 18.52 16.16 15.78 15.09 

COVLow 50% (%) 27.97 19.34 14.89 24.38 17.97 16.02 13.44 13.13 13.66 

COVHigh 50% (%) 50.60 23.77 22.62 32.75 29.92 20.92 19.03 18.63 16.39 

Minimum 0.51 0.65 0.70 0.73 0.64 0.75 0.68 0.70 0.75 

(Vtest/Vpred)1% 0.71 0.70 0.75 1.03 0.99 0.79 0.74 0.77 0.80 

(Vtest/Vpred)5% 0.92 0.84 0.88 1.32 1.16 0.91 0.83 0.86 0.86 

Maximum 5.53 2.34 2.26 4.93 3.33 2.20 1.86 1.88 1.84 

(Vtest/Vpred)95% 2.91 1.64 1.56 3.30 2.27 1.57 1.38 1.40 1.37 

(Vtest/Vpred)99% 3.60 2.07 1.92 4.00 3.05 2.01 1.72 1.74 1.70 

 

 
 

  

Fig. 2 Distribution functions for EC-2, EHE-08, MC2010–LoA 1 and MC2010-LoA 3 
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the value Vtest/Vpred is lower than the median, are compared for all presented code procedures.  

Table 3 provides a vast amount of information that is related to the verification of the evaluated 

concrete codes with the database; however, few aspects will be signaled. The last three columns of 

Table 3 refer to the equations derived by the GP algorithm; they will be discussed in section 3. 

 The average of the Vtest/Vpred ratio is directly related to accuracy; a value of 1.00 is highly 

accurate. The most accurate models among the different evaluated code procedures are EHE-08 

(Vtest/Vpred = 1.17) and MC2010-LoA III (Vtest/Vpred = 1.21). Less accurate methods are MC2010-

LoA I (Vtest/Vpred = 2.23) and EC-2 (Vtest/Vpred = 1.76).  

 The standard deviation (SD) or the coefficient of variation (COV) is a measure of precision; 

the lower are the values, the higher is the precision. The most precise models are EHE-08 (SD 

= 0.219) and MC2010-LoA III (SD = 0.223). The least precise methods are MC2010-LoA I 

(SD = 0.629) and EC-2 (SD = 0.672). 

 Note that the coefficients of variation for the “high data set” are significantly higher 

compared with the “low data set” for all evaluated shear provisions. For this reason, the use of 

the described technique is recommended to obtain realistic 5% percentiles. 

 The 5% percentile of the Vtest/Vpred ratio is a measure of safety. If a value higher than 0.85 is 

considered to be the appropriate level of safety (Collins 2001), all methods can be considered to 

be safe, with a lower 5% percentile of 0.84 for equation 11-5 of ACI Code 318-08. Despite a 

lower precision, MC2010-LoA I is very safe (5% percentile of 1.32) due to the lower accuracy 

from a safety point of view (average Vtest/Vpred of 2.23). 

 The relationship among accuracy, precision and safety is explained by the results of the 

three levels of approximation of MC2010 (Table 3 and Fig. 3). LoA III is highly accurate with 

high precision and safe results. When simplifying to Level II and Level I, the predictions lost 

precision. To predict safe results, the methods have been calibrated to reduce their accuracy 

(from the safe side) by always considering conservative simplifying assumptions. 

The simplicity of the different shear design procedures can be evaluated from Table 1. The 

provisions of MC2010-LoA III are the most complex, with iterative calculations for the concrete 

and the steel contributions when verifying a given RC member, followed by EHE-08, which also 

contains an iterative method for the steel contribution. Conversely, these two methods (MC2010-

LoA III and EHE-08) are direct methods of design. EC-2, ACI318-08 and MC2010-LoA I are the 

simplest methods; they enable direct calculations for verification and design with few operations.  

Fig. 4 shows the values Vtest/Vpred for each test in terms of the effective depths of the beams. Of 

257 beams, only 2 beams an effective depth greater than 1000 mm. Although a minimum amount 

of shear reinforcement generally produces a substantial improvement in terms of the size effect 

(Lubell et al. 2004), the size effect is not entirely eliminated by the presence of stirrups, as shown 

in Fig. 4. The shear stress at failure decreases as the member depth increases.  
For the six evaluated shear provisions, only the method in EHE-08 considers the size effect in 

the concrete contribution. As shown in Fig. 4, this method considers this effect; however, it does 

not completely correct it. The three levels of approximation for MC2010 (refer to section 1.1 and 

Table 1) do not consider the size effect for elements with stirrups. For this reason, MC2010 is 

more conservative for small members and the value of Vtest/Vpred decreases for higher beam depths. 

In 2011, Yu et al. (Yu and Bažant 2011) developed wrote down this phenomenon and suggested 

that stirrups cannot completely suppress the size effect on the shear strength of RC beams 

regardless of the stirrup ratio. Thus, the size effect of shear strength is mitigated in the small-size 

range (up about 1 m) but remains the same in the large-size range (Yu and Bažant 2011). As shown  
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(a) Set formed by all tests in the database 

(b) Set formed by 50% of the tests in the 

database, where the value Vtest/Vpred is lower 

than the median 

Fig. 3 Normal distribution functions for all tests in the database 

 

 
Fig. 4 Correlation between the predictions and the experimental results in terms of the depths 

of the beams 
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Fig. 5 Correlation between the predictions and the experimental results in terms of the nominal 

stirrup strength 

 

 
Fig. 6 Tree for the expression       
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in Fig. 4, the plots for the three levels of approximation of MC2010 exhibit other significant 

differences. 

Fig. 5 shows the correlation between the predictions and the experimental results in terms of 

the amount of stirrups (nominal stirrup strength, expressed in MPa). Only 3 beams had nominal 

stirrup strengths greater than 3 MPa. For the EC-2 and MC2010-LoA I, the ratio Vtest/Vpred 

decreases as the nominal stirrup strength increases, which produces nonconservative results 

(without considering the partial safety factors) for a highly shear reinforced member in the case of 

EC-2 predictions. EHE-08 and MC2010-LoA III generate better adjustments in the empirical tests. 

 
1.4 Relationship between precision, accuracy and safety 
 
Although some methods produce satisfactory results, the consideration of the size effect can be 

improved for different methods. Moreover, the simpler methods (EC-2, MC2010-LoA I) do not 

correctly consider the influence of the amount of stirrups. In the next section, a proposal to 

improve the EC-2 formulation to correct these effects is presented.  

As previously demonstrated, accuracy, precision and safety are highly interconnected. 

Assuming a normal distribution for the set given by 50% lower results, Eq. (2) relates safety, 

(Vtest/Vpred)5%, with accuracy, (Vtest/Vpred)median and precision, COVLow 50% (%).  

 
     

     
 

  

  
     

     
 

      

         
             

   
                   (2) 

Considering the hypothesis that it is possible to achieve a precision COVLow 50% (%) equal to or 

less than 15% with GP techniques and that an adequate safety for shear strength can be given by 

(Vtest/Vpred)5% = 0.85, then (Vtest/Vpred)median = 1.097 from Eq. (2). Similarly, it is possible to fix any 

optimist scenario for the COV and any consideration about safety, which produces a different 

objective for the median. For example, if an adequate safety is (Vtest/Vpred)5% = 1.00, with an 

objective COV that is equal to or less than 15%, the objective median is 1.25. 

 
 
2. Optimization procedure based on a genetic algorithm 

 
2.1 A brief introduction to genetic programming 

 

Genetic programming (GP) is a heuristic technique for searching solutions to user-defined 

problems. A typical problem in which GP shows acceptable results is the symbolic regression of 

data. In this case, GP obtains the relationship between the involved variables; for example, in a 

physical phenomenon. This relationship takes the form of mathematical equations that demonstrate 

how each variable influences the phenomenon.  

GP is inspired by the adaptive capacity of a species to the environment and is based on an 

analogy with the principle of natural selection, which Darwin propounded in his theory of 

evolution (Darwin 1859). The origins of the GP goes back to 1992 when Koza (1992) redefined 

the algorithms and the structure of individuals based on the same principles of the genetic 

algorithms (GAs) promulgated by John Holland (1975). Koza (1992) provided solutions to 

problems through the program’s induction and the algorithms that solve these problems. 

GP is generally based on solution encoding (individuals) and the process (algorithm) that 
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evolves solutions to obtain a better solution. The solution to a problem is referred to as the 

“individual”, whereas the set of existing solutions is referred to as the “population”. The real 

representation (encoding) of an individual is achieved using a structure that is referred to as a 

“tree”, in which the mathematical equation is codified. This structure represents the operators in 

the non-terminal nodes (arithmetic operations and trigonometric functions) and the “leaves” or 

terminal nodes are represented as the constants and the variables. For example, Fig. 6 represents 

the following individual:                 . As in nature, the “operation” of “crossover” is 

necessary to produce new “solutions” (referred to as offspring or children). As also occurs in 

nature, some of the individuals experience the mutation operation; in this case, they experience it 

with the objective of exploring new search spaces. The obtained individuals are evaluated (fitness 

function). If an individual obtains a better fitness (that is, is better adapted to the environment), it 

will substitute one of the individuals of the current population, which constitutes a new generation 

(epoch). The process ends when a criterion (fitness, number of generations or other) is satisfied. 

 
2.2 Genetic programming to improve the model of shear strength of RC members with 

shear reinforcement 
 

The methodology used to improve the model of the shear strengths of RC members with shear 

reinforcement is similar to the model that was previously employed to improve the shear strength 

formulation for elements without shear reinforcement (Pérez et al. 2010; Pérez et al. 2012). 

However, greater emphasis is placed in this paper on solving the dilemma among precision, 

accuracy, safety and simplicity. The method enables improvement of a mathematical expression 

from knowledge extracted from experimental data. For this, the expert highlights the parts of the 

given equation that may be improved and establishes the constraints that must be satisfied by the 

new equation. 

 
2.2.1 Fitness function 
The final goal is to obtain an expression that follows the principles of precision (repeatability), 

accuracy, structural safety and simplicity. To achieve the third first principles (precision, accuracy 

and structural safety) the fitness function eq. (3) includes the lbias and ki parameters: 

           

           
       
       

 

 

   

 
                                   (3) 

Accuracy is achieved by minimizing the value of the fitness function. Precision and structural 

safety are considered in the lbias and ki parameters. A general slight oversizing is achieved by 

setting the lbias to 1.1. This value contradicts the precision that would be situated in 1.0 (“exact” 

value) but is necessary to ensure structural safety, as shown in section 1.4. The parameter ki 

enables specific oversizing for some tests, increases the global precision and diminishes the 

number of unsafe results. The different penalization ranges are shown in Eq. (4). Precision is 

achieved by penalizing the results in the external ranges. Structural safety is achieved by an 

asymmetric penalty, and unsafe predictions achieve a higher value of ki compared with predictions 

that are too safe, as shown in Eq. (4). In Eq. (4), the values ki were inspired in the use of the 

‘‘demerit points’’ technique, which was employed by M.P. Collins (2001) to categorize the results 

of different building codes. The effect of considering these ki values was examined for the shear 
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strength of beams without stirrups in Pérez et al. 2012. 

    

 
 
 
 
 
 

 
 
 
 
     

     

     
    

      
     

     
     

       
     

     
     

       
     

     
    

      
     

     
  

  
     

     
  

  (4) 

To ensure that the resulting expressions are as simple as possible, the parsimony level is 

introduced by the  parameter (Eq. 3), which multiplies the individual size si (number of nodes). 

At the same level of prediction error, large individuals (or large equations) will receive a penalty 

that is greater than small individuals. It can also be seen that a large value of the  parameter will 

yield a small tree, whereas a small  will yield a larger tree but better accuracy. The balance 

between the parsimony level  and accuracy has been achieved by trial and error. Two different 

values of parsimony were used in the initial steps of the search process, as shown in Table 6. In the 

final steps of the search process, a small value for the parsimony was employed because the search 

process was highly constrained (Table 5).  

 

2.2.2 Search process 
The initial equation for this study is shown in Eq. (5); it is derived by considering the concrete 

contribution optimized in a previous paper (Pérez et al. 2010) and a variable angle strut model for 

the steel contribution (from EC-2). In this case, two parts of the equation are improved (named 

branches). For each branch, the GP algorithm will generate an equation or a constant value. Note 

that this initial equation to be improved is a combination of the formulations of EC-2, EHE-08 and 

the GP-4 equation optimized for elements without stirrups. 

                                               
    

 
 

    

         
       

 

   
   

 
 

    

              

                           
 

   
                         

(5)
 

The equation search process has been iterative. This process was performed in nine stages. The 

initial stages (1 to 3) were used to determine the "shape" of each branch of the equation and the 

final stages (4 to 9) were used to optimize the formulas (selected in previous stages) using 

constants. 
 

 

Table 4 Variables/equations used to create constraints in initial stages 

Branch Variables / equations 

Branch1 [Cst] 

Branch2 
[Cst], [M/l·V·d], [M/V·d], [l], [fc], [d] 

 
*
Cst = constant value. 
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Table 5 Variables/equations used to create constraints in final stages 

Branch Variables / equations 

Branch1 [Cst], [1], [1.04], [0.85], [0.80] 

Branch2 

                           
                                         
                                       

      
           

 
  

      
                 

     
  

                                   
                                

                                       
        

        
      

                                       
    

  
*
Cst = constant value. 

 

Table 6 Parameters that govern the genetic programming algorithm 

Configuration parameters Initial steps Final steps 

Population size 1000 1000 

Maximum generation 20000 40000 

Stopping criteria (epoch without 

improvement) 
2000 3000 

Algorithms 

Selection: Tournament 

Creation: Intermediate 

Mutation: Subtree 

Crossover rate 90% 90% 

Mutation probability: 5% 10% 

Elitist strategy Yes 

Initial tree height 3 6 6 

Maximum tree height 6 9 9 

Maximum mutation tree height 3 6 6 

Parsimony 0 0.00001 0.00000001 

Nonterminal selection rate 90% 

Terminal nodes 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

- 
random real numbers [-

1, 1] 

Nonterminal nodes 
+, -, *, / 

Sqr, Sqrt Sqr, Sqrt 

 

The rules for generating the branches will be established by a constraint set. This set has been 

refined throughout the study. Table 4 shows the variables and equations that have been used to 

create the different constraints. For example, one of the first constraints is as follows: Branch1 can  

adopt any numeric value and Branch2 can adopt any function using the variables l, fc, d or 

M/l·V·d. Only numeric values have been accepted in Branch1 because this term multiplies the 

shear strength that a similar reinforced concrete beam without shear reinforcement would have, 

refer to Eq. (1); this term was modified with a constant value rather than a completely new term 
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that is dependent on different parameters. The parameters and the combination of parameters for 

Branch2 (Table 4) have been selected due to the previous experience of the authors in shear 

strength models. 

The authors have developed the software that was specifically employed to conduct their 

research on shear strength. Note that this software uses the library of genetic programming created 

by Dorado et al. (2002). 

After a review of the equations obtained in initial stages, the possible "shapes" for each branch 

were selected. Table 5 lists the most representative “shapes” of the equations. Note that the 

equations and constants have evolved to obtain the final equations in section 2.2.3. 

The parameters for the GP settings (refer to Table 6) vary in the initial stages, in which the 

branches are equations, compared with the following stages, in which only the constants were 

allowed to be changed.  

A total of 50 sets of defined constraints are distributed in 9 stages. For each constraint, the PG 

algorithm was run a minimum of 150 times. It was performed an average of 9000 generations for 

each execution. In the initial stages, the maximum generation was achieved numerous times due to 

the variability in the creation of the equations. 

 
2.2.3 Final results 

At the end of this procedure, three final expressions were obtained: 
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           (8) 

These three equations should be analyzed. Eq. (6) represents a fixed angle truss model with a 

concrete contribution. The angle of the compression strut with the longitudinal axis of the beam is 

39.81° (cot = 1.2). Eqs. (7)-(8) represent a variable angle truss model with a concrete 

contribution. In Eq. (7), the angle of the compression struts is only dependent on the parameter 

M/Vd. In Eq. (8) the effect of the amount of transversal reinforcement is also included in the 

angle determination. Therefore, the determination of the angle of the compression struts improves 

from Eq. (6) to Eq. (7) or Eq. (8). The concrete contribution diminishes from Eq. (6) to Eq. (8). 

For a GP technique, it is not possible to differentiate the concrete contribution and the steel 

contribution because the only available experimental result is the shear strength (the addition of 

the two terms). For this reason, the methodology used to perform this study is especially 

important: in a previous study the shear strength of beams without stirrups was analyzed (Pérez et 

al. 2010); and in this paper the generalization for beams with stirrups has been conducted. In 

anycase, the GP procedure reveals that the more variables we consider in the steel contribution, the 

less weight the GP gives to the concrete contribution to ensure safety, accuracy and precision. 
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Table 7 Verification of the different shear design procedures for the evaluation database (42 tests results) 

Vtest/Vpred EC-2 
ACI318-08 

eq. 11-5 
EHE-08 

MC10 
Eq.(6) Eq.(7) Eq.(8) 

Lev I Lev II Lev III 

Average 1.85 1.25 1.18 2.13 1.58 1.23 1.10 1.12 1.11 

Median 1.66 1.22 1.15 2.18 1.57 1.20 1.06 1.09 1.09 

Standard Deviation 0.82 0.27 0.22 0.54 0.36 0.22 0.17 0.17 0.164 

RMSE 92.0 85.5 69.9 128.1 102.3 59.5 58.2 51.9 62.3 

COV (%) 44.56 21.84 18.75 25.43 22.78 18.02 15.66 14.76 14.71 

Minimum 0.68 0.68 0.80 0.98 1.13 0.75 0.82 0.85 0.80 

Maximum 4.92 2.00 1.87 3.29 2.65 1.85 1.63 1.63 1.56 

 

 

3. Comparison of results 
 

3.1 Global comparison 

 

The comparison of the performance of the three newly developed equations with the considered 

code formulations is given in Table 3. Note that the three equations significantly correlate with the 

empirical results compared with any of the considered codes. It must be highlighted: 

 The three proposed equations are more accurate than any of the considered codes for the 

entire database. The average of Vtest/Vpred for the three equations is approximately 1.10. 

 The three proposed equations are more precise than any of the considered code formulations 

because they present the minimum standard deviation and coefficient of variation. This finding 

is remarkable for the 50% low data set, which is less than 15% for the three resulting 

expressions.  

 The three proposed equations are safe because the 5% percentile of the three methods are 

near the target value of 0.85, as discussed in section 1.4. 

 The three proposed equations are simple and easy to use; Eq. (6) is simpler and Eq. (8) is 

more complex. Using Eq. (7), superior results are obtained for a direct calculation method, 

without the need for iterations.  

Table 3 presented the results for the entire database, whereas Table 7 only lists the results for 

the evaluation database. These tests have not been employed by the GP algorithm to obtain the 

final equations. The results for these 42 test beams are similar compared with the entire database, 

and the three proposed equations also provide the best correlation with the experimental results. 

 
3.2 Comparison with different subsets of beams 

 

The experimental correlations for different subsets of beams are presented in Table 8. The 

lowest COV for each group is represented in bold letters. The proposed equations present the 

lower values of the coefficient of variation for all subsets, with the exception of one subset. 

As the effective depth of the element increases, the average of the ratio Vtest/Vpred for the 

different code predictions decreases. For instance, as the predictions according to EC-2 decreases, 

Vtest/Vpred ranges from 1.95 for beams under 300 mm of effective depth to 1.58 for beams over 600 

mm of effective depth. For the Level III approximation of the MC2010, Vtest/Vpred decreases from 
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1.30 to 1.00. For the proposed equations, a certain reduction in the average values is obtained 

when the depths of the beams are increased; however, this reduction is clearly lower than for the 

other predictions and all the average values result on the side of safety (Table 8 and Fig. 7). 

When increasing the amount of shear reinforcement ρw, Vtest/Vpred decreases for the calculations 

according to different code formulations, especially for EC-2; it ranges from 2.02 for lightly 

reinforced beams (ρwfy ≤ 0.70 MPa) to 0.95 for highly shear-reinforced beams (ρwfy  1.50 MPa). 

Note that the predictions have been obtained by removing the partial safety factors of steel and 

concrete. If they were employed, no unsafe results would be obtained as an average value for any 

of the evaluated subsets. The response of the proposed equations is much more stable as a function 

of the nominal stirrup strength (Table 8 and Fig. 8). 
 
 

Table 8 Verification of the different shear design procedures for subsets of beams 

Vtest/Vpred EC-2 

ACI318-

08 

Eq. 11-5 

EHE-08 
MC10 

Lev I 

MC10 

Lev II 

MC10 

Lev III 
Eq. (6) Eq. (7) Eq. (8) 

Criterion # Mean COV Mean COV Mean COV Mean COV Mean COV Mean COV Mean COV Mean COV Mean COV 

All 257 1.76 38.2 1.23 21.48 1.17 18.7 2.23 28.1 1.62 24.2 1.21 18.5 1.10 
16.1

6 
1.13 

15.7

8 
1.11 15.09 

d 

(mm) 

< 300 134 1.95 39.5 1.33 19.6 1.23 19.9 2.34 28.9 1.75 24.7 1.30 17.2 1.13 17.5 1.15 16.9 1.14 16.9 

300-

600 
94 1.54 31.8 1.17 17.1 1.11 14.9 2.09 27.4 1.46 20.3 1.13 14.9 1.08 14.4 1.10 14.4 1.08 14.4 

> 600 29 1.58 25.5 0.94 17.7 1.07 12.2 2.20 21.8 1.51 14.3 1.00 11.8 1.05 12.4 1.09 12.1 1.05 12.1 

fc 

(MPa) 

< 40 114 1.71 45.0 1.22 19.2 1.12 15.9 2.14 27.0 1.54 20.3 1.19 17.2 1.08 14.6 1.11 14.7 1.09 14.7 

40-70 80 1.81 32.6 1.20 19.4 1.15 16.8 2.19 25.6 1.52 20.8 1.18 15.1 1.09 14.2 1.11 13.5 1.10 13.5 

> 70 63 1.78 32.5 1.29 26.2 1.28 21.8 2.46 30.4 1.88 25.6 1.27 22.9 1.16 19.6 1.17 19.3 1.16 19.3 

l 

(%) 

< 1 7 1.34 16.7 1.04 26.1 1.17 13.3 1.93 16.7 1.77 16.9 1.24 21.8 1.14 12.9 1.24 11.8 1.23 11.8 

1-3 193 1.78 37.8 1.19 21.3 1.14 18.3 2.22 26.4 1.60 24.6 1.19 18.5 1.09 16.1 1.12 15.7 1.10 15.7 

> 3 57 1.72 40.2 1.38 17.5 1.27 18.3 2.31 33.5 1.66 23.5 1.27 17.6 1.13 16.5 1.14 16.4 1.13 16.4 

wfy 

(MPa) 

< 0.70 144 2.02 34.2 1.16 20.3 1.13 16.3 2.37 22.8 1.57 19.0 1.18 16.7 1.07 13.7 1.11 13.6 1.09 13.6 

0.70-

1.50 
94 1.52 29.5 1.33 21.3 1.24 20.2 2.20 29.5 1.76 26.4 1.27 20.0 1.16 18.1 1.17 17.9 1.14 17.9 

> 1.50 19 0.95 30.2 1.25 18.0 1.13 18.7 1.37 30.2 1.29 26.1 1.12 17.2 1.09 16.2 1.08 16.1 1.11 16.1 

 

 
Fig. 7 Correlation between the predictions of the proposed equations and the experimental results 

in terms of the depth of the beams, compared with the EC-2 predictions 
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Fig. 7 Continued 

 

 

 
Fig. 8 Correlation between the predictions of the proposed equations and the experimental results 

in terms of the amount of shear reinforcement and expressed as the nominal stirrup strength, 

compared with EC-2 predictions 

 
 
4. Conclusions 
 

A GP algorithm that is valid for the adjustment of existing expressions has been applied to the 

shear formulation for concrete members with shear reinforcement. The GP algorithm surpasses the 
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mere adjustment of numerical values within an equation; it considers the required precision, 

accuracy and safety for a design expression. The algorithm is capable of achieving a simple 

expression that begins as a previous equation. In this case, a mix between the EC-2 and EHE-08 

formulations and a concrete contribution was developed using a similar technique. Using a 

classical GP technique, it would be possible to obtain better precision and accuracy; however, a 

classical GP technique does not consider safety and simplicity, which are key points in this paper.  

Three expressions have been obtained: Eq. (6) is the simplest expression, and Eq. (8) is a 

slightly more complex equation. Eq. (6) represents a fixed angle truss model with a concrete 

contribution, and Eqs. (7)-(8) represent a variable angle truss model with a concrete contribution. 

The three proposed equations yield better predictions of the shear strength of reinforced concrete 

beams compared with the current international codes of practice, even for a set of beams that has 

not been used by the GP algorithm. 

Although the given methodology has been applied to the optimization of the prediction of the 

shear strength of beams with stirrups, it can also be applied to any other structural problem, such 

as Young’s modulus determination, tensile concrete strength, and creep or shrinkage. 
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